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About This Book

Books are not made to be believed, but to be

subjected to inquiry.

— Umberto Eco, The Name of the Rose

For Whom Is This Book?

This book is for those who will not settle for a black-box approach when work-

ing with a database. If you are eager to learn, prefer not to take expert advice for

granted, and would like to figure out everything yourself, follow along.

I assume that the reader has already tried using Postgre��� and has at least some

general understanding of how it works. Entry-level users may find the text a bit

difficult. For example, I will not tell anything about how to install the server, enter

psql commands, or set configuration parameters.

I hope that the book will also be useful for those who are familiar with another

database system, but switch over to Postgre��� and would like to understand how

they differ. A book like this would have saved me a lot of time several years ago.

And that’s exactly why I finally wrote it.

What This Book Will Not Provide

This book is not a collection of recipes. You cannot find ready-made solutions for

every occasion, but if you understand inner mechanisms of a complex system, you

will be able to analyze and critically evaluate other people’s experience and come

to your own conclusions. For this reason, I explain such details that may at first

seem to be of no practical use.

But this book is not a tutorial either. While delving deeply into some fields (in

which I am more interested myself), it may say nothing at all about the other.
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About This Book

By no means is this book a reference. I tried to be precise, but I did not aim at

replacing documentation, so I could easily leave out some details that I considered

insignificant. In any unclear situation read the documentation.

This book will not teach you how to develop the Postgre��� core. I do not expect

any knowledge of the C language, as this book is mainly intended for database

administrators and application developers. But I do provide multiple references to

the source code, which can give you as many details as you like, and even more.

What This Book Does Provide

In the introductory chapter, I briefly touch upon the main database concepts that

will serve as the foundation for all the further narration. I do not expect you to

get much new information from this chapter but still include it to complete the

big picture. Besides, this overview can be found useful by those who are migrating

from other database systems.

Part I is devoted to questions of data consistency and isolation. I first cover them

from the user’s perspective (you will learn which isolation levels are available and

what are the implications) and then dwell on their internals. For this purpose,

I have to explain implementation details of multiversion concurrency control and

snapshot isolation, paying special attention to cleanup of outdated row versions.

Part II describes buffer cache and ���, which is used to restore data consistency

after a failure.

Part III goes into details about the structure and usage of various types of locks:

lightweight locks for ���, heavyweight locks for relations, and row-level locks.

Part IVexplains how the server plans and executes ��� queries. I will tell youwhich

data access methods are available, which join methods can be used, and how the

collected statistics are applied.

Part V extends the discussion of indexes from the already covered B-trees to other

access methods. I will explain some general principles of extensibility that define

the boundaries between the core of the indexing system, index access methods,

and data types (which will bring us to the concept of operator classes), and then

elaborate on each of the available methods.

10



Conventions

Postgre��� includes multiple “introspective” extensions, which are not used in

routine work, but give us an opportunity to peek into the server’s internal behav-

ior. This book uses quite a few of them. Apart from letting us explore the server

internals, these extensions can also facilitate troubleshooting in complex usage

scenarios.

Conventions

I tried to write this book in a way that would allow reading it page by page, from

start to finish. But it is hardly possible to uncover all the truth at once, so I had to

get back to one and the same topic several times. Writing that “it will be considered

later” over and over again would inevitably make the text much longer, that’s why

in such cases I simply put the page number in the margin p. ��to refer you to further

discussion. A similar number pointing backwards will take you to the page where

something has been already said on the subject.

Both the text and all the code examples in this book apply to Postgre��� ��. Next

to some paragraphs, you can see a version number in the page margin. v. ��It means

that the provided information is relevant starting from the indicated Postgre���

version, while all the previous versions either did not have the described feature

at all, or used a different implementation. Such notes can be useful for those who

have not upgraded their systems to the latest release yet.

I also use the margins to show the default values of the discussed parameters. The

names of both regular and storage parameters are printed in italics: 4MBwork_mem.

In footnotes, I provide multiple links to various sources of information. There are

several of them,but first and foremost, I list the Postgre��� documentation1,which

is a wellspring of knowledge. Being an essential part of the project, it is always kept

up-to-date by Postgre��� developers themselves. However, the primary reference

is definitely the source code2. It is amazing how many answers you can find by

simply reading comments and browsing through ������ files, even if you do not

know C. Sometimes I also refer to commitfest3 entries: you can always trace the

1 postgresql.org/docs/14/index.html
2 git.postgresql.org/gitweb/?p=postgresql.git;a=summary.
3 commitfest.postgresql.org.
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About This Book

history of all changes and understand the logic of decisions taken by developers

if you read the related discussions in the psql-hackers mailing list, but it requires

digging through piles of emails.

Side notes that can lead the discussion astray (which I could not help but include into the

book) are printed like this, so they can be easily skipped.

Naturally, the book contains multiple code examples, mainly in ���. The code is

provided with the prompt =>; the server response follows if necessary:

=> SELECT now();

now

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2022−07−10 18:39:19.763435+03

(1 row)

If you carefully repeat all the provided commands in Postgre��� ��, you should get

exactly the same results (down to transaction ��s and other inessential details).

Anyway, all the code examples in this book have been generated by the script con-

taining exactly these commands.

When it is required to illustrate concurrent execution of several transactions, the

code run in another session is indented and marked off by a vertical line.

=> SHOW server_version;

server_version

−−−−−−−−−−−−−−−−

14.4

(1 row)

To try out such commands (which is useful for self-study, just like any experimen-

tation), it is convenient to open two psql terminals.

The names of commands and various database objects (such as tables and columns,

functions, or extensions) are highlighted in the text using a sans-serif font: ������,

pg_class.

If a utility is called from the operating system, it is shown with a prompt that ends

with $:

12
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1
Introduction

1.1. Data Organization

Databases

Postgre��� is a program that belongs to the class of database management sys-

tems. When this program is running, we call it a Postgre��� server, or instance.

Data managed by Postgre��� is stored in databases1. A single Postgre��� instance

can serve several databases at a time; together they are called a database cluster.

To be able to use the cluster, you must first initialize2 (create) it. The directory that

contains all the files related to the cluster is usually called ������, after the name

of the environment variable pointing to this directory.

Installations from pre-built packages can add their own “abstraction layers” over the reg-

ular Postgre��� mechanism by explicitly setting all the parameters required by utilities.

In this case, the database server runs as an operating system service, and you may never

come across the ������ variable directly. But the term itself is well-established, so I am

going to use it.

After cluster initialization, ������ contains three identical databases:

template0 is used for cases like restoring data from a logical backup or creating a

database with a different encoding; it must never be modified.

template1 serves as a template for all the other databases that a user can create in

the cluster.

1 postgresql.org/docs/14/managing-databases.html
2 postgresql.org/docs/14/app-initdb.html
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Chapter 1. Introduction

postgres is a regular database that you can use at your discretion.

postgres template0 template1

CREATE DATABASE

newdb

PostgreSQL instance

database
cluster

System Catalog

Metadata of all cluster objects (such as tables, indexes, data types, or functions)

is stored in tables that belong to the system catalog1. Each database has its own

set of tables (and views) that describe the objects of this database. Several system

catalog tables are common to the whole cluster; they do not belong to any partic-

ular database (technically, a dummy database with a zero �� is used), but can be

accessed from all of them.

The system catalog can be viewed using regular ��� queries,while allmodifications

in it are performed by ��� commands. The psql client also offers a whole range of

commands that display the contents of the system catalog.

Names of all system catalog tables begin with pg_, like in pg_database. Column

names start with a three-letter prefix that usually corresponds to the table name,

like in datname.

In all system catalog tables, the column declared as the primary key is called oid

(object identifier); its type, which is also called oid, is a ��-bit integer.

1 postgresql.org/docs/14/catalogs.html
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1.1. Data Organization

The implementation of oid object identifiers is virtually the same as that of sequences, but

it appeared in Postgre��� much earlier. What makes it special is that the generated unique

��s issued by a common counter are used in different tables of the system catalog. When

an assigned �� exceeds the maximum value, the counter is reset. To ensure that all values

in a particular table are unique, the next issued oid is checked by the unique index; if it is

already used in this table, the counter is incremented, and the check is repeated1.

Schemas

Schemas2 are namespaces that store all objects of a database. Apart from user

schemas, Postgre��� offers several predefined ones:

public is the default schema for user objects unless other settings are specified.

pg_catalog is used for system catalog tables.

information_schema provides an alternative view for the system catalog as defined

by the ��� standard.

pg_toast is used for objects related to ����� p. ��.

pg_temp comprises temporary tables. Although different users create temporary

tables in different schemas called pg_temp_N, everyone refers to their objects

using the pg_temp alias.

Each schema is confined to a particular database, and all database objects belong

to this or that schema.

If the schema is not specified explicitly when an object is accessed, Postgre��� se-

lects the first suitable schema from the search path. The search path is based on the

value of the search_path parameter, which is implicitly extended with pg_catalog

and (if necessary) pg_temp schemas. It means that different schemas can contain

objects with the same names.

1 backend/catalog/catalog.c, GetNewOidWithIndex function
2 postgresql.org/docs/14/ddl-schemas.html
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Chapter 1. Introduction

Tablespaces

Unlike databases and schemas, which determine logical distribution of objects,

tablespaces define physical data layout. A tablespace is virtually a directory in a

file system. You can distribute your data between tablespaces in such a way that

archive data is stored on slow disks, while the data that is being actively updated

goes to fast disks.

One and the same tablespace can be used by different databases, and each database

can store data in several tablespaces. It means that logical structure and physical

data layout do not depend on each other.

Each database has the so-called default tablespace. All database objects are cre-

ated in this tablespace unless another location is specified. System catalog objects

related to this database are also stored there.

postgres template1

pg_catalog public plugh pg_catalog public

pg_global

pg_default

xyzzy

common cluster objects

18
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During cluster initialization, two tablespaces are created:

pg_default is located in the ������/base directory; it is used as the default ta-

blespace unless another tablespace is explicitly selected for this purpose.

pg_global is located in the ������/global directory; it stores system catalog objects

that are common to the whole cluster.

When creating a custom tablespace, you can specify any directory; Postgre��� will

create a symbolic link to this location in the ������/pg_tblspc directory. In fact,

all paths used by Postgre��� are relative to the ������ directory, which allows you

to move it to a different location (provided that you have stopped the server, of

course).

The illustration on the previous page puts together databases, schemas, and ta-

blespaces. Here the postgres database uses tablespace xyzzy as the default one,

whereas the template1 database uses pg_default. Various database objects are

shown at the intersections of tablespaces and schemas.

Relations

For all of their differences, tables and indexes—the most important database

objects—have one thing in common: they consist of rows. This point is quite

self-evident when we think of tables, but it is equally true for �-tree nodes, which

contain indexed values and references to other nodes or table rows.

Some other objects also have the same structure; for example, sequences (virtual-

ly one-row tables) and materialized views (which can be thought of as tables that

“keep” the corresponding queries). Besides, there are regular views, which do not

store any data but otherwise are very similar to tables.

In Postgre���, all these objects are referred to by the generic term relation.

In my opinion, it is not a happy term because it confuses database tables with “genuine”

relations defined in the relational theory. Here we can feel the academic legacy of the

project and the inclination of its founder, Michael Stonebraker, to see everything as a rela-

tion. In one of his works, he even introduced the concept of an “ordered relation” to denote

a table in which the order of rows is defined by an index.
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The system catalog table for relations was originally called pg_relation, but following the

object orientation trend, it was soon renamed to pg_class, which we are now used to. Its

columns still have the ��� prefix though.

Files and Forks

All information associated with a relation is stored in several different forks1, each

containing data of a particular type.

At first, a fork is represented by a single file. Its filename consists of a numeric ��

(oid), which can be extended by a suffix that corresponds to the fork’s type.

The file grows over time, and when its size reaches � ��, another file of this fork

is created (such files are sometimes called segments). The sequence number of the

segment is added to the end of its filename.

Thefile size limit of � ��was historically established to support various file systems

that could not handle large files. You can change this limit when building Post-

gre��� (./configure --with-segsize).

visibility map

free space map

the main fork

12345_vm

12345_fsm.1

12345_fsm

12345.2

12345.1

12345

1 postgresql.org/docs/14/storage-file-layout.html
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Thus, a single relation is represented on disk by several files. Even a small table

without indexes will have at least three files, by the number of mandatory forks.

Each tablespace directory (except for pg_global) contains separate subdirectories

for particular databases. All files of the objects belonging to the same tablespace

and database are located in the same subdirectory. You must take it into account

because toomany files in a single directorymay not be handled well by file systems.

There are several standard types of forks.

The main fork represents actual data: table rows or index rows. This fork is avail-

able for any relations (except for views, which contain no data).

Files of the main fork are named by their numeric ��s, which are stored as

relfilenode values in the pg_class table.

Let’s take a look at the path to a file that belongs to a table created in the

pg_default tablespace:

=> CREATE UNLOGGED TABLE t(

a integer,

b numeric,

c text,

d json

);

=> INSERT INTO t VALUES (1, 2.0, 'foo', '{}');

=> SELECT pg_relation_filepath('t');

pg_relation_filepath

−−−−−−−−−−−−−−−−−−−−−−

base/16384/16385

(1 row)

The base directory corresponds to the pg_default tablespace, the next sub-

directory is used for the database, and it is here that we find the file we are

looking for:

=> SELECT oid FROM pg_database WHERE datname = 'internals';

oid

−−−−−−−

16384

(1 row)

=> SELECT relfilenode
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FROM pg_class

WHERE relname = 't';

relfilenode

−−−−−−−−−−−−−

16385

(1 row)

Here is the corresponding file in the file system:

=> SELECT size

FROM pg_stat_file('/usr/local/pgsql/data/base/16384/16385');

size

−−−−−−

8192

(1 row)

The initialization fork1 is available only for unlogged tables (created with the ��-

������ clause) and their indexes. Such objects are the same as regular ones,

except that any actions performed on them are not written into the write-

ahead log. It makes these operations considerably faster, but you will not be

able to restore consistent data in case of a failure. Therefore, Postgre��� sim-

ply deletes all forks of such objects during recovery and overwrites the main

fork with the initialization fork, thus creating a dummy file.

The t table is created as unlogged, so the initialization fork is present. It has

the same name as the main fork, but with the _init suffix:

=> SELECT size

FROM pg_stat_file('/usr/local/pgsql/data/base/16384/16385_init');

size

−−−−−−

0

(1 row)

The free space map2 keeps track of available space within pages. Its volume

changes all the time, growing after vacuuming and getting smaller when new

row versions appear. The free space map is used to quickly find a page that

can accommodate new data being inserted.

backend/storage/freespace/README

22

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/freespace/README;hb=REL_14_STABLE


1.1. Data Organization

All files related to the free space map have the _fsm suffix. Initially, no such

files are created; they appear only when necessary. The easiest way to get

them is to vacuum a table p. ���:

=> VACUUM t;

=> SELECT size

FROM pg_stat_file('/usr/local/pgsql/data/base/16384/16385_fsm');

size

−−−−−−−

24576

(1 row)

To speed up search, the free space map is organized as a tree; it takes at least

three pages (hence its file size for an almost empty table).

The free space map is provided for both tables and indexes. But since an index

row cannot be added into an arbitrary page (for example, �-trees define the

place of insertion by the sort order), Postgre��� tracks only those pages that

have been fully emptied and can be reused in the index structure.

The visibility map1 can quickly show whether a page needs to be vacuumed or

frozen. For this purpose, it provides two bits for each table page.

The first bit is set for pages that contain only up-to-date row versions. Vac-

uum p. ���skips such pages because there is nothing to clean up. Besides, when a

transaction tries to read a row from such a page, there is no point in checking

its visibility, so an index-only scan can be used.

The second bit v. �.�is set for pages that contain only frozen row versions. I will use

the term freeze p. ���map to refer to this part of the fork.

Files of the visibility map have the _vm suffix. They are usually the smallest

ones:

=> SELECT size

FROM pg_stat_file('/usr/local/pgsql/data/base/16384/16385_vm');

size

−−−−−−

8192

(1 row)

The visibility map is provided for tables, but not for indexes. p. ��
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Pages

To facilitate �/�, all files are logically split into pagesp. �� (or blocks), which represent

the minimum amount of data that can be read or written. Consequently, many

internal Postgre��� algorithms are tuned for page processing.

The page size is usually � k�. It can be configured to some extent (up to �� k�), but

only at build time (./configure --with-blocksize), and nobody usually does it. Once

built and launched, the instance can work only with pages of the same size; it is

impossible to create tablespaces that support different page sizes.

Regardless of the fork they belong to, all the files are handled by the server in

roughly the same way. Pages are first moved to the buffer cache (where they can

be read and updated by processes) and then flushed back to disk as required.

TOAST

Each row must fit a single page: there is no way to continue a row on the next

page. To store long rows, Postgre��� uses a special mechanism called ����� 1

(The Oversized Attributes Storage Technique).

T���� implies several strategies. You can move long attribute values into a sep-

arate service table, having sliced them into smaller “toasts.” Another option is to

compress a long value in such a way that the row fits the page. Or you can do both:

first compress the value, and then slice and move it.

If the main table contains potentially long attributes, a separate ����� table is

created for it right away, one for all the attributes. For example, if a table has a

column of the numeric or text type, a ����� table will be created even if this column

will never store any long values.

For indexes, the ����� mechanism can offer only compression; moving long at-

tributes into a separate table is not supported. It limits the size of the keys that can

be indexed (the actual implementation depends on a particular operator class).

1 postgresql.org/docs/14/storage-toast.html

include/access/heaptoast.h
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By default, the ����� strategy is selected based on the data type of a column. The

easiest way to review the used strategies is to run the \d+ command in psql, but I

will query the system catalog to get an uncluttered output:

=> SELECT attname, atttypid::regtype,

CASE attstorage

WHEN 'p' THEN 'plain'

WHEN 'e' THEN 'external'

WHEN 'm' THEN 'main'

WHEN 'x' THEN 'extended'

END AS storage

FROM pg_attribute

WHERE attrelid = 't'::regclass AND attnum > 0;

attname | atttypid | storage

−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−

a | integer | plain

b | numeric | main

c | text | extended

d | json | extended

(4 rows)

Postgre��� supports the following strategies:

plain means that ����� is not used (this strategy is applied to data types that are

known to be “short,” such as the integer type).

extended allows both compressing attributes and storing them in a separate �����

table.

external implies that long attributes are stored in the ����� table in an uncom-

pressed state.

main requires long attributes to be compressed first; they will be moved to the

����� table only if compression did not help.

In general terms, the algorithm looks as follows1. Postgre��� aims at having at

least four rows in a page. So if the size of the row exceeds one fourth of the page,

excluding the header (for a standard-size page it is about ���� bytes), we must ap-

ply the �����mechanism to some of the values. Following the workflow described

below, we stop as soon as the row length does not exceed the threshold anymore:

1 backend/access/heap/heaptoast.c
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1. First of all, we go through attributes with external and extended strategies,

starting from the longest ones. Extended attributes get compressed, and if the

resulting value (on its own, without taking other attributes into account) ex-

ceeds one fourth of the page, it ismoved to the ����� table right away. External

attributes are handled in the same way, except that the compression stage is

skipped.

2. If the row still does not fit the page after the first pass, we move the remaining

attributes that use external or extended strategies into the ����� table, one by

one.

3. If it did not help either, we try to compress the attributes that use the main

strategy, keeping them in the table page.

4. If the row is still not short enough, the main attributes are moved into the

����� table.

The threshold valuev. �� is ���� bytes, but it can be redefined at the table level using

the toast_tuple_target storage parameter.

It may sometimes be useful to change the default strategy for some of the col-

umns. If it is known in advance that the data in a particular column cannot be

compressed (for example, the column stores ���� images), you can set the external

strategy for this column; it allows you to avoid futile attempts to compress the

data. The strategy can be changed as follows:

=> ALTER TABLE t ALTER COLUMN d SET STORAGE external;

If we repeat the query, we will get the following result:

attname | atttypid | storage

−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−

a | integer | plain

b | numeric | main

c | text | extended

d | json | external

(4 rows)

T���� tables reside in a separate schema called pg_toast; it is not included into

the search path, so ����� tables are usually hidden. For temporary tables,

pg_toast_temp_N schemas are used, by analogy with pg_temp_N.
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Let’s take a look at the inner mechanics of the process. Suppose table t contains

three potentially long attributes; it means that there must be a corresponding

����� table. Here it is:

=> SELECT relnamespace::regnamespace, relname

FROM pg_class

WHERE oid = (

SELECT reltoastrelid

FROM pg_class WHERE relname = 't'

);

relnamespace | relname

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

pg_toast | pg_toast_16385

(1 row)

=> \d+ pg_toast.pg_toast_16385

TOAST table "pg_toast.pg_toast_16385"

Column | Type | Storage

−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−

chunk_id | oid | plain

chunk_seq | integer | plain

chunk_data | bytea | plain

Owning table: "public.t"

Indexes:

"pg_toast_16385_index" PRIMARY KEY, btree (chunk_id, chunk_seq)

Access method: heap

It is only logical that the resulting chunks of the toasted row use the plain strategy:

there is no second-level �����.

Apart from the ����� table itself, Postgre��� creates the corresponding index in

the same schema. This index is always used to access ����� chunks. The name

of the index is displayed in the output, but you can also view it by running the

following query:

=> SELECT indexrelid::regclass FROM pg_index

WHERE indrelid = (

SELECT oid

FROM pg_class WHERE relname = 'pg_toast_16385'

);

indexrelid

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pg_toast.pg_toast_16385_index

(1 row)
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=> \d pg_toast.pg_toast_16385_index

Unlogged index "pg_toast.pg_toast_16385_index"

Column | Type | Key? | Definition

−−−−−−−−−−−+−−−−−−−−−+−−−−−−+−−−−−−−−−−−−

chunk_id | oid | yes | chunk_id

chunk_seq | integer | yes | chunk_seq

primary key, btree, for table "pg_toast.pg_toast_16385"

Thus, a ����� table increases the minimum number of fork files used by the table

up to eight: three for the main table, three for the ����� table, and two for the

����� index.

Column c uses the extended strategy, so its values will be compressed:

=> UPDATE t SET c = repeat('A',5000);

=> SELECT * FROM pg_toast.pg_toast_16385;

chunk_id | chunk_seq | chunk_data

−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−

(0 rows)

The ����� table is empty: repeated symbols have been compressed by the �� al-

gorithm, so the value fits the table page.

And now let’s construct this value of random symbols:

=> UPDATE t SET c = (

SELECT string_agg( chr(trunc(65+random()*26)::integer), '')

FROM generate_series(1,5000)

)

RETURNING left(c,10) || '...' || right(c,10);

?column?

−−−−−−−−−−−−−−−−−−−−−−−−−

TNBAZHGYYR...LHBFWWTUHN

(1 row)

UPDATE 1

This sequence cannot be compressed, so it gets into the ����� table:

=> SELECT chunk_id,

chunk_seq,

length(chunk_data),

left(encode(chunk_data,'escape')::text, 10) || '...' ||

right(encode(chunk_data,'escape')::text, 10)

FROM pg_toast.pg_toast_16385;
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chunk_id | chunk_seq | length | ?column?

−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

16390 | 0 | 1996 | TNBAZHGYYR...HAFBUNMXMY

16390 | 1 | 1996 | XTIKSELYUD...CKZEQYANGI

16390 | 2 | 1008 | NOMSLWWXQM...LHBFWWTUHN

(3 rows)

We can see that the characters are sliced into chunks. The chunk size is selected in

such away that the page of the ����� table can accommodate four rows. This value

varies a little from version to version depending on the size of the page header.

When a long attribute is accessed, Postgre��� automatically restores the original

value and returns it to the client; it all happens seamlessly for the application. If

long attributes do not participate in the query, the ����� table will not be read at

all. It is one of the reasons why you should avoid using the asterisk in production

solutions.

If v. ��the client queries one of the first chunks of a long value, Postgre��� will read the

required chunks only, even if the value has been compressed.

Nevertheless, data compression and slicing require a lot of resources; the same

goes for restoring the original values. That’s why it is not a good idea to keep

bulky data in Postgre���, especially if this data is being actively used and does

not require transactional logic (like scanned accounting documents). A potentially

better alternative is to store such data in the file system, keeping in the database

only the names of the corresponding files. But then the database system cannot

guarantee data consistency.

1.2. Processes and Memory

A Postgre��� server instance consists of several interacting processes.

The first process launched at the server start is postgres, which is traditionally

called postmaster. It spawns all the other processes (Unix-like systems use the fork

system call for this purpose) and supervises them: if any process fails, postmas-

ter restarts it (or the whole server if there is a risk that the shared data has been

damaged).
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Because of its simplicity, the process model has been used in Postgre��� from the very

beginning, and ever since there have been unending discussions about switching over to

threads.

The current model has several drawbacks: static shared memory allocation does not allow

resizing structures like buffer cache on the fly; parallel algorithms are hard to imple-

ment and less efficient than they could be; sessions are tightly bound to processes. Using

threads sounds promising, even though it involves some challenges related to isolation,

OS compatibility, and resource management. However, their implementation would re-

quire a radical code overhaul and years of work, so conservative views prevail for now: no

such changes are expected in the near future.

Server operation is maintained by background processes. Here are the main ones:

startup restores the system after a failure.

autovacuum removesp. ��� stale data from tables and indexes.

wal writer writes ��� entries to disk.

checkpointer executes checkpoints.

writer flushes dirty pages to disk.

stats collector collects usage statistics for the instance.

wal sender sends ��� entries to a replica.

wal receiver gets ��� entries on a replica.

Some of these processes are terminated once the task is complete, others run in

the background all the time, and some can be switched off.

Each process is managed by configuration parameters, sometimes by dozens of them. To

set up the server in a comprehensive manner, you have to be aware of its inner workings.

But general considerations will only help you select more or less adequate initial values;

later on, these settings have to be fine-tuned based on monitoring data.

To enable process interaction, postmaster allocates shared memory, which is avail-

able to all the processes.

Since disks (especially ���, but ��� too) are much slower than ���, Postgre���

uses caching: some part of the shared ��� is reserved for recently read pages, in

hope that they will be needed more than once and the overhead of repeated disk
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access will be reduced. Modified data is also flushed to disk after some delay, not

immediately.

Buffer cache takes the greater part of the sharedmemory,which also contains other

buffers used by the server to speed up disk access.

The operating system has its own cache too. Postgre��� (almost) never bypasses

the operating system mechanisms to use direct �/�, so it results in double caching.

backendbackend

postmaster

backend background processes

buffer cache

shared memory

PostgreSQL
instance

client
application

client
application

client
application

cache

operating
system

In case of a failure (such as a power outage or an operating system crash), the data

kept in ��� is lost, including that of the buffer cache. The files that remain on

disk have their pages written at different points in time. To be able to restore data

consistency, Postgre��� maintains the write-ahead log (���) during its operation,

which makes it possible to repeat lost operations when necessary.

1.3. Clients and the Client-Server Protocol

Another task of the postmaster process is to listen for incoming connections. Once

a new client appears, postmaster spawns a separate backend process1. The client

1 backend/tcop/postgres.c, PostgresMain function
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establishes a connection and starts a session with this backend. The session con-

tinues until the client disconnects or the connection is lost.

The server has to spawn a separate backend for each client. If many clients are

trying to connect, it can turn out to be a problem.

• Each process needs ��� to cache catalog tables, prepared statements, inter-

mediate query results, and other data. The more connections are open, the

more memory is required.

• If connections are short and frequent (a client performs a small query and

disconnects), the cost of establishing a connection, spawning a new process,

and performing pointless local caching is unreasonably high.

• Themore processes are started, themore time is required to scan their list, and

this operation is performed very often.p. �� As a result, performance may decline

as the number of clients grows.

This problem can be resolved by connection pooling, which limits the number of

spawned backends. Postgre��� has no such built-in functionality, so we have to

rely on third-party solutions: pooling managers integrated into the application

server or external tools (such as PgBouncer1 or Odyssey2). This approach usually

means that each server backend can execute transactions of different clients, one

after another. It imposes some restrictions on application development since it

is only allowed to use resources that are local to a transaction, not to the whole

session.

To understand each other, a client and a server must use one and the same inter-

facing protocol3. It is usually based on the standard libpq library, but there are also

other custom implementations.

Speaking in the most general terms, the protocol allows clients to connect to the

server and execute ��� queries.

A connection is always established to a particular database on behalf of a particu-

lar role, or user. Although the server supports a database cluster, it is required to

establish a separate connection to each database that you would like to use in your

1 pgbouncer.org
2 github.com/yandex/odyssey
3 postgresql.org/docs/14/protocol.html
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application. At this point,authentication is performed: the backend process verifies

the user’s identity (for example, by asking for the password) and checks whether

this user has the right to connect to the server and to the specified database.

S�� queries are passed to the backend process as text strings. The process parses

the text, optimizes the query, executes it, and returns the result to the client.
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2
Isolation

2.1. Consistency

The key feature of relational databases is their ability to ensure data consistency,

that is, data correctness.

It is a known fact that at the database level it is possible to create integrity con-

straints, such as ��� ���� or ������. The database system ensures that these con-

straints are never broken, so data integrity is never compromised.

If all the required constraints could be formulated at the database level, consis-

tency would be guaranteed. But some conditions are too complex for that, for

example, they touch upon several tables at once. And even if a constraint can be

defined in the database, but for some reason it is not, it does not mean that this

constraint may be violated.

Thus, data consistency is stricter than integrity, but the database system has no

idea what “consistency” actually means. If an application breaks it without break-

ing the integrity, there is no way for the database system to find out. Consequently,

it is the application that must lay down the criteria for data consistency, and we

have to believe that it is written correctly and will never have any errors.

But if the application always executes only correct sequences of operators, where

does the database system come into play?

First of all, a correct sequence of operators can temporarily break data consistency,

and—strange as it may seem—it is perfectly normal.

Ahackneyed but clear example is a transfer of funds fromone account to another. A

consistency rule may sound as follows: a money transfer must never change the total
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balance of the affected accounts. It is quite difficult (although possible) to formulate

this rule as an integrity constraint in ���, so let’s assume that it is defined at the

application level and remains opaque to the database system. A transfer consists of

two operations: the first one draws somemoney from one of the accounts,whereas

the second one adds this sum to another account. The first operation breaks data

consistency, whereas the second one restores it.

If the first operation succeeds, but the second one does not (because of some fail-

ure), data consistency will be broken. Such situations are unacceptable, but it takes

a great deal of effort to detect and address them at the application level. Luckily

it is not required—the problem can be completely solved by the database system

itself if it knows that these two operations constitute an indivisible whole, that is,

a transaction.

But there is also a more subtle aspect here. Being absolutely correct on their own,

transactions can start operating incorrectly when run in parallel. That’s because

operations belonging to different transactions often get intermixed. There would

be no such issues if the database system first completed all operations of one trans-

action and thenmoved on to the next one, but performance of sequential execution

would be implausibly low.

A truly simultaneous execution of transactions can only be achieved on systems with suit-

able hardware: a multi-core processor, a disk array, and so on. But the same reasoning

is also true for a server that executes commands sequentially in the time-sharing mode.

For generalization purposes, both these situations are sometimes referred to as concurrent

execution.

Correct transactions that behave incorrectly when run together result in concur-

rency anomalies, or phenomena.

Here is a simple example. To get consistent data from the database, the applica-

tion must not see any changes made by other uncommitted transactions, at the

very minimum. Otherwise (if some transactions are rolled back), it would see the

database state that has never existed. Such an anomaly is called a dirty read. There

are also many other anomalies, which are more complex.

When running transactions concurrently, the database must guarantee that the

result of such execution will be the same as the outcome of one of the possible se-
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quential executions. In other words, it must isolate transactions from one another,

thus taking care of any possible anomalies.

To sum it up, a transaction is a set of operations that takes the database from one

correct state to another correct state (consistency), provided that it is executed in

full (atomicity) and without being affected by other transactions (isolation). This

definition combines the requirements implied by the first three letters of the ����

acronym. They are so intertwined that it makes sense to discuss them together. In

fact, the durability requirement is hardly possible to split off either: after a crash,

the system may still contain some changes made by uncommitted transactions,

and you have to do something about it to restore data consistency.

Thus, the database system helps the application maintain data consistency by tak-

ing transaction boundaries into account, even though it has no idea about the im-

plied consistency rules.

Unfortunately, full isolation is hard to implement and can negatively affect per-

formance. Most real-life systems use weaker isolation levels, which prevent some

anomalies, but not all of them. It means that the job of maintaining data consis-

tency partially falls on the application. And that’s exactly why it is very important

to understand which isolation level is used in the system, what is guaranteed at

this level and what is not, and how to ensure that your code will be correct in such

conditions.

2.2. Isolation Levels and Anomalies Defined by the SQL

Standard

The ��� standard specifies four isolation levels1. These levels are defined by the list

of anomalies that may or may not occur during concurrent transaction execution.

So when talking about isolation levels, we have to start with anomalies.

We should bear in mind that the standard is a theoretical construct: it affects the

practice, but the practice still diverges from it in lots of ways. That’s why all ex-

1 postgresql.org/docs/14/transaction-iso.html
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amples here are rather hypothetical. Dealing with transactions on bank accounts,

these examples are quite self-explanatory, but I have to admit that they have noth-

ing to do with real banking operations.

It is interesting that the actual database theory also diverges from the standard: it

was developed after the standard had been adopted, and the practice was already

well ahead.

Lost Update

The lost update anomaly occurs when two transactions read one and the same table

row, then one of the transactions updates this row, and finally the other transaction

updates the same row without taking into account any changes made by the first

transaction.

Suppose that two transactions are going to increase the balance of one and the

same account by $���. The first transaction reads the current value ($�,���), then

the second transaction reads the same value. The first transaction increases the

balance (making it $�,���) and writes the new value into the database. The second

transaction does the same: it gets $�,��� after increasing the balance and writes

this value. As a result, the customer loses $���.

Lost updates are forbidden by the standard at all isolation levels.

Dirty Reads and Read Uncommitted

The dirty read anomaly occurs when a transaction reads uncommitted changes

made by another transaction.

For example, the first transaction transfers $��� to an empty account but does not

commit this change. Another transaction reads the account state (which has been

updated but not committed) and allows the customer to withdraw the money—

even though the first transaction gets interrupted and its changes are rolled back,

so the account is empty.

The standard allows dirty reads at the Read Uncommitted level.

40



2.2. Isolation Levels and Anomalies Defined by the SQL Standard

Non-Repeatable Reads and Read Committed

The non-repeatable read anomaly occurs when a transaction reads one and the

same row twice,whereas another transaction updates (or deletes) this row between

these reads and commits the change. As a result, the first transaction gets different

results.

For example, suppose there is a consistency rule that forbids having a negative bal-

ance in bank accounts. The first transaction is going to reduce the account balance

by $���. It checks the current value, gets $�,���, and decides that this operation

is possible. At the same time, another transaction withdraws all the money from

this account and commits the changes. If the first transaction checked the bal-

ance again at this point, it would get $� (but the decision to withdraw the money

is already taken, and this operation causes an overdraft).

The standard allows non-repeatable reads at the Read Uncommitted and Read Com-

mitted levels.

Phantom Reads and Repeatable Read

The phantom read anomaly occurswhenone and the same transaction executes two

identical queries returning a set of rows that satisfy a particular condition, while

another transaction adds some other rows satisfying this condition and commits

the changes in the time interval between these queries. As a result, the first trans-

action gets two different sets of rows.

For example, suppose there is a consistency rule that forbids a customer to have

more than three accounts. The first transaction is going to open a new account,

so it checks how many accounts are currently available (let’s say there are two of

them) and decides that this operation is possible. At this very moment, the second

transaction also opens a new account for this client and commits the changes. If

the first transaction double-checked the number of open accounts, it would get

three (but it is already opening another account, and the client ends up having

four of them).

The standard allows phantom reads at the Read Uncommitted,Read Committed, and

Repeatable Read isolation levels.
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No Anomalies and Serializable

The standard also defines the Serializable level, which does not allow any anoma-

lies. It is not the same as the ban on lost updates and dirty, non-repeatable, and

phantom reads. In fact, there is a much higher number of known anomalies than

the standard specifies, and an unknown number of still unknown ones.

The Serializable level must prevent any anomalies. It means that the application

developer does not have to take isolation into account. If transactions execute

correct operator sequences when run on their own, concurrent execution cannot

break data consistency either.

To illustrate this idea, I will use a well-known table provided in the standard; the

last column is added here for clarity:

lost dirty non-repeatable phantom other
update read read read anomalies

Read Uncommitted — yes yes yes yes

Read Committed — — yes yes yes

Repeatable Read — — — yes yes

Serializable — — — — —

Why These Anomalies?

Of all the possible anomalies, why does the standardmentions only some, and why

exactly these ones?

No one seems to know it for sure. But it is not unlikely that other anomalies were

simply not considered when the first versions of the standard were adopted, as

theory was far behind practice at that time.

Besides, it was assumed that isolation had to be based on locks. The widely used

two-phase locking protocol (���) requires transactions to lock the affected rows dur-

ing execution and release the locks upon completion. In simplistic terms, themore

locks a transaction acquires, the better it is isolated from other transactions. And

consequently, the worse is the system performance, as transactions start queuing

to get access to the same rows instead of running concurrently.
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I believe that to a great extent the difference between the standard isolation levels

is defined by the number of locks required for their implementation.

If the rows to be updated are locked for writes but not for reads, we get the Read

Uncommitted isolation level, which allows reading data before it is committed.

If the rows to be updated are locked for both reads and writes, we get the Read

Committed level: it is forbidden to read uncommitted data, but a query can return

different values if it is run more than once (non-repeatable reads).

Locking the rows to be read and to be updated for all operations gives us the Re-

peatable Read level: a repeated query will return the same result.

However, the Serializable level poses a problem: it is impossible to lock a row that

does not exist yet. It leaves an opportunity for phantom reads to occur: a transac-

tion can add a row that satisfies the condition of the previous query, and this row

will appear in the next query result.

Thus, regular locks cannot provide full isolation: to achieve it, we have to lock con-

ditions (predicates) rather than rows. Such predicate locks were introduced as early

as ���� when System R was being developed; however, their practical applicability

is limited to simple conditions for which it is clear whether two different predicates

may conflict. As far as I know, predicate locks in their intended form have never

been implemented in any system.

2.3. Isolation Levels in PostgreSQL

Over time, lock-based protocols for transactionmanagement got replaced with the

Snapshot Isolation (��) protocol. The idea behind this approach is that each trans-

action accesses a consistent snapshot of data as it appeared at a particular point in

time. The snapshot includes all the current changes committed before the snap-

shot was taken.

Snapshot isolation minimizes the number of required locks. In fact, a row will be

locked only by concurrent update attempts. In all other cases, operations can be

executed concurrently: writes never lock reads, and reads never lock anything.
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Postgre��� uses a multiversion flavor of the �� protocol. Multiversion concurrency

control implies that at any moment the database system can contain several ver-

sions of one and the same row, so Postgre��� can include an appropriate version

into the snapshot rather than abort transactions that attempt to read stale data.

Based on snapshots, Postgre��� isolation differs from the requirements specified

in the standard—in fact, it is even stricter. Dirty reads are forbidden by design.

Technically, you can specify theRead Uncommitted level, but its behavior will be the

same as that of Read Committed, so I am not going to mention this level anymore.

Repeatable Read allowsp. ��� neither non-repeatable nor phantom reads (even though

it does not guarantee full isolation). But in some cases, there is a risk of losing

changes at the Read Committed level.

lost dirty non-repeatable phantom other
updates reads reads reads anomalies

Read Committed yes — yes yes yes

Repeatable Read — — — — yes

Serializable — — — — —

Before exploring the internal mechanisms of isolation,p. �� let’s discuss each of the

three isolation levels from the user’s perspective.

For this purpose, we are going to create the accounts table; Alice and Bob will have

$�,��� each, but Bob will have two accounts:

=> CREATE TABLE accounts(

id integer PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY,

client text,

amount numeric

);

=> INSERT INTO accounts VALUES

(1, 'alice', 1000.00), (2, 'bob', 100.00), (3, 'bob', 900.00);

Read Committed

No dirty reads. It is easy to check that reading dirty data is not allowed. Let’s start

a transaction. By default, it uses the Read Committed1 isolation level:

1 postgresql.org/docs/14/transaction-iso.html#XACT-READ-COMMITTED
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=> BEGIN;

=> SHOW transaction_isolation;

transaction_isolation

−−−−−−−−−−−−−−−−−−−−−−−

read committed

(1 row)

To be more exact, the default level is set by the following parameter, which can be

changed as required:

=> SHOW default_transaction_isolation;

default_transaction_isolation

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

read committed

(1 row)

The opened transactionwithdraws some funds from the customer account but does

not commit these changes yet. It will see its own changes though, as it is always

allowed:

=> UPDATE accounts SET amount = amount - 200 WHERE id = 1;

=> SELECT * FROM accounts WHERE client = 'alice';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

1 | alice | 800.00

(1 row)

In the second session, we start another transaction that will also run at the Read

Committed level:

=> BEGIN;

=> SELECT * FROM accounts WHERE client = 'alice';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−

1 | alice | 1000.00

(1 row)

Predictably, the second transaction does not see any uncommitted changes—dirty

reads are forbidden.
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Non-repeatable reads. Now let the first transaction commit the changes. Then the

second transaction will repeat the same query:

=> COMMIT;

=> SELECT * FROM accounts WHERE client = 'alice';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

1 | alice | 800.00

(1 row)

=> COMMIT;

The query receives an updated version of the data—and it is exactly what is under-

stood by the non-repeatable read anomaly, which is allowed at the Read Committed

level.

A practical insight: in a transaction, you must not take any decisions based on the

data read by the previous operator, as everything can change in between. Here is

an example whose variations appear in the application code so often that it can be

considered a classic anti-pattern:

IF (SELECT amount FROM accounts WHERE id = 1) >= 1000 THEN

UPDATE accounts SET amount = amount - 1000 WHERE id = 1;

END IF;

During the time that passes between the check and the update, other transactions

can freely change the state of the account, so such a “check” is absolutely useless.

For better understanding, you can imagine that random operators of other transac-

tions are “wedged” between the operators of the current transaction. For example,

like this:

IF (SELECT amount FROM accounts WHERE id = 1) >= 1000 THEN

UPDATE accounts SET amount = amount - 200 WHERE id = 1;

COMMIT;

UPDATE accounts SET amount = amount - 1000 WHERE id = 1;

END IF;
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If everything goes wrong as soon as the operators are rearranged, then the code

is incorrect. Do not delude yourself that you will never get into this trouble: any-

thing that can go wrong will go wrong. Such errors are very hard to reproduce, and

consequently, fixing them is a real challenge.

How can you correct this code? There are several options:

• Replace procedural code with declarative one.

For example, in this particular case it is easy to turn an �� statement into a

����� constraint:

ALTER TABLE accounts

ADD CHECK amount >= 0;

Now you do not need any checks in the code: it is enough to simply run the

command and handle the exception that will be raised if an integrity con-

straint violation is attempted.

• Use a single ��� operator.

Data consistency can be compromised if a transaction gets committed within

the time gap between operators of another transaction, thus changing data

visibility. If there is only one operator, there are no such gaps.

Postgre��� has enough capabilities to solve complex tasks with a single ���

statement. In particular, it offers common table expressions (���) that can

contain operators like ������, ������, ������, as well as the ������ �� ��������

operator that implements the following logic: insert the row if it does not

exist, otherwise perform an update.

• Apply explicit locks.

The last resort is to manually set an exclusive lock on all the required rows

(������ ��� ������) or even on the whole table (���� �����). This approach

always works, but it nullifies all the advantages of ����: some operations

that could be executed concurrently will run sequentially.
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Read skew. However, it is not all that simple. The Postgre��� implementation

allows other, less known anomalies, which are not regulated by the standard.

Suppose the first transaction has started amoney transfer between Bob’s accounts:

=> BEGIN;

=> UPDATE accounts SET amount = amount - 100 WHERE id = 2;

Meanwhile, the other transaction starts looping through all Bob’s accounts to cal-

culate their total balance. It begins with the first account (seeing its previous state,

of course):

=> BEGIN;

=> SELECT amount FROM accounts WHERE id = 2;

amount

−−−−−−−−

100.00

(1 row)

At this moment, the first transaction completes successfully:

=> UPDATE accounts SET amount = amount + 100 WHERE id = 3;

=> COMMIT;

The second transaction reads the state of the second account (and sees the already

updated value):

=> SELECT amount FROM accounts WHERE id = 3;

amount

−−−−−−−−−

1000.00

(1 row)

=> COMMIT;

As a result, the second transaction gets $�,��� because it has read incorrect data.

Such an anomaly is called read skew.

How can you avoid this anomaly at the Read Committed level? The answer is obvi-

ous: use a single operator. For example, like this:

SELECT sum(amount) FROM accounts WHERE client = 'bob';

48



2.3. Isolation Levels in PostgreSQL

I have been stating so far that data visibility can change only between operators,

but is it really so? What if the query is running for a long time? Can it see different

parts of data in different states in this case?

Let’s check it out. A convenient way to do it is to add a delay to an operator by

calling the pg_sleep function. Then the first rowwill be read at once, but the second

row will have to wait for two seconds:

=> SELECT amount, pg_sleep(2) -- two seconds

FROM accounts WHERE client = 'bob';

While this statement is being executed, let’s start another transaction to transfer

the money back:

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100 WHERE id = 2;

=> UPDATE accounts SET amount = amount - 100 WHERE id = 3;

=> COMMIT;

The result shows that the operator has seen all the data in the state that corre-

sponds to the beginning of its execution, which is certainly correct:

amount | pg_sleep

−−−−−−−−−+−−−−−−−−−−

0.00 |

1000.00 |

(2 rows)

But it is not all that simple either. If the query contains a function that is de-

clared ��������, and this function executes another query, then the data seen by

this nested query will not be consistent with the result of the main query.

Let’s check the balance in Bob’s accounts using the following function:

=> CREATE FUNCTION get_amount(id integer) RETURNS numeric

AS $$

SELECT amount FROM accounts a WHERE a.id = get_amount.id;

$$ VOLATILE LANGUAGE sql;

=> SELECT get_amount(id), pg_sleep(2)

FROM accounts WHERE client = 'bob';

We will transfer the money between the accounts once again while our delayed

query is being executed:
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=> BEGIN;

=> UPDATE accounts SET amount = amount + 100 WHERE id = 2;

=> UPDATE accounts SET amount = amount - 100 WHERE id = 3;

=> COMMIT;

In this case, we are going to get inconsistent data—$��� has been lost:

get_amount | pg_sleep

−−−−−−−−−−−−+−−−−−−−−−−

100.00 |

800.00 |

(2 rows)

I would like to emphasize that this effect is possible only at the Read Committed

isolation level, and only if the function is ��������. The trouble is that Postgre���

uses exactly this isolation level and this volatility category by default. So we have

to admit that the trap is set in a very cunning way.

Read skew instead of lost updates. The read skew anomaly can also occur within a

single operator during an update—even though in a somewhat unexpected way.

Let’s see what happens if two transactions try to modify one and the same row.

Bob currently has a total of $�,��� in two accounts:

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 200.00

3 | bob | 800.00

(2 rows)

Start a transaction that will reduce Bob’s balance:

=> BEGIN;

=> UPDATE accounts SET amount = amount - 100 WHERE id = 3;

At the same time, the other transaction will be calculating the interest for all cus-

tomer accounts with the total balance of $�,��� or more:
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=> UPDATE accounts SET amount = amount * 1.01

WHERE client IN (

SELECT client

FROM accounts

GROUP BY client

HAVING sum(amount) >= 1000

);

The ������ operator execution virtually consists of two stages. First, the rows to be

updated are selected based on the provided condition. Since the first transaction

is not committed yet, the second transaction cannot see its result, so the selection

of rows picked for interest accrual is not affected. Thus, Bob’s accounts satisfy the

condition, and his balance must be increased by $�� once the ������ operation

completes.

At the second stage, the selected rows are updated one by one. The second trans-

action has to wait because the row with id = 3 is locked: it is being updated by the

first transaction.

Meanwhile, the first transaction commits its changes:

=> COMMIT;

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−−

2 | bob | 202.0000

3 | bob | 707.0000

(2 rows)

On the one hand, the ������ command must not see any changes made by the first

transaction. But on the other hand, it must not lose any committed changes.

Once the lock is released, the ������ operator re-reads the row to be updated (but

only this row!). As a result, Bob gets $� of interest, based on the total of $���. But

if he had $���, his accounts should not have been included into the query results

in the first place.

Thus, our transaction has returned incorrect data: different rows have been read

from different snapshots. Instead of a lost update, we observe the read skew

anomaly again.
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Lost updates. However, the trick of re-reading the locked rowwill not help against

lost updates if the data is modified by different ��� operators.

Here is an example that we have already seen.p. �� The application reads and registers

(outside of the database) the current balance of Alice’s account:

=> BEGIN;

=> SELECT amount FROM accounts WHERE id = 1;

amount

−−−−−−−−

800.00

(1 row)

Meanwhile, the other transaction does the same:

=> BEGIN;

=> SELECT amount FROM accounts WHERE id = 1;

amount

−−−−−−−−

800.00

(1 row)

Thefirst transaction increases the previously registered value by $��� and commits

this change:

=> UPDATE accounts SET amount = 800.00 + 100 WHERE id = 1

RETURNING amount;

amount

−−−−−−−−

900.00

(1 row)

UPDATE 1

=> COMMIT;

The second transaction does the same:

=> UPDATE accounts SET amount = 800.00 + 100 WHERE id = 1

RETURNING amount;

amount

−−−−−−−−

900.00

(1 row)

UPDATE 1
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=> COMMIT;

Unfortunately, Alice has lost $���. The database system does not know that the

registered value of $��� is somehow related to accounts.amount, so it cannot pre-

vent the lost update anomaly. At the Read Committed isolation level, this code is

incorrect.

Repeatable Read

No non-repeatable and phantom reads. As its name suggests, the Repeatable Read1

isolation level must guarantee repeatable reading. Let’s check it and make sure

that phantom reads cannot occur either. For this purpose, we are going to start a

transaction that will revert Bob’s accounts to their previous state and create a new

account for Charlie:

=> BEGIN;

=> UPDATE accounts SET amount = 200.00 WHERE id = 2;

=> UPDATE accounts SET amount = 800.00 WHERE id = 3;

=> INSERT INTO accounts VALUES

(4, 'charlie', 100.00);

=> SELECT * FROM accounts ORDER BY id;

id | client | amount

−−−−+−−−−−−−−−+−−−−−−−−

1 | alice | 900.00

2 | bob | 200.00

3 | bob | 800.00

4 | charlie | 100.00

(4 rows)

In the second session, let’s start another transaction,with theRepeatable Read level

explicitly specified in the ����� command (the level of the first transaction is not

important):

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT * FROM accounts ORDER BY id;

1 postgresql.org/docs/14/transaction-iso.html#XACT-REPEATABLE-READ
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id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−−

1 | alice | 900.00

2 | bob | 202.0000

3 | bob | 707.0000

(3 rows)

Now the first transaction commits its changes, and the second transaction repeats

the same query:

=> COMMIT;

=> SELECT * FROM accounts ORDER BY id;

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−−

1 | alice | 900.00

2 | bob | 202.0000

3 | bob | 707.0000

(3 rows)

=> COMMIT;

The second transaction still sees the same data as before: neither new rows nor row

updates are visible. At this isolation level, you do not have to worry that something

will change between operators.

Serialization failures instead of lost updates. As we have already seenp. �� , if two trans-

actions update one and the same row at the Read Committed level, it can cause the

read skew anomaly: the waiting transaction has to re-read the locked row, so it

sees the state of this row at a different point in time as compared to other rows.

Such an anomaly is not allowed at the Repeatable Read isolation level, and if it does

happen, the transaction can only be abortedwith a serialization failure. Let’s check

it out by repeating the scenario with interest accrual:

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 200.00

3 | bob | 800.00

(2 rows)

=> BEGIN;
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=> UPDATE accounts SET amount = amount - 100.00 WHERE id = 3;

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> UPDATE accounts SET amount = amount * 1.01

WHERE client IN (

SELECT client

FROM accounts

GROUP BY client

HAVING sum(amount) >= 1000

);

=> COMMIT;

ERROR: could not serialize access due to concurrent update

=> ROLLBACK;

The data remains consistent:

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 200.00

3 | bob | 700.00

(2 rows)

The same error will be raised by any concurrent row updates, even if they affect

different columns.

We will also get this error if we try to update the balance based on the previously

stored value:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT amount FROM accounts WHERE id = 1;

amount

−−−−−−−−

900.00

(1 row)

=> BEGIN ISOLATION LEVEL REPEATABLE READ;
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=> SELECT amount FROM accounts WHERE id = 1;

amount

−−−−−−−−

900.00

(1 row)

=> UPDATE accounts SET amount = 900.00 + 100.00 WHERE id = 1

RETURNING amount;

amount

−−−−−−−−−

1000.00

(1 row)

UPDATE 1

=> COMMIT;

=> UPDATE accounts SET amount = 900.00 + 100.00 WHERE id = 1

RETURNING amount;

ERROR: could not serialize access due to concurrent update

=> ROLLBACK;

A practical insight: if your application is using the Repeatable Read isolation level

for writing transactions, it must be ready to retry transactions that have been com-

pleted with a serialization failure. For read-only transactions, such an outcome is

impossible.

Write skew. As we have seen, the Postgre��� implementation of the Repeatable

Read isolation level prevents all the anomalies described in the standard. But not

all possible ones: no one knows how many of them exist. However, one important

fact is proved for sure: snapshot isolation does not prevent only two anomalies, no

matter how many other anomalies are out there.

The first one is write skew.

Let’s define the following consistency rule: it is allowed to have a negative balance

in some of the customer’s accounts as long as the total balance is non-negative.

The first transaction gets the total balance of Bob’s accounts:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;
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=> SELECT sum(amount) FROM accounts WHERE client = 'bob';

sum

−−−−−−−−

900.00

(1 row)

The second transaction gets the same sum:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT sum(amount) FROM accounts WHERE client = 'bob';

sum

−−−−−−−−

900.00

(1 row)

The first transaction fairly assumes that it can debit one of the accounts by $���:

=> UPDATE accounts SET amount = amount - 600.00 WHERE id = 2;

The second transaction comes to the same conclusion, but debits the other ac-

count:

=> UPDATE accounts SET amount = amount - 600.00 WHERE id = 3;

=> COMMIT;

=> COMMIT;

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−

2 | bob | −400.00

3 | bob | 100.00

(2 rows)

Bob’s total balance is now negative, although both transactions would have been

correct if run separately.

Read-only transaction anomaly. The read-only transaction anomaly is the second

and the last one allowed at the Repeatable Read isolation level. To observe this

anomaly, we have to run three transactions: two of them are going to update the

data, while the third one will be read-only.
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But first let’s restore Bob’s balance:

=> UPDATE accounts SET amount = 900.00 WHERE id = 2;

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

3 | bob | 100.00

2 | bob | 900.00

(2 rows)

The first transaction calculates the interest to be accrued on Bob’s total balance

and adds this sum to one of his accounts:

=> BEGIN ISOLATION LEVEL REPEATABLE READ; -- 1

=> UPDATE accounts SET amount = amount + (

SELECT sum(amount) FROM accounts WHERE client = 'bob'

) * 0.01

WHERE id = 2;

Then the second transaction withdraws somemoney from Bob’s other account and

commits this change:

=> BEGIN ISOLATION LEVEL REPEATABLE READ; -- 2

=> UPDATE accounts SET amount = amount - 100.00 WHERE id = 3;

=> COMMIT;

If the first transaction gets committed at this point, there will be no anomalies: we

could assume that the first transaction is committed before the second one (but not

vice versa—the first transaction had seen the state of account with id = 3 before any

updates were made by the second transaction).

But let’s imagine that at this very moment we start a ready-only transaction to

query an account that is not affected by the first two transactions:

=> BEGIN ISOLATION LEVEL REPEATABLE READ; -- 3

=> SELECT * FROM accounts WHERE client = 'alice';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−

1 | alice | 1000.00

(1 row)

And only now will the first transaction get committed:
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=> COMMIT;

Which state should the third transaction see at this point? Having started, it could

see the changes made by the second transaction (which had already been commit-

ted), but not by the first one (which had not been committed yet). But as we have

already established, the second transaction should be treated as if it were started

after the first one. Any state seen by the third transactionwill be inconsistent—this

is exactly what is meant by the read-only transaction anomaly:

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 900.00

3 | bob | 0.00

(2 rows)

=> COMMIT;

Serializable

The Serializable1 isolation level prevents all possible anomalies. This level is vir-

tually built on top of snapshot isolation. Those anomalies that do not occur at the

Repeatable Read isolation level (such as dirty, non-repeatable, or phantom reads)

cannot occur at the Serializable level either. And those two anomalies that do occur

(write skew and read-only transaction anomalies) get detected in a special way to

abort the transaction, causing an already familiar serialization failure.

No anomalies. Let’s make sure that our write skew scenario p. ��will eventually end

with a serialization failure:

=> BEGIN ISOLATION LEVEL SERIALIZABLE;

=> SELECT sum(amount) FROM accounts WHERE client = 'bob';

sum

−−−−−−−−−−

910.0000

(1 row)

1 postgresql.org/docs/14/transaction-iso.html#XACT-SERIALIZABLE
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=> BEGIN ISOLATION LEVEL SERIALIZABLE;

=> SELECT sum(amount) FROM accounts WHERE client = 'bob';

sum

−−−−−−−−−−

910.0000

(1 row)

=> UPDATE accounts SET amount = amount - 600.00 WHERE id = 2;

=> UPDATE accounts SET amount = amount - 600.00 WHERE id = 3;

=> COMMIT;

COMMIT

=> COMMIT;

ERROR: could not serialize access due to read/write dependencies

among transactions

DETAIL: Reason code: Canceled on identification as a pivot, during

commit attempt.

HINT: The transaction might succeed if retried.

The scenario with the read-only transaction anomaly will lead to the same error.

Deferring a read-only transaction. To avoid situations when a read-only transac-

tion can cause an anomaly that compromises data consistency, Postgre��� offers

an interesting solution: this transaction can be deferred until its execution be-

comes safe. It is the only case when a ������ statement can be blocked by row

updates.

We are going to check it out by repeating the scenario that demonstrated the read-

only transaction anomaly:

=> UPDATE accounts SET amount = 900.00 WHERE id = 2;

=> UPDATE accounts SET amount = 100.00 WHERE id = 3;

=> SELECT * FROM accounts WHERE client = 'bob' ORDER BY id;

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 900.00

3 | bob | 100.00

(2 rows)

=> BEGIN ISOLATION LEVEL SERIALIZABLE; -- 1
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=> UPDATE accounts SET amount = amount + (

SELECT sum(amount) FROM accounts WHERE client = 'bob'

) * 0.01

WHERE id = 2;

=> BEGIN ISOLATION LEVEL SERIALIZABLE; -- 2

=> UPDATE accounts SET amount = amount - 100.00 WHERE id = 3;

=> COMMIT;

Let’s explicitly declare the third transaction as ���� ���� and ����������:

=> BEGIN ISOLATION LEVEL SERIALIZABLE READ ONLY DEFERRABLE; -- 3

=> SELECT * FROM accounts WHERE client = 'alice';

An attempt to run the query blocks the transaction—otherwise, it would have

caused an anomaly.

And only when the first transaction is committed, the third one can continue its

execution:

=> COMMIT;

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−

1 | alice | 1000.00

(1 row)

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−−

2 | bob | 910.0000

3 | bob | 0.00

(2 rows)

=> COMMIT;

Thus, if an application uses the Serializable isolation level, it must be ready to retry

transactions that have ended with a serialization failure. (The Repeatable Read

level requires the same approach unless the application is limited to read-only

transactions.)

The Serializable isolation level brings ease of programming, but the price you pay

is the overhead incurred by anomaly detection and forced termination of a certain
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fraction of transactions. You can lower this impact by explicitly using the ����

���� clause when declaring read-only transactions. But the main questions is, of

course, how big the fraction of aborted transactions is—since these transactions

will have to be retried. It would have been not so bad if Postgre��� aborted only

those transactions that result in data conflicts and are really incompatible. But

such an approach would inevitably be too resource-intensive, as it would involve

tracking operations on each row.

The current implementation allows false positives: Postgre��� can abort some ab-

solutely safe transactions that are simply out of luck. Their “luck” depends on

many factors, such as the presence of appropriate indexes or the amount of ���

available, so the actual behavior is hard to predict in advance.

If you use the Serializable level, it must be observed by all transactions of the ap-

plication. When combined with other levels, Serializable behaves as Repeatable

Read without any notice. So if you decide to use the Serializable level, it makes

sense to modify theread

committed

default_transaction_isolation parameter value accordingly—

even though someone can still overwrite it by explicitly setting a different level.

There are also other restrictions;v. �� for example, queries run at the Serializable level

cannot be executed on replicas. And although the functionality of this level is

constantly being improved, the current limitations and overhead make it less at-

tractive.

2.4. Which Isolation Level to Use?

Read Committed is the default isolation level in Postgre���, and apparently it is this

level that is used in the vast majority of applications. This level can be convenient

because it allows aborting transactions only in case of a failure; it does not abort

any transactions to preserve data consistency. In otherwords, serialization failures

cannot occur, so you do not have to take care of transaction retries.

The downside of this level is a large number of possible anomalies, which have

been discussed in detail above. A developer has to keep them in mind all the time

and write the code in a way that prevents their occurrence. If it is impossible to

define all the needed actions in a single ��� statement, then you have to resort

to explicit locking. The toughest part is that the code is hard to test for errors
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related to data inconsistency; such errors can appear in unpredictable and barely

reproducible ways, so they are very hard to fix too.

The Repeatable Read isolation level eliminates some of the inconsistency prob-

lems, but alas, not all of them. Therefore, you must not only remember about the

remaining anomalies, but also modify the application to correctly handle serializa-

tion failures, which is certainly inconvenient. However, for read-only transactions

this level is a perfect complement to the Read Committed level; it can be very useful

for cases like building reports that involve multiple ��� queries.

And finally, the Serializable isolation level allows you not to worry about data con-

sistency at all, which simplifies writing the code to a great extent. The only thing

required from the application is the ability to retry any transaction that is aborted

with a serialization failure. However, the number of aborted transactions and as-

sociated overhead can significantly reduce system throughput. You should also

keep in mind that the Serializable level is not supported on replicas and cannot be

combined with other isolation levels.

63



3
Pages and Tuples

3.1. Page Structure

Each page has a certain inner layout that usually consists of the following parts1:

• page header

• an array of item pointers

• free space

• items (row versions)

• special space

Page Header

The page header is located in the lowest addresses and has a fixed size. It stores

various information about the pagep. ��� , such as its checksum and the sizes of all the

other parts of the page.

These sizes can be easily displayed using the pageinspect2 extension. Let’s take a

look at the first page of the table (page numbering is zero-based):

1 postgresql.org/docs/14/storage-page-layout.html

include/storage/bufpage.h
2 postgresql.org/docs/14/pageinspect.html
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=> CREATE EXTENSION pageinspect;

=> SELECT lower, upper, special, pagesize

FROM page_header(get_raw_page('accounts',0));

lower | upper | special | pagesize

−−−−−−−+−−−−−−−+−−−−−−−−−+−−−−−−−−−−

152 | 6904 | 8192 | 8192

(1 row)

header

an array of item pointers

free space

items

special space

0

24

lower

upper

special

pagesize

Special Space

The special space is located in the opposite part of the page, taking its highest ad-

dresses. It is used by some indexes to store auxiliary information; in other indexes

and table pages this space is zero-sized.

In general, the layout of index pages is quite diverse; their content largely depends

on a particular index type. Even one and the same index can have different kinds

of pages: for example, �-trees have a metadata page of a special structure (page

zero) and regular pages that are very similar to table pages.

Tuples

Rows contain the actual data stored in the database, together with some additional

information. They are located just before the special space.
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In the case of tables, we have to deal with row versions rather than rows because

multiversion concurrency control implies having several versions of one and the

same row. Indexes do not use this ���� mechanism; instead, they have to ref-

erence all the available row versions, falling back on visibility rules to select the

appropriate ones.

Both table row versions and index entries are often referred to as tuples. This term is

borrowed from the relational theory—it is yet another legacy of Postgre���’s academic

past.

Item Pointers

The array of pointers to tuples serves as the page’s table of contents. It is located

right after the header.

Index entries have to refer to particular heap tuples somehow. Postgre��� em-

ploys six-byte tuple identifiers (���s) for this purpose. Each ��� consists of the page

number of the main forkp. �� and a reference to a particular row version located in this

page.

In theory, tuples could be referred to by their offset from the start of the page. But

then it would be impossible to move tuples within pages without breaking these

references, which in turn would lead to page fragmentation and other unpleasant

consequences.

For this reason, Postgre��� uses indirect addressing: a tuple identifier refers to the

corresponding pointer number, and this pointer specifies the current offset of the

tuple. If the tuple is moved within the page, its ��� still remains the same; it is

enough to modify the pointer, which is also located in this page.

Each pointer takes exactly four bytes and contains the following data:

• tuple offset from the start of the page

• tuple length

• several bits defining the tuple status

66



3.2. Row Version Layout

Free Space

Pages can have some free space left between pointers and tuples (which is reflected

in the free spacemap p. ��). There is no page fragmentation: all the free space available

is always aggregated into one chunk1.

3.2. Row Version Layout

Each row version contains a header followed by actual data. The header consists

of multiple fields, including the following:

xmin, xmax represent transaction ��s; they are used to differentiate between this

and other versions of one and the same row.

infomask provides a set of information bits that define version properties.

ctid is a pointer to the next updated version of the same row.

null bitmap is an array of bits marking the columns that can contain ���� values.

As a result, the header turns out quite big: it requires at least �� bytes for each tu-

ple, and this value is often exceeded because of the null bitmap and the mandatory

padding used for data alignment. In a “narrow” table, the size of various metadata

can easily beat the size of the actual data stored.

Data layout on disk fully coincideswith data representation in ���. The page along

with its tuples is read into the buffer cache as is, without any transformations.

That’s why data files are incompatible between different platforms2.

One of the sources of incompatibility is the byte order. For example, the x�� ar-

chitecture is little-endian, z/�rchitecture is big-endian, and ��� has configurable

byte order.

Another reason is data alignment by machine word boundaries, which is required

by many architectures. For example, in a ��-bit x�� system, integer numbers (the

integer type, takes four bytes) are aligned by the boundary of four-byte words,

1 backend/storage/page/bufpage.c, PageRepairFragmentation function
2 include/access/htup_details.h

67

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/page/bufpage.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/htup_details.h;hb=REL_14_STABLE


Chapter 3. Pages and Tuples

just like double-precision floating-point numbers (the double precision type, eight

bytes). But in a ��-bit system, double values are aligned by the boundary of eight-

byte words.

Data alignment makes the size of a tuple dependent on the order of fields in the

table. This effect is usually negligible, but in some cases it can lead to a significant

size increase. Here is an example:

=> CREATE TABLE padding(

b1 boolean,

i1 integer,

b2 boolean,

i2 integer

);

=> INSERT INTO padding VALUES (true,1,false,2);

=> SELECT lp_len FROM heap_page_items(get_raw_page('padding', 0));

lp_len

−−−−−−−−

40

(1 row)

I have used the heap_page_items function of the pageinspect extension to display

some details about pointers and tuples.

In Postgre���, tables are often referred to as heap. This is yet another obscure term that

hints at the similarity between space allocation for tuples and dynamic memory alloca-

tion. Some analogy can certainly be seen, but tables are managed by completely different

algorithms. We can interpret this term in the sense that “everything is piled up into a heap,”

by contrast with ordered indexes.

The size of the row is �� bytes. Its header takes �� bytes, a column of the integer

type takes � bytes, and boolean columns take � byte each. It makes �� bytes, and �

bytes are wasted on four-byte alignment of integer columns.

If we rebuild the table, the space will be used more efficiently:

=> DROP TABLE padding;

=> CREATE TABLE padding(

i1 integer,

i2 integer,

b1 boolean,

b2 boolean

);
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=> INSERT INTO padding VALUES (1,2,true,false);

=> SELECT lp_len FROM heap_page_items(get_raw_page('padding', 0));

lp_len

−−−−−−−−

34

(1 row)

Another possible micro-optimization is to start the table with the fixed-length

columns that cannot contain ���� values. Access to such columns will be more

efficient because it is possible to cache their offset within the tuple1.

3.3. Operations on Tuples

To identify different versions of one and the same row, Postgre��� marks each of

them with two values: xmin and xmax. These values define “validity time” of each

row version, but instead of the actual time, they rely on ever-increasing transaction

��s. p. ���

When a row is created, its xmin value is set to the transaction �� of the ������ com-

mand.

When a row is deleted, the xmax value of its current version is set to the transaction

�� of the ������ command.

With a certain degree of abstraction, the ������ command can be regarded as

two separate operations: ������ and ������. First, the xmax value of the current

row version is set to the transaction �� of the ������ command. Then a new ver-

sion of this row is created; its xmin value will be the same as the xmax value of the

previous version.

Now let’s get down to some low-level details of different operations on tuples2.

For these experiments, we will need a two-column table with an index created on

one of the columns:

1 backend/access/common/heaptuple.c, heap_deform_tuple function
2 backend/access/transam/README
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=> CREATE TABLE t(

id integer GENERATED ALWAYS AS IDENTITY,

s text

);

=> CREATE INDEX ON t(s);

Insert

Start a transaction and insert one row:

=> BEGIN;

=> INSERT INTO t(s) VALUES ('FOO');

Here is the current transaction ��:

=> -- txid_current() before v.13

SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

776

(1 row)

To denote the concept of a transaction, Postgre��� uses the term xact, which can be found

both in ��� function names and in the source code. Consequently, a transaction �� can be

called xact ��, ����, or simply ���. We are going to come across these abbreviations over

and over again.

Let’s take a look at the page contents. The heap_page_items function can give us

all the required information, but it shows the data “as is,” so the output format is

a bit hard to comprehend:

=> SELECT *

FROM heap_page_items(get_raw_page('t',0)) \gx

−[ RECORD 1 ]−−−−−−−−−−−−−−−−−−−

lp | 1

lp_off | 8160

lp_flags | 1

lp_len | 32

t_xmin | 776

t_xmax | 0

t_field3 | 0

t_ctid | (0,1)
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t_infomask2 | 2

t_infomask | 2050

t_hoff | 24

t_bits |

t_oid |

t_data | \x0100000009464f4f

To make it more readable, we can leave out some information and expand a few

columns:

=> SELECT '(0,'||lp||')' AS ctid,

CASE lp_flags

WHEN 0 THEN 'unused'

WHEN 1 THEN 'normal'

WHEN 2 THEN 'redirect to '||lp_off

WHEN 3 THEN 'dead'

END AS state,

t_xmin as xmin,

t_xmax as xmax,

(t_infomask & 256) > 0 AS xmin_committed,

(t_infomask & 512) > 0 AS xmin_aborted,

(t_infomask & 1024) > 0 AS xmax_committed,

(t_infomask & 2048) > 0 AS xmax_aborted

FROM heap_page_items(get_raw_page('t',0)) \gx

−[ RECORD 1 ]−−+−−−−−−−

ctid | (0,1)

state | normal

xmin | 776

xmax | 0

xmin_committed | f

xmin_aborted | f

xmax_committed | f

xmax_aborted | t

This is what has been done here:

• The lp pointer is converted to the standard format of a tuple ��: (page number,

pointer number).

• The lp_flags state is spelled out. Here it is set to the normal value,whichmeans

that it really points to a tuple.

• Of all the information bits, we have singled out just two pairs so far. The

xmin_committed and xmin_aborted bits show whether the xmin transaction is
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committed or aborted. The xmax_committed and xmax_aborted bits give simi-

lar information about the xmax transaction.

The pageinspectv. �� extension provides the heap_tuple_infomask_flags function that explains

all the information bits, but I am going to retrieve only those that are required at the

moment, showing them in a more concise form.

Let’s get back to our experiment. The ������ command has added pointer � to the

heap page; it refers to the first tuple, which is currently the only one.

The xmin field of the tuple is set to the current transaction ��. This transaction is

still active, so the xmin_committed and xmin_aborted bits are not set yet.

The xmax field contains �, which is a dummy number showing that this tuple has

not been deleted and represents the current version of the row. Transactions will

ignore this number because the xmax_aborted bit is set.

It may seem strange that the bit corresponding to an aborted transaction is set for the

transaction that has not happened yet. But there is no difference between such transac-

tions from the isolation standpoint: an aborted transaction leaves no trace, hence it has

never existed.

Wewill use this querymore than once, so I am going to wrap it into a function. And

while being at it, I will alsomake the outputmore concise by hiding the information

bit columns and displaying the status of transactions together with their ��s.

=> CREATE FUNCTION heap_page(relname text, pageno integer)

RETURNS TABLE(ctid tid, state text, xmin text, xmax text)

AS $$

SELECT (pageno,lp)::text::tid AS ctid,

CASE lp_flags

WHEN 0 THEN 'unused'

WHEN 1 THEN 'normal'

WHEN 2 THEN 'redirect to '||lp_off

WHEN 3 THEN 'dead'

END AS state,

t_xmin || CASE

WHEN (t_infomask & 256) > 0 THEN ' c'

WHEN (t_infomask & 512) > 0 THEN ' a'

ELSE ''

END AS xmin,

t_xmax || CASE
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WHEN (t_infomask & 1024) > 0 THEN ' c'

WHEN (t_infomask & 2048) > 0 THEN ' a'

ELSE ''

END AS xmax

FROM heap_page_items(get_raw_page(relname,pageno))

ORDER BY lp;

$$ LANGUAGE sql;

Now it is much clearer what is happening in the tuple header:

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−

(0,1) | normal | 776 | 0 a

(1 row)

You can get similar but less detailed information from the table itself by querying

the xmin and xmax pseudocolumns:

=> SELECT xmin, xmax, * FROM t;

xmin | xmax | id | s

−−−−−−+−−−−−−+−−−−+−−−−−

776 | 0 | 1 | FOO

(1 row)

Commit

Once a transaction has been completed successfully, its status has to be stored

somehow—it must be registered that the transaction is committed. For this pur-

pose, Postgre��� employs a special ����1 (commit log) structure. It is stored as

files in the ������/pg_xact directory rather than as a system catalog table.

Previously, these files were located in ������/pg_clog, but in version �� this directory got

renamed2: it was not uncommon for database administrators unfamiliar with Postgre���

to delete it in search of free disk space, thinking that a “log” is something unnecessary.

1 include/access/clog.h

backend/access/transam/clog.c
2 commitfest.postgresql.org/13/750.
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C��� is split into several files solely for convenience.p. ��� These files are accessed page

by page via buffers in the server’s shared memory1.

Just like a tuple header, ���� contains two bits for each transaction: committed

and aborted.

Once committed, a transaction is marked in ���� with the committed bit. When

any other transaction accesses a heap page, it has to answer the question: has the

xmin transaction already finished?

• If not, then the created tuple must not be visible.

To check whether the transaction is still active, Postgre��� uses yet another

structure located in the shared memory of the instance; it is called ProcArray.

This structure contains the list of all the active processes,with the correspond-

ing current (active) transaction specified for each process.

• If yes,was it committed or aborted? In the latter case, the corresponding tuple

cannot be visible either.

It is this check that requires ����. But even though the most recent ����

pages are stored in memory buffers, it is still expensive to perform this check

every time. Once determined, the transaction status is written into the tuple

header—more specifically, into xmin_committed and xmin_aborted information

bits, which are also called hint bits. If one of these bits is set, then the xmin

transaction status is considered to be already known, and the next transaction

will have to access neither ���� nor ProcArray.

Why aren’t these bits set by the transaction that performs row insertion? The prob-

lem is that it is not known yet at that time whether this transaction will complete

successfully. Andwhen it is committed, it is already unclearwhich tuples and pages

have been changed. If a transaction affects many pages, it may be too expensive to

track them. Besides, some of these pagesmay be not in the cache anymore; reading

them again to simply update the hint bits would seriously slow down the commit.

1 backend/access/transam/clog.c
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The flip side of this cost reduction is that any transaction (even a read-only ������

command) can start setting hint bits, thus leaving a trail of dirtied pages in the

buffer cache.

Finally, let’s commit the transaction started with the ������ statement:

=> COMMIT;

Nothing has changed in the page (but we know that the transaction status has al-

ready been written into ����):

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−

(0,1) | normal | 776 | 0 a

(1 row)

Now the first transaction that accesses the page (in a“standard”way,without using

pageinspect) has to determine the status of the xmin transaction and update the

hint bits:

=> SELECT * FROM t;

id | s

−−−−+−−−−−

1 | FOO

(1 row)

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 776 c | 0 a

(1 row)

Delete

When a row is deleted, the xmax field of its current version is set to the transaction

�� that performs the deletion, and the xmax_aborted bit is unset.
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While this transaction is active, the xmax value serves as a row lock. If another transaction

is going to update or delete this row, it will have to wait until the xmax transaction is

complete.

Let’s delete a row:

=> BEGIN;

=> DELETE FROM t;

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

777

(1 row)

The transaction �� has already been written into the xmax field, but the informa-

tion bits have not been set yet:

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 776 c | 777

(1 row)

Abort

The mechanism of aborting a transaction is similar to that of commit and happens

just as fast, but instead of committed it sets the aborted bit in ����. Although the

corresponding command is called ��������, no actual data rollback is happening:

all the changes made by the aborted transaction in data pages remain in place.

=> ROLLBACK;

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 776 c | 777

(1 row)
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When the page is accessed, the transaction status is checked, and the tuple receives

the xmax_aborted hint bit. The xmax number itself still remains in the page, but

no one is going to pay attention to it anymore:

=> SELECT * FROM t;

id | s

−−−−+−−−−−

1 | FOO

(1 row)

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−

(0,1) | normal | 776 c | 777 a

(1 row)

Update

An update is performed in such a way as if the current tuple is deleted, and then a

new one is inserted:

=> BEGIN;

=> UPDATE t SET s = 'BAR';

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

778

(1 row)

The query returns a single row (its new version):

=> SELECT * FROM t;

id | s

−−−−+−−−−−

1 | BAR

(1 row)
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But the page keeps both versions:

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 776 c | 778

(0,2) | normal | 778 | 0 a

(2 rows)

The xmax field of the previously deleted version contains the current transaction

��. This value is written on top of the old one because the previous transaction was

aborted. The xmax_aborted bit is unset since the status of the current transaction

is still unknown.

To complete this experiment, let’s commit the transaction.

=> COMMIT;

3.4. Indexes

Regardless of their type, indexes donot use row versioning; each row is represented

by exactly one tuple. In other words, index row headers do not contain xmin and

xmax fields. Index entries point to all the versions of the corresponding table rowp. ��� .

To figure out which row version is visible, transactions have to access the table

(unless the required page appears in the visibility map).

For convenience, let’s create a simple function that will use pageinspect to display

all the index entries in the page (�-tree index pages store them as a flat list):

=> CREATE FUNCTION index_page(relname text, pageno integer)

RETURNS TABLE(itemoffset smallint, htid tid)

AS $$

SELECT itemoffset,

htid -- ctid before v.13

FROM bt_page_items(relname,pageno);

$$ LANGUAGE sql;

The page references both heap tuples, the current and the previous one:
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=> SELECT * FROM index_page('t_s_idx',1);

itemoffset | htid

−−−−−−−−−−−−+−−−−−−−

1 | (0,2)

2 | (0,1)

(2 rows)

Since ��� < ���, the pointer to the second tuple comes first in the index.

3.5. TOAST

A ����� table p. ��is virtually a regular table, and it has its own versioning that does

not depend on row versions of the main table. However, rows of ����� tables are

handled in such a way that they are never updated; they can be either added or

deleted, so their versioning is somewhat artificial.

Each datamodification results in creation of a new tuple in themain table. But if an

update does not affect any long values stored in �����, the new tuple will reference

an existing toasted value. Only when a long value gets updated will Postgre���

create both a new tuple in the main table and new “toasts.”

3.6. Virtual Transactions

To consume transaction ��s sparingly, Postgre��� offers a special optimization.

If a transaction is read-only, it does not affect row visibility in any way. That’s why

such a transaction is given a virtual ���1 at first, which consists of the backend

process �� and a sequential number. Assigning a virtual ��� does not require any

synchronization between different processes, so it happens very fast. At this point,

the transaction has no real �� yet:

=> BEGIN;

1 backend/access/transam/xact.c
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=> -- txid_current_if_assigned() before v.13

SELECT pg_current_xact_id_if_assigned();

pg_current_xact_id_if_assigned

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(1 row)

At different points in time, the system can contain some virtual ���s that have

already been used. And it is perfectly normal: virtual ���s exist only in ���, and

only while the corresponding transactions are active; they are never written into

data pages and never get to disk.

Once the transaction starts modifying data, it receives an actual unique ��:

=> UPDATE accounts

SET amount = amount - 1.00;

=> SELECT pg_current_xact_id_if_assigned();

pg_current_xact_id_if_assigned

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

780

(1 row)

=> COMMIT;

3.7. Subtransactions

Savepoints

S�� supports savepoints, which enable canceling some of the operations within a

transaction without aborting this transaction as a whole. But such a scenario does

not fit the course of action described above: the status of a transaction applies to

all its operations, and no physical data rollback is performed.

To implement this functionality, a transaction containing a savepoint is split into

several subtransactions1, so their status can be managed separately.

1 backend/access/transam/subtrans.c
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Subtransactions have their own ��s (which are bigger than the �� of themain trans-

action). The status of a subtransaction is written into ���� in the usual manner;

however, committed subtransactions receive both the committed and the aborted

bits at once. The final decision depends on the status of the main transaction: if it

is aborted, all its subtransactions will be considered aborted too.

The information about subtransactions is stored under the ������/pg_subtrans di-

rectory. File access is arranged via buffers that are located in the instance’s shared

memory and have the same structure as ���� buffers1.

Do not confuse subtransactions with autonomous ones. Unlike subtransactions, the latter

do not depend on each other in any way. Vanilla Postgre��� does not support autonomous

transactions, and it is probably for the best: they are required in very rare cases, but their

availability in other database systems often provokes misuse, which can cause a lot of

trouble.

Let’s truncate the table, start a new transaction, and insert a row:

=> TRUNCATE TABLE t;

=> BEGIN;

=> INSERT INTO t(s) VALUES ('FOO');

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

782

(1 row)

Now create a savepoint and insert another row:

=> SAVEPOINT sp;

=> INSERT INTO t(s) VALUES ('XYZ');

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

782

(1 row)

Note that the pg_current_xact_id function returns the �� of the main transaction,

not that of a subtransaction.

1 backend/access/transam/slru.c
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=> SELECT *

FROM heap_page('t',0) p

LEFT JOIN t ON p.ctid = t.ctid;

ctid | state | xmin | xmax | id | s

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−+−−−−+−−−−−

(0,1) | normal | 782 | 0 a | 2 | FOO

(0,2) | normal | 783 | 0 a | 3 | XYZ

(2 rows)

Let’s roll back to the savepoint and insert the third row:

=> ROLLBACK TO sp;

=> INSERT INTO t(s) VALUES ('BAR');

=> SELECT *

FROM heap_page('t',0) p

LEFT JOIN t ON p.ctid = t.ctid;

ctid | state | xmin | xmax | id | s

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−+−−−−+−−−−−

(0,1) | normal | 782 | 0 a | 2 | FOO

(0,2) | normal | 783 | 0 a | |

(0,3) | normal | 784 | 0 a | 4 | BAR

(3 rows)

The page still contains the row added by the aborted subtransaction.

Commit the changes:

=> COMMIT;

=> SELECT * FROM t;

id | s

−−−−+−−−−−

2 | FOO

4 | BAR

(2 rows)

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 782 c | 0 a

(0,2) | normal | 783 a | 0 a

(0,3) | normal | 784 c | 0 a

(3 rows)
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Now we can clearly see that each subtransaction has its own status.

S�� does not allow using subtransactions directly, that is, you cannot start a new

transaction before completing the current one:

=> BEGIN;

BEGIN

=> BEGIN;

WARNING: there is already a transaction in progress

BEGIN

=> COMMIT;

COMMIT

=> COMMIT;

WARNING: there is no transaction in progress

COMMIT

Subtransactions are employed implicitly: to implement savepoints, handle excep-

tions in ��/pg���, and in some other, more exotic cases.

Errors and Atomicity

What happens if an error occurs during execution of a statement?

=> BEGIN;

=> SELECT * FROM t;

id | s

−−−−+−−−−−

2 | FOO

4 | BAR

(2 rows)

=> UPDATE t SET s = repeat('X', 1/(id-4));

ERROR: division by zero

After a failure, the whole transaction is considered aborted and cannot perform

any further operations:

=> SELECT * FROM t;

ERROR: current transaction is aborted, commands ignored until end

of transaction block
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And even if you try to commit the changes, Postgre��� will report that the trans-

action is rolled back:

=> COMMIT;

ROLLBACK

Why is it forbidden to continue transaction execution after a failure? Since the

already executed operations are never rolled back, we would get access to some

changes made before the error—it would break the atomicity of the statement, and

hence that of the transaction itself.

For example, in our experiment the operator hasmanaged to update one of the two

rows before the failure:

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 782 c | 785

(0,2) | normal | 783 a | 0 a

(0,3) | normal | 784 c | 0 a

(0,4) | normal | 785 | 0 a

(4 rows)

On a side note, psql provides a special mode that allows you to continue a transac-

tion after a failure as if the erroneous statement were rolled back:

=> \set ON_ERROR_ROLLBACK on

=> BEGIN;

=> UPDATE t SET s = repeat('X', 1/(id-4));

ERROR: division by zero

=> SELECT * FROM t;

id | s

−−−−+−−−−−

2 | FOO

4 | BAR

(2 rows)

=> COMMIT;

COMMIT
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As you can guess, psql simply adds an implicit savepoint before each command

when run in this mode; in case of a failure, a rollback is initiated. This mode is

not used by default because issuing savepoints (even if they are not rolled back to)

incurs significant overhead.
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4
Snapshots

4.1. What is a Snapshot?

A data page can contain several versions of one and the same row, although each

transaction must see only one of them at the most. Together, visible versions of

all the different rows constitute a snapshotp. �� . A snapshot includes only the current

data committed by the time it was taken, thus providing a consistent (in the ����

sense) view of the data for this particular moment.

To ensure isolation, each transaction uses its own snapshot. Itmeans that different

transactions can see different snapshots taken at different points in time,which are

nevertheless consistent.

At the Read Committed isolation level, a snapshot is taken at the beginning of each

statement, and it remains active only for the duration of this statement.

At the Repeatable Read and Serializable levels, a snapshot is taken at the begin-

ning of the first statement of a transaction, and it remains active until the whole

transaction is complete.

xid

snapshot1 snapshot2

statement1 statement2

Read Committed
xid

snapshot

statement1 statement2

Repeatable Read,

Serializable
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4.2. Row Version Visibility

A snapshot is not a physical copy of all the required tuples. Instead, it is defined

by several numbers, while tuple visibility is determined by certain rules.

Tuple visibility is defined by xmin and xmax fields of the tuple header (that is, ��s

of transactions that perform insertion and deletion) and the corresponding hint

bits. Since xmin–xmax intervals do not intersect, each row is represented in any

snapshot by only one of its versions.

The exact visibility rules1 are quite complex, as they take into account a variety of

different scenarios and corner cases. Very roughly,we can describe them as follows:

a tuple is visible in a snapshot that includes xmin transaction changes but excludes

xmax transaction changes (in other words, the tuple has already appeared and has

not been deleted yet).

In their turn, transaction changes are visible in a snapshot if this transaction was

committed before the snapshot creation. As an exception, transactions can see

their own uncommitted changes. If a transaction is aborted, its changes will not

be visible in any snapshot.

Let’s take a look at a simple example. In this illustration line segments represent

transactions (from their start time till commit time):

xid
1 2 3

snapshot

Here visibility rules are applied to transactions as follows:

• Transaction � was committed before the snapshot creation, so its changes are

visible.

1 backend/access/heap/heapam_visibility.c
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• Transaction � was active at the time of the snapshot creation, so its changes

are not visible.

• Transaction � was started after the snapshot creation, so its changes are not

visible either (it makes no difference whether this transaction is completed or

not).

4.3. Snapshot Structure

Unfortunately, the previous illustration has nothing to do with the way Postgre���

actually sees this picture1. The problem is that the system does not know when

transactions got committed. It is only knownwhen they were started (thismoment

is defined by the transaction ��),while their completion is not registered anywhere.

Commit times can be tracked2 if you enable theoff track_commit_timestamp parameter, but

they do not participate in visibility checks in any way (although it can still be useful to

track them for other purposes, for example, to apply in external replication solutions).

Besides, Postgre��� always logs commit and rollback times in the corresponding ��� en-

tries, but this information is used only for point-in-time recovery.

It is only the current status of a transaction that we can learn. This information is

available in the server’s shared memory: the ProcArray structure contains the list

of all the active sessions and their transactions. Once a transaction is complete, it

is impossible to find out whether it was active at the time of the snapshot creation.

So to create a snapshot, it is not enough to register the moment when it was taken:

it is also necessary to collect the status of all the transactions at that moment.

Otherwise, later it will be impossible to understand which tuples must be visible

in the snapshot, and which must be excluded.

Take a look at the information available to the systemwhen the snapshotwas taken

and some time afterwards (the white circle denotes an active transaction, whereas

the black circles stand for completed ones):

1 include/utils/snapshot.h

backend/utils/time/snapmgr.c
2 backend/access/transam/commit_ts.c
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xid
1 2 3

at snapshot creation…

xid
1 2 3

…and some time later

Suppose we did not know that at the time the snapshot was taken the first transac-

tion was still being executed and the third transaction had not started yet. Then it

would seem that they were just like the second transaction (which was committed

at that time), and it would be impossible to filter them out.

For this reason, Postgre��� cannot create a snapshot that shows a consistent state

of data at some arbitrary point in the past, even if all the required tuples are present

in heap pages. Consequently, it is impossible to implement retrospective queries

(which are sometimes also called temporal or flashback queries).

Intriguingly, such functionality was declared as one of the objectives of Postgres and was

implemented at the very start, but it was removed from the database system when the

project support was passed on to the community1.

Thus, a snapshot consists of several values saved at the time of its creation2:

xmin is the snapshot’s lower boundary,which is represented by the �� of the oldest

active transaction.

All the transactions with smaller ��s p. ���are either committed (so their changes

are included into the snapshot) or aborted (so their changes are ignored).

xmax is the snapshot’s upper boundary, which is represented by the value that

exceeds the �� of the latest committed transaction by one. Theupper boundary

defines the moment when the snapshot was taken.

All the transactions whose ��s are equal to or greater than xmax are either still

running or do not exist, so their changes cannot be visible.

xip_list is the list of ��s of all the active transactions except for virtual ones,which

do not affect visibility in any way. p. ��

1 Joseph M. Hellerstein, Looking Back at Postgres. https://arxiv.org/pdf/1901.01973.pdf
2 backend/storage/ipc/procarray.c, GetSnapshotData function
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Snapshots also include several other parameters, but we will ignore them for now.

In a graphical form, a snapshot can be represented as a rectangle that comprises

transactions from xmin to xmax:

xid
1 2 3

xmin xmax

xip_list

To understand how visibility rules are defined by the snapshot, we are going to

reproduce the above scenario on the accounts table.

=> TRUNCATE TABLE accounts;

The first transaction inserts the first row into the table and remains open:

=> BEGIN;

=> INSERT INTO accounts VALUES (1, 'alice', 1000.00);

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

790

(1 row)

The second transaction inserts the second row and commits this change immedi-

ately:

=> BEGIN;

=> INSERT INTO accounts VALUES (2, 'bob', 100.00);

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

791

(1 row)

=> COMMIT;
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At this point, let’s create a new snapshot in another session. We could simply run

any query for this purpose, but we will use a special function to take a look at this

snapshot right away:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> -- txid_current_snapshot() before v.13

SELECT pg_current_snapshot();

pg_current_snapshot

−−−−−−−−−−−−−−−−−−−−−

790:792:790

(1 row)

This function displays the following snapshot components, separated by colons:

xmin, xmax, and xip_list (the list of active transactions; in this particular case it

consists of a single item).

Once the snapshot is taken, commit the first transaction:

=> COMMIT;

The third transaction is started after the snapshot creation. It modifies the second

row, so a new tuple appears:

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100 WHERE id = 2;

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

792

(1 row)

=> COMMIT;

Our snapshot sees only one tuple:

=> SELECT ctid, * FROM accounts;

ctid | id | client | amount

−−−−−−−+−−−−+−−−−−−−−+−−−−−−−−

(0,2) | 2 | bob | 100.00

(1 row)
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But the table contains three of them:

=> SELECT * FROM heap_page('accounts',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−

(0,1) | normal | 790 c | 0 a

(0,2) | normal | 791 c | 792 c

(0,3) | normal | 792 c | 0 a

(3 rows)

So how does Postgre��� choose which versions to show? By the above rules,

changes are included into a snapshot only if they are made by committed trans-

actions that satisfy the following criteria:

• If xid < xmin, changes are shown unconditionally (like in the case of the trans-

action that created the accounts table).

• If xmin ⩽ xid < xmax, changes are shownonly if the corresponding transaction

��s are not in xip_list.

The first row (�,�) is invisible because it is inserted by a transaction that appears in

xip_list (even though this transaction falls into the snapshot range).

The latest version of the second row (�,�) is invisible because the corresponding

transaction �� is above the upper boundary of the snapshot.

But the first version of the second row (�,�) is visible: row insertion was performed

by a transaction that falls into the snapshot range and does not appear in xip_list

(the insertion is visible), while row deletion was performed by a transaction whose

�� is above the upper boundary of the snapshot (the deletion is invisible).

=> COMMIT;

4.4. Visibility of Transactions’ Own Changes

Things get a bit more complicated when it comes to defining visibility rules for

transactions’ own changes: in some cases, only part of such changes must be vis-

ible. For example, a cursor that was opened at a particular point in time must not

see any changes that happened later, regardless of the isolation level.
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To address such situations, tuple headers provide a special field (displayed as

cmin and cmax pseudocolumns) that shows the sequence number of the operation

within the transaction. The cmin column identifies insertion, while cmax is used

for deletion operations. To save space, these values are stored in a single field of

the tuple header rather than in two different ones. It is assumed that one and the

same row almost never gets both inserted and deleted within a single transaction.

(If it does happen, Postgre��� writes a special combo identifier into this field, and

the actual cmin and cmax1 values are stored by the backend in this case.)

As an illustration, let’s start a transaction and insert a row into the table:

=> BEGIN;

=> INSERT INTO accounts VALUES (3, 'charlie', 100.00);

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

793

(1 row)

Open a cursor to run the query that returns the number of rows in this table:

=> DECLARE c CURSOR FOR SELECT count(*) FROM accounts;

Insert one more row:

=> INSERT INTO accounts VALUES (4, 'charlie', 200.00);

Now extend the output by another column to display the cmin value for the rows

inserted by our transaction (it makes no sense for other rows):

=> SELECT xmin, CASE WHEN xmin = 793 THEN cmin END cmin, *

FROM accounts;

xmin | cmin | id | client | amount

−−−−−−+−−−−−−+−−−−+−−−−−−−−−+−−−−−−−−−

790 | | 1 | alice | 1000.00

792 | | 2 | bob | 200.00

793 | 0 | 3 | charlie | 100.00

793 | 1 | 4 | charlie | 200.00

(4 rows)

1 backend/utils/time/combocid.c
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The cursor query gets only three rows; the row inserted when the cursor was al-

ready open does not make it into the snapshot because the cmin < 1 condition is

not satisfied:

=> FETCH c;

count

−−−−−−−

3

(1 row)

Naturally, this cmin number is also stored in the snapshot, but it is impossible to

display it using any ��� means.

4.5. Transaction Horizon

As mentioned earlier, the lower boundary of the snapshot is represented by xmin,

which is the �� of the oldest transaction that was active at the moment of the snap-

shot creation. This value is very important because it defines the horizon of the

transaction that uses this snapshot.

If a transaction has no active snapshot (for example, at the Read Committed isola-

tion level between statement execution), its horizon is defined by its own �� if it is

assigned.

All the transactions that are beyond the horizon (those with xid < xmin) are gu-

ranteed to be committed. It means that a transaction can see only the current row

versions beyond its horizon.

As you can guess, this term is inspired by the concept of event horizon in physics.

Postgre��� tracks the current horizons of all its processes; transactions can see

their own horizons in the pg_stat_activity table:

=> BEGIN;

=> SELECT backend_xmin FROM pg_stat_activity

WHERE pid = pg_backend_pid();

backend_xmin

−−−−−−−−−−−−−−

793

(1 row)
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Virtual transactions have no real ��s, but they still use snapshots just like regular

transactions, so they have their own horizons. The only exception is virtual trans-

actions without an active snapshot: the concept of the horizon makes no sense for

them, and they are fully “transparent” to the system when it comes to snapshots

and visibility (even though pg_stat_activity.backend_xminmay still contain an xmin

of an old snapshot).

We can also define the database horizon in a similar manner. For this purpose,

we should take the horizons of all the transactions in this database and select the

most remote one, which has the oldest xmin1. Beyond this horizon, outdated heap

tuples will never be visible to any transaction in this database. Such tuples can be

safely cleaned up by vacuum—this is exactly why the concept of the horizon is so

important from a practical standpoint.

xid
1 2 3 4 5 6 7 8 9 10

database
horizon

outdated tuples

that can be vacuumed

Let’s draw some conclusions:

• If a transaction (no matter whether it is real or virtual) at the Repeatable Read

or Serializable isolation level is running for a long time, it thereby holds the

database horizon and defers vacuuming.

1 backend/storage/ipc/procarray.c, ComputeXidHorizons function
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• A real transaction at the Read Committed isolation level holds the database

horizon in the same way, even if it is not executing any operators (being in the

“idle in transaction” state).

• A virtual transaction at the Read Committed isolation level holds the horizon

only while executing operators.

There is only one horizon for the whole database, so if it is being held by a trans-

action, it is impossible to vacuum any data within this horizon—even if this data

has not been accessed by this transaction.

Cluster-wide tables of the system catalog have a separate horizon that takes into account

all transactions in all databases. Temporary tables, on the contrary, do not have to pay

attention to any transactions except those that are being executed by the current process.

Let’s get back to our current experiment. The active transaction of the first session

still holds the database horizon; we can see it by incrementing the transaction

counter:

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

794

(1 row)

=> SELECT backend_xmin FROM pg_stat_activity

WHERE pid = pg_backend_pid();

backend_xmin

−−−−−−−−−−−−−−

793

(1 row)

And only when this transaction is complete, the horizon moves forward, and out-

dated tuples can be vacuumed:

=> COMMIT;

=> SELECT backend_xmin FROM pg_stat_activity

WHERE pid = pg_backend_pid();

backend_xmin

−−−−−−−−−−−−−−

795

(1 row)
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In a perfect world, you should avoid combining p. ���long transactions with frequent

updates (that spawn new row versions), as it will lead to table and index bloating.

4.6. System Catalog Snapshots

Although the system catalog consists of regular tables, they cannot be accessed

via a snapshot used by a transaction or an operator. The snapshot must be “fresh”

enough to include all the latest changes, otherwise transactions could see outdated

definitions of table columns or miss newly added integrity constraints.

Here is a simple example:

=> BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;

=> SELECT 1; -- a snapshot for the transaction is taken

=> ALTER TABLE accounts

ALTER amount SET NOT NULL;

=> INSERT INTO accounts(client, amount)

VALUES ('alice', NULL);

ERROR: null value in column "amount" of relation "accounts"

violates not−null constraint

DETAIL: Failing row contains (1, alice, null).

=> ROLLBACK;

The integrity constraint that appeared after the snapshot creation was visible to

the ������ command. It may seem that such behavior breaks isolation, but if the

inserting transaction had accessed the accounts table, the ����� ����� command

would have been blocked until this transaction completion.

In general, the server behaves as if a separate snapshot is created for each system

catalog query. But the implementation1 is, of course, much more complex since

frequent snapshot creation would negatively affect performance; besides, many

system catalog objects get cached, and it must also be taken into account.

1 backend/utils/time/snapmgr.c, GetCatalogSnapshot function
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4.7. Exporting Snapshots

In some situations, concurrent transactions must see one and the same snapshot

by all means. For example, if the pg_dump utility is run in the parallel mode, all its

processes must see the same database state to produce a consistent backup.

We cannot assume that snapshots will be identical simply because transactions

were started “simultaneously.” To ensure that all the transactions see the same

data, we must employ the snapshot export mechanism.

The pg_export_snapshot function returns a snapshot ��, which can be passed to

another transaction (outside of the database system):

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT count(*) FROM accounts;

count

−−−−−−−

4

(1 row)

=> SELECT pg_export_snapshot();

pg_export_snapshot

−−−−−−−−−−−−−−−−−−−−−

00000004−0000006E−1

(1 row)

Before executing the first statement, the other transaction can import the snapshot

by running the ��� ����������� �������� command. The isolation level must be set

to Repeatable Read or Serializable because operators use their own snapshots at the

Read Committed level:

=> DELETE FROM accounts;

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SET TRANSACTION SNAPSHOT '00000004-0000006E-1';

Now the second transaction is going to use the snapshot of the first transaction,

and consequently, it will see four rows (instead of zero):
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=> SELECT count(*) FROM accounts;

count

−−−−−−−

4

(1 row)

Clearly, the second transaction will not see any changes made by the first transac-

tion after the snapshot export (and vice versa): regular visibility rules still apply.

The exported snapshot’s lifetime is the same as that of the exporting transaction.

=> COMMIT;

=> COMMIT;
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5
Page Pruning and HOT Updates

5.1. Page Pruning

While a heap page is being read or updated, Postgre��� can perform some quick

page cleanup, or pruning1. It happens in the following cases:

• The previous ������ operation did not find enough space to place a new tuple

into the same page. This event is reflected in the page header.

• The heap page contains more data than allowed by the100 fillfactor storage pa-

rameter.

An ������ operation can add a new row into the page only if this page is filled

for less than fillfactor percent. The rest of the space is kept for ������ opera-

tions (no such space is reserved by default).

Page pruning removes the tuples that cannot be visible in any snapshot anymore

(that is, that are beyond the database horizonp. �� ). It never goes beyond a single heap

page, but in return it is performed very fast. Pointers to pruned tuples remain

in place since they may be referenced from an index—which is already a different

page.

For the same reason, neither the visibility map nor the free space map is refreshed

(so the recovered space is set aside for updates, not for insertions).

Since a page can be pruned during reads, any ������ statement can cause page

modifications. This is yet another such case in addition to deferred setting of in-

formation bits.p. ��

1 backend/access/heap/pruneheap.c, heap_page_prune_opt function
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Let’s take a look at how page pruning actually works. We are going to create a

two-column table and build an index on each of the columns:

=> CREATE TABLE hot(id integer, s char(2000)) WITH (fillfactor = 75);

=> CREATE INDEX hot_id ON hot(id);

=> CREATE INDEX hot_s ON hot(s);

If the s column contains only Latin letters, each heap tuple will have a fixed size

of ���� bytes, plus �� bytes of the header. The fillfactor storage parameter is set

to ��%. It means that the page has enough free space for four tuples, but we can

insert only three.

Let’s insert a new row and update it several times:

=> INSERT INTO hot VALUES (1, 'A');

=> UPDATE hot SET s = 'B';

=> UPDATE hot SET s = 'C';

=> UPDATE hot SET s = 'D';

Now the page contains four tuples:

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−

(0,1) | normal | 801 c | 802 c

(0,2) | normal | 802 c | 803 c

(0,3) | normal | 803 c | 804

(0,4) | normal | 804 | 0 a

(4 rows)

Expectedly, we have just exceeded the fillfactor threshold. You can tell it by the

difference between the pagesize and upper p. ��values—it is bigger than ��% of the

page size, which is ���� bytes:

=> SELECT upper, pagesize FROM page_header(get_raw_page('hot',0));

upper | pagesize

−−−−−−−+−−−−−−−−−−

64 | 8192

(1 row)

The next page access triggers page pruning that removes all the outdated tuples.

Then a new tuple (�,�) is added into the freed space:
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=> UPDATE hot SET s = 'E';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | dead | |

(0,2) | dead | |

(0,3) | dead | |

(0,4) | normal | 804 c | 805

(0,5) | normal | 805 | 0 a

(5 rows)

The remaining heap tuples are physically moved towards the highest addresses

so that all the free space is aggregated into a single continuous chunk. The tuple

pointers are also modified accordingly. As a result, there is no free space fragmen-

tation in the page.

The pointers to the pruned tuples cannot be removed yet because they are still ref-

erenced from the indexes; Postgre��� changes their status from normal to dead.

Let’s take a look at the first page of the hot_s index (the zero page is used for meta-

data):

=> SELECT * FROM index_page('hot_s',1);

itemoffset | htid

−−−−−−−−−−−−+−−−−−−−

1 | (0,1)

2 | (0,2)

3 | (0,3)

4 | (0,4)

5 | (0,5)

(5 rows)

We can see the same picture in the other index too:

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid

−−−−−−−−−−−−+−−−−−−−

1 | (0,1)

2 | (0,2)

3 | (0,3)

4 | (0,4)

5 | (0,5)

(5 rows)
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An index scan can return (�,�), (�,�), and (�,�) as tuple identifiers. The server tries

to read the corresponding heap tuple but sees that the pointer has the dead status;

it means that this tuple does not exist anymore and should be ignored. And while

being at it, the server also changes the pointer status in the index page to avoid

repeated heap page access1.

Let’s extend the function v. ��displaying index pages so that it also shows whether the

pointer is dead:

=> DROP FUNCTION index_page(text, integer);

=> CREATE FUNCTION index_page(relname text, pageno integer)

RETURNS TABLE(itemoffset smallint, htid tid, dead boolean)

AS $$

SELECT itemoffset,

htid,

dead -- starting from v.13

FROM bt_page_items(relname,pageno);

$$ LANGUAGE sql;

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | f

2 | (0,2) | f

3 | (0,3) | f

4 | (0,4) | f

5 | (0,5) | f

(5 rows)

All the pointers in the index page are active so far. But as soon as the first index

scan occurs, their status changes:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM hot WHERE id = 1;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Index Scan using hot_id on hot (actual rows=1 loops=1)

Index Cond: (id = 1)

(2 rows)

1 backend/access/index/indexam.c, index_fetch_heap function
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=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | t

2 | (0,2) | t

3 | (0,3) | t

4 | (0,4) | t

5 | (0,5) | f

(5 rows)

Although the heap tuple referenced by the fourth pointer is still unpruned and

has the normal status, it is already beyond the database horizon. That’s why this

pointer is also marked as dead in the index.

5.2. HOT Updates

It would be very inefficient to keep references to all heap tuples in an index.

To begin with, each rowmodification triggers updates of all the indexes created on

the table: once a new heap tuple appears, each index must include a reference to

this tuple, even if the modified fields are not indexed.

Furthermore, indexes accumulate references to historic heap tuples, so they have

to be pruned together with these tuples.p. ���

Things get worse as you create more indexes on a table.

But if the updated column is not a part of any index, there is no point in creating

another index entry that contains the same key value. To avoid such redundancies,

Postgre��� provides an optimization called Heap-Only Tuple updates1.

If such an update is performed, an index page contains only one entry for each row.

This entry points to the very first row version; all the subsequent versions located

in the same page are bound into a chain by ctid pointers in the tuple headers.

Row versions that are not referenced from any index are tagged with theHeap-Only

Tuple bit. If a version is included into the ��� chain, it is tagged with the Heap Hot

Updated bit.

1 backend/access/heap/README.HOT
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If an index scan accesses a heap page and finds a row version marked as Heap Hot

Updated, it means that the scan should continue, so it goes further along the chain

of ��� updates. Obviously, all the fetched row versions are checked for visibility

before the result is returned to the client.

To take a look at how ��� updates are performed, let’s delete one of the indexes

and truncate the table.

=> DROP INDEX hot_s;

=> TRUNCATE TABLE hot;

For convenience, we will redefine the heap_page function so that its output in-

cludes three more fields: ctid and the two bits related to ��� updates:

=> DROP FUNCTION heap_page(text,integer);

=> CREATE FUNCTION heap_page(relname text, pageno integer)

RETURNS TABLE(

ctid tid, state text,

xmin text, xmax text,

hhu text, hot text, t_ctid tid

) AS $$

SELECT (pageno,lp)::text::tid AS ctid,

CASE lp_flags

WHEN 0 THEN 'unused'

WHEN 1 THEN 'normal'

WHEN 2 THEN 'redirect to '||lp_off

WHEN 3 THEN 'dead'

END AS state,

t_xmin || CASE

WHEN (t_infomask & 256) > 0 THEN ' c'

WHEN (t_infomask & 512) > 0 THEN ' a'

ELSE ''

END AS xmin,

t_xmax || CASE

WHEN (t_infomask & 1024) > 0 THEN ' c'

WHEN (t_infomask & 2048) > 0 THEN ' a'

ELSE ''

END AS xmax,

CASE WHEN (t_infomask2 & 16384) > 0 THEN 't' END AS hhu,

CASE WHEN (t_infomask2 & 32768) > 0 THEN 't' END AS hot,

t_ctid

FROM heap_page_items(get_raw_page(relname,pageno))

ORDER BY lp;

$$ LANGUAGE sql;
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Let’s repeat the insert and update operations:

=> INSERT INTO hot VALUES (1, 'A');

=> UPDATE hot SET s = 'B';

The page now contains a chain of ��� updates:

• The Heap Hot Updated bit shows that the executor should follow the ����

chain.

• The Heap Only Tuple bit indicates that this tuple is not referenced from any

indexes.

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | normal | 812 c | 813 | t | | (0,2)

(0,2) | normal | 813 | 0 a | | t | (0,2)

(2 rows)

As we make further updates, the chain will grow—but only within the page limits:

=> UPDATE hot SET s = 'C';

=> UPDATE hot SET s = 'D';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | normal | 812 c | 813 c | t | | (0,2)

(0,2) | normal | 813 c | 814 c | t | t | (0,3)

(0,3) | normal | 814 c | 815 | t | t | (0,4)

(0,4) | normal | 815 | 0 a | | t | (0,4)

(4 rows)

The index still contains only one reference, which points to the head of this chain:

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | f

(1 row)
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A ��� update is possible if the modified fields are not a part of any index. Other-

wise, some of the indexes would contain a reference to a heap tuple that appears

in the middle of the chain, which contradicts the idea of this optimization. Since

a ��� chain can grow only within a single page, traversing the whole chain never

requires access to other pages and thus does not hamper performance.

5.3. Page Pruning for HOT Updates

A special case of page pruning—which is nevertheless important—is pruning of

��� update chains.

In the example above, the fillfactor threshold is already exceeded, so the next up-

date should trigger page pruning. But this time the page contains a chain of ���

updates. The head of this chain must always remain in its place since it is refer-

enced from the index, but other pointers can be released because they are sure to

have no external references.

To avoidmoving the head, Postgre��� uses dual addressing: the pointer referenced

from the index (which is (�,�) in this case) receives the redirect status since it points

to the tuple that currently starts the chain:

=> UPDATE hot SET s = 'E';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 4 | | | | |

(0,2) | normal | 816 | 0 a | | t | (0,2)

(0,3) | unused | | | | |

(0,4) | normal | 815 c | 816 | t | t | (0,2)

(4 rows)

The tuples (�,�), (�,�), and (�,�) have been pruned; the head pointer � remains for

redirection purposes, while pointers � and � have been deallocated (received the

unused status) since they are guaranteed to have no references from indexes. The

new tuple is written into the freed space as tuple (�,�).
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Let’s perform some more updates:

=> UPDATE hot SET s = 'F';

=> UPDATE hot SET s = 'G';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 4 | | | | |

(0,2) | normal | 816 c | 817 c | t | t | (0,3)

(0,3) | normal | 817 c | 818 | t | t | (0,5)

(0,4) | normal | 815 c | 816 c | t | t | (0,2)

(0,5) | normal | 818 | 0 a | | t | (0,5)

(5 rows)

The next update is going to trigger page pruning:

=> UPDATE hot SET s = 'H';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 5 | | | | |

(0,2) | normal | 819 | 0 a | | t | (0,2)

(0,3) | unused | | | | |

(0,4) | unused | | | | |

(0,5) | normal | 818 c | 819 | t | t | (0,2)

(5 rows)

Again, some of the tuples are pruned, and the pointer to the head of the chain is

shifted accordingly.

If unindexed columns are modified frequently, it makes sense to reduce the fillfac-

tor value, thus reserving some space in the page for updates. Obviously, you have

to keep in mind that the lower the fillfactor value is, the more free space is left in

the page, so the physical size of the table grows.
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5.4. HOT Chain Splits

If the page has no more space to accommodate a new tuple, the chain will be cut

off. Postgre��� will have to add a separate index entry to refer to the tuple located

in another page.

To observe this situation, let’s start a concurrent transaction with a snapshot that

blocks page pruning:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT 1;

Now we are going to perform some updates in the first session:

=> UPDATE hot SET s = 'I';

=> UPDATE hot SET s = 'J';

=> UPDATE hot SET s = 'K';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 2 | | | | |

(0,2) | normal | 819 c | 820 c | t | t | (0,3)

(0,3) | normal | 820 c | 821 c | t | t | (0,4)

(0,4) | normal | 821 c | 822 | t | t | (0,5)

(0,5) | normal | 822 | 0 a | | t | (0,5)

(5 rows)

When the next update happens, this page will not be able to accommodate another

tuple, and page pruning will not manage to free any space:

=> UPDATE hot SET s = 'L';

=> COMMIT; -- the snapshot is not required anymore
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=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 2 | | | | |

(0,2) | normal | 819 c | 820 c | t | t | (0,3)

(0,3) | normal | 820 c | 821 c | t | t | (0,4)

(0,4) | normal | 821 c | 822 c | t | t | (0,5)

(0,5) | normal | 822 c | 823 | | t | (1,1)

(5 rows)

Tuple (�,�) contains the (�,�) reference that goes to page �:

=> SELECT * FROM heap_page('hot',1);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(1,1) | normal | 823 | 0 a | | | (1,1)

(1 row)

However, this reference is not used: the Heap Hot Updated bit is not set for tuple

(�,�). As for tuple (�,�), it can be accessed from the index that now has two entries.

Each of them points to the head of their own ��� chain:

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | f

2 | (1,1) | f

(2 rows)

5.5. Page Pruning for Indexes

I have declared that page pruning is confined to a single heap page and does not

affect indexes. However, indexes have their own pruning1, which also cleans up a

single page—an index one in this case.

Index pruning happens when an insertion into a �-tree is about to split the page

into two, as the original page does not have enough space anymore. The problem is

that even if some index entries are deleted later, two separate index pages will not

1 postgresql.org/docs/14/btree-implementation.html#BTREE-DELETION
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be merged into one. It leads to index bloating, and once bloated, the index cannot

shrink even if a large part of the data is deleted. But if pruning can remove some

of the tuples, a page split may be deferred.

There are two types of tuples that can be pruned from an index.

First of all, Postgre��� prunes those tuples that have been tagged as dead1. As

I have already said, Postgre��� sets such a tag during an index scan if it detects

an index entry pointing to a tuple that is not visible in any snapshot anymore or

simply does not exist.

If no tuples are known to be dead v. ��, Postgre��� checks those index entries that ref-

erence different versions of one and the same table row2. Because of ����, update

operations may generate a large number of row versions, and many of them are

soon likely to disappear behind the database horizon. H�� updates cushion this

effect, but they are not always applicable: if the column to update is a part of an

index, the corresponding references are propagated to all the indexes. Before split-

ting the page, it makes sense to search for the rows that are not tagged as dead

yet but can already be pruned. To achieve this, Postgre��� has to check visibility

of heap tuples. Such checks require table access, so they are performed only for

“promising” index tuples, which have been created as copies of the existing ones

for ���� purposes. It is cheaper to perform such a check than to allow an extra

page split.

1 backend/access/nbtree/README, Simple deletion section
2 backend/access/nbtree/README, Bottom-Up deletion section

include/access/tableam.h
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6.1. Vacuum

Page pruning happens very fast, but it frees only part of the space that can be po-

tentially reclaimed. Operating within a single heap page, it does not touch upon

indexes (or vice versa, it cleans up an index page without affecting the table).

Routine vacuuming1, which is the main vacuuming procedure, is performed by the

������ 2 command. It processes the whole table and eliminates both outdated

heap tuples and all the corresponding index entries.

Vacuuming is performed in parallel with other processes in the database system.

While being vacuumed, tables and indexes can be used in the usual manner, both

for read and write operations (but concurrent execution of such commands as ���-

��� �����, ����� �����, and some others is not allowed).

To avoid scanning extra pages, Postgre��� uses a visibility mapp. �� . Pages tracked

in this map are skipped since they are sure to contain only the current tuples, so

a page will only be vacuumed if it does not appear in this map. If all the tuples

remaining in a page after vacuuming are beyond the database horizon, the visibility

map is refreshed to include this page.

The free space map also gets updated to reflect the space that has been cleared.

Let’s create a table with an index on it:

1 postgresql.org/docs/14/routine-vacuuming.html
2 postgresql.org/docs/14/sql-vacuum.html

backend/commands/vacuum.c
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=> CREATE TABLE vac(

id integer,

s char(100)

)

WITH (autovacuum_enabled = off);

=> CREATE INDEX vac_s ON vac(s);

The autovacuum_enabled storage parameter turns off autovacuum; we are doing

it here solely for the purpose of experimentation to precisely control vacuuming

start time.

Let’s insert a row and make a couple of updates:

=> INSERT INTO vac(id,s) VALUES (1,'A');

=> UPDATE vac SET s = 'B';

=> UPDATE vac SET s = 'C';

Now the table contains three tuples:

=> SELECT * FROM heap_page('vac',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | normal | 826 c | 827 c | | | (0,2)

(0,2) | normal | 827 c | 828 | | | (0,3)

(0,3) | normal | 828 | 0 a | | | (0,3)

(3 rows)

Each tuple is referenced from the index:

=> SELECT * FROM index_page('vac_s',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | f

2 | (0,2) | f

3 | (0,3) | f

(3 rows)

Vacuuming has removed all the dead tuples, leaving only the current one:

=> VACUUM vac;
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=> SELECT * FROM heap_page('vac',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | unused | | | | |

(0,2) | unused | | | | |

(0,3) | normal | 828 c | 0 a | | | (0,3)

(3 rows)

In the case of page pruning, the first two pointers would be considered dead, but

here they have the unused status since no index entries are referring to them now:

=> SELECT * FROM index_page('vac_s',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,3) | f

(1 row)

Pointers with the unused status are treated as free and can be reused by new row

versions.

Now the heap page appears in the visibility map; we can check it using the pg_vis-

ibility extension:

=> CREATE EXTENSION pg_visibility;

=> SELECT all_visible

FROM pg_visibility_map('vac',0);

all_visible

−−−−−−−−−−−−−

t

(1 row)

The page header has also received an attribute showing that all its tuples are visible

in all snapshots:

=> SELECT flags & 4 > 0 AS all_visible

FROM page_header(get_raw_page('vac',0));

all_visible

−−−−−−−−−−−−−

t

(1 row)
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6.2. Database Horizon Revisited

Vacuuming detects dead tuples based on the database horizon. This concept is so

fundamental that it makes sense to get back to it once again.

Let’s restart our experiment from the very beginning:

=> TRUNCATE vac;

=> INSERT INTO vac(id,s) VALUES (1,'A');

=> UPDATE vac SET s = 'B';

But this time, before updating the row, we are going to open another transaction

that will hold the database horizon (it can be almost any transaction p. ��, except for

a virtual one executed at the Read Committed isolation level). For example, this

transaction can modify some rows in another table.

=> BEGIN;

=> UPDATE accounts SET amount = 0;

=> UPDATE vac SET s = 'C';

Now our table contains three tuples, and the index contains three references. Let’s

vacuum the table and see what changes:

=> VACUUM vac;

=> SELECT * FROM heap_page('vac',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | unused | | | | |

(0,2) | normal | 833 c | 835 c | | | (0,3)

(0,3) | normal | 835 c | 0 a | | | (0,3)

(3 rows)

=> SELECT * FROM index_page('vac_s',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,2) | f

2 | (0,3) | f

(2 rows)

115



Chapter 6. Vacuum and Autovacuum

While the previous run left only one tuple in the page, now we have two of them:

������ has decided that version (�,�) cannot be removed yet. The reason is the

database horizon, which is defined by an unfinished transaction in this case:

=> SELECT backend_xmin FROM pg_stat_activity

WHERE pid = pg_backend_pid();

backend_xmin

−−−−−−−−−−−−−−

834

(1 row)

We can use the ������� clause when calling ������ to observe what is going on:

=> VACUUM VERBOSE vac;

INFO: vacuuming "public.vac"

INFO: table "vac": found 0 removable, 2 nonremovable row versions

in 1 out of 1 pages

DETAIL: 1 dead row versions cannot be removed yet, oldest xmin: 834

Skipped 0 pages due to buffer pins, 0 frozen pages.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

VACUUM

The output shows the following information:

• ������ has detected no tuples that can be removed (0 ���������).

• Two tuples must not be removed (2 ������������).

• One of the nonremovable tuples is dead (1 ����), the other is in use.

• The current horizon respected by ������ (������ ����) is the horizon of the

active transaction.

Once the active transaction completes, the database horizon moves forward, and

vacuuming can continue:

=> COMMIT;
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=> VACUUM VERBOSE vac;

INFO: vacuuming "public.vac"

INFO: scanned index "vac_s" to remove 1 row versions

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

INFO: table "vac": removed 1 dead item identifiers in 1 pages

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

INFO: index "vac_s" now contains 1 row versions in 2 pages

DETAIL: 1 index row versions were removed.

0 index pages were newly deleted.

0 index pages are currently deleted, of which 0 are currently

reusable.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

INFO: table "vac": found 1 removable, 1 nonremovable row versions

in 1 out of 1 pages

DETAIL: 0 dead row versions cannot be removed yet, oldest xmin: 836

Skipped 0 pages due to buffer pins, 0 frozen pages.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

VACUUM

������ has detected and removed a dead tuple beyond the new database horizon.

Now the page contains no outdated row versions; the only version remaining is the

current one:

=> SELECT * FROM heap_page('vac',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | unused | | | | |

(0,2) | unused | | | | |

(0,3) | normal | 835 c | 0 a | | | (0,3)

(3 rows)

The index also contains only one entry:

=> SELECT * FROM index_page('vac_s',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,3) | f

(1 row)
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6.3. Vacuum Phases

The mechanism of vacuuming seems quite simple, but this impression is mislead-

ing. After all, both tables and indexes have to be processed concurrently, without

blocking other processes. To enable such operation, vacuuming of each table is

carried out in several phases1.

It all starts with scanning a table in search of dead tuples; if found, they are first

removed from indexes and then from the table itself. If too many dead tuples have

to be vacuumed in one go, this process is repeated. Eventually, heap truncation

may be performed.

Heap Scan

In the first phase, a heap scan2 is performed. The scanning process takes the vis-

ibility map into account: all pages tracked in this map are skipped because they

are sure to contain no outdated tuples. If a tuple is beyond the horizon and is not

required anymore, its �� is added to a special tid array. Such tuples cannot be re-

moved yet because they may still be referenced from indexes.

The tid array resides in the local memory of the ������ process; the size of the

allocated memory chunk is defined by the64MB maintenance_work_mem parameter. The

whole chunk is allocated at once rather than on demand. However, the allocated

memory never exceeds the volume required in the worst-case scenario, so if the

table is small, vacuuming may use less memory than specified in this parameter.

Index Vacuuming

The first phase can have two outcomes: either the table is scanned in full, or the

memory allocated for the tid array is filled up before this operation completes. In

any case, index vacuuming3 begins. In this phase, each of the indexes created on

1 backend/access/heap/vacuumlazy.c, heap_vacuum_rel function
2 backend/access/heap/vacuumlazy.c, lazy_scan_heap function
3 backend/access/heap/vacuumlazy.c, lazy_vacuum_all_indexes function
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the table is fully scanned to find all the entries that refer to the tuples registered in

the tid array. These entries are removed from index pages.

An index can help you quickly get to a heap tuple by its index key, but there is no way to

quickly find an index entry by the corresponding tuple ��. This functionality is currently

being implemented for �-trees1, but this work is not completed yet.

If there are several indexes bigger than the 512kBmin_parallel_index_scan_size value, they

can be vacuumed v. ��by background workers running in parallel. Unless the level

of parallelism is explicitly defined by the parallel N clause, ������ launches one

worker per suitable index (within the general limits imposed on the number of

background workers)2. One index cannot be processed by several workers.

During the index vacuuming phase, Postgre��� updates the free space map and

calculates statistics on vacuuming. However, this phase is skipped if rows are only

inserted (and are neither deleted nor updated) because the table contains no dead

tuples in this case. Then an index scan will be forced only once at the very end, as

part of a separate phase of index cleanup3.

The index vacuuming phase leaves no references to outdated heap tuples in in-

dexes, but the tuples themselves are still present in the table. It is perfectly normal:

index scans cannot find any dead tuples, while sequential scans of the table rely

on visibility rules to filter them out.

Heap Vacuuming

Then the heap vacuuming4 phase begins. The table is scanned again to remove the

tuples registered in the tid array and free the corresponding pointers. Now that all

the related index references have been removed, it can be done safely.

The space recovered by ������ is reflected in the free space map, while the pages

that now contain only the current tuples visible in all snapshots are tagged in the

visibility map.

1 commitfest.postgresql.org/21/1802
2 postgresql.org/docs/14/bgworker.html
3 backend/access/heap/vacuumlazy.c, lazy_cleanup_all_indexes function

backend/access/nbtree/nbtree.c, btvacuumcleanup function
4 backend/access/heap/vacuumlazy.c, lazy_vacuum_heap function
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If the table was not read in full during the heap scan phase, the tid array is cleared,

and the heap scan is resumed from where it left off last time.

Heap Truncation

Vacuumed heap pages contain some free space; occasionally, you may be lucky to

clear the whole page. If you get several empty pages at the end of the file, vacuum-

ing can “bite off” this tail and return the reclaimed space to the operating system.

It happens during heap truncation1, which is the final vacuum phase.

Heap truncation requires a short exclusive lock on the table. To avoid holding other

processes for too long, attempts to acquire a lock do not exceed five seconds.

Since the table has to be locked, truncation is only performed if the empty tail takes

at least 1

16
of the table or has reached the length of �,��� pages. These thresholds

are hardcoded and cannot be configured.

If, despite all these precautions, table locks still cause any issuesv. �� , truncation can be

disabled altogether using the vacuum_truncate and toast.vacuum_truncate storage

parameters.

6.4. Analysis

When talking about vacuuming,we have tomention yet another task that is closely

related to it, even though there is no formal connection between them. It is analy-

sis2, or gathering statistical information for the query planner. The collected statis-

tics include the number of rows (pg_class.reltuples) and pages (pg_class.relpages) in

relations, data distribution within columns, and some other information.

You can run the analysis manually using the �������3 command, or combine it with

vacuuming by calling ������ �������. However, these two tasks are still performed

sequentially, so there is no difference in terms of performance.

1 backend/access/heap/vacuumlazy.c, lazy_truncate_heap function
2 postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-STATISTICS
3 backend/commands/analyze.c
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Historically, ������ ������� appeared first, in version �.�, while a separate ������� com-

mand was not implemented until version �.�. In earlier versions, statistics were collected

by a ��� script.

Automatic vacuum and analysis are set up in a similar way, so it makes sense to

discuss them together.

6.5. Automatic Vacuum and Analysis

Unless the database horizon is held up for a long time, routine vacuuming should

cope with its work. But how often do we need to call the ������ command?

If a frequently updated table is vacuumed too seldom, it will grow bigger than de-

sired. Besides, it may accumulate too many changes, and then the next ������ run

will have to make several passes over the indexes.

If the table is vacuumed too often, the serverwill be busywithmaintenance instead

of useful work.

Furthermore, typicalworkloadsmay change over time, so having a fixed vacuuming

schedule will not help anyway: themore often the table is updated, themore often

it has to be vacuumed.

This problem is solved by autovacuum1, which launches vacuum and analysis pro-

cesses based on the intensity of table updates.

About the Autovacuum Mechanism

When autovacuum is enabled ( onautovacuum configuration parameter is on), the au-

tovacuum launcher process is always running in the system. This process defines

the autovacuum schedule and maintains the list of “active” databases based on us-

age statistics. Such statistics are collected if the ontrack_counts parameter is enabled.

Do not switch off these parameters, otherwise autovacuum will not work.

1 postgresql.org/docs/14/routine-vacuuming.html#AUTOVACUUM
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Once in1min autovacuum_naptime, the autovacuum launcher starts an autovacuum

worker1 for each active database in the list (these workers are spawned by post-

master, as usual). Consequently, if there are N active databases in the cluster, N

workers are spawned within the autovacuum_naptime interval. But the total num-

ber of autovacuumworkers running in parallel cannot exceed the threshold defined

by the3 autovacuum_max_workers parameter.

Autovacuum workers are very similar to regular background workers, but they appeared

much earlier than this general mechanism of task management. It was decided to

leave the autovacuum implementation unchanged, so autovacuum workers do not use

max_worker_processes slots.

Once started, the background worker connects to the specified database and builds

two lists:

• the list of all tables, materialized views, and ����� tables to be vacuumed

• the list of all tables and materialized views to be analyzed (����� tables are

not analyzed because they are always accessed via an index)

Then the selected objects are vacuumed or analyzed one by one (or undergo both

operations), and once the job is complete, the worker is terminated.

Automatic vacuuming works similar to the manual one initiated by the ������

command, but there are some nuances:

• Manual vacuuming accumulates tuple ��s in a memory chunk of the mainte-

nance_work_mem size. However, using the same limit for autovacuum is un-

desirable, as it can result in excessive memory consumption: there may be

several autovacuum workers running in parallel, and each of them will get

maintenance_work_mem of memory at once. Instead, Postgre��� provides a

separate memory limit for autovacuum processes, which is defined by the au-

tovacuum_work_mem parameter.

By default, the−1 autovacuum_work_mem parameter falls back on the regular

maintenance_work_mem limit, so if the autovacuum_max_workers value is high,

you may have to adjust the autovacuum_work_mem value accordingly.

1 backend/postmaster/autovacuum.c
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• Concurrent processing of several indexes created on one table can be per-

formed only by manual vacuuming; using autovacuum for this purpose would

result in a large number of parallel processes, so it is not allowed.

If a worker fails to complete all the scheduled tasks within the autovacuum_naptime

interval, the autovacuum launcher spawns another worker to be run in parallel in

that database. The second worker will build its own lists of objects to be vacuumed

and analyzed and will start processing them. There is no parallelism at the table

level; only different tables can be processed concurrently.

Which Tables Need to be Vacuumed?

You can disable autovacuum at the table level—although it is hard to imagine why

it could be necessary. There are two storage parameters provided for this purpose,

one for regular tables and the other for ����� tables:

• autovacuum_enabled

• toast.autovacuum_enabled

In usual circumstances, autovacuum is triggered either by p. ���accumulation of dead

tuples or by insertion of new rows.

Dead tuple accumulation. Dead tuples are constantly being counted by the statis-

tics collector; their current number is shown in the system catalog table called

pg_stat_all_tables.

It is assumed that dead tuples have to be vacuumed if they exceed the threshold

defined by the following two parameters:

• 50autovacuum_vacuum_threshold, which specifies the number of dead tuples

(an absolute value)

• 0.2autovacuum_vacuum_scale_factor, which sets the fraction of dead tuples in a

table
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Vacuuming is required if the following condition is satisfied:

pg_stat_all_tables.n_dead_tup >

autovacuum_vacuum_threshold +

autovacuum_vacuum_scale_factor × pg_class.reltuples

Themain parameter here is of course autovacuum_vacuum_scale_factor: its value is

important for large tables (and it is large tables that are likely to cause themajority

of issues). The default value of ��% seems too big andmay have to be significantly

reduced.

For different tables, optimal parameter values may vary: they largely depend on

the table size andworkload type. It makes sense to setmore or less adequate initial

values and then override them for particular tables using storage parameters:

• autovacuum_vacuum_threshold and toast.autovacuum_vacuum_threshold

• autovacuum_vacuum_scale_factor and toast.autovacuum_vacuum_scale_factor

Row insertions.v. �� If rows are only inserted and are neither deleted nor updated, the

table contains no dead tuples. But such tables should also be vacuumed to freeze

heap tuples in advancep. ��� and update the visibility map (thus enabling index-only

scans).

A table will be vacuumed if the number of rows inserted since the previous vacu-

uming exceeds the threshold defined by another similar pair of parameters:

•1000 autovacuum_vacuum_insert_threshold

•0.2 autovacuum_vacuum_insert_scale_factor

The formula is as follows:

pg_stat_all_tables.n_ins_since_vacuum >

autovacuum_vacuum_insert_threshold +

autovacuum_vacuum_insert_scale_factor × pg_class.reltuples
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Like in the previous example, you can override these values at the table level using

storage parameters:

• autovacuum_vacuum_insert_threshold and its ����� counterpart

• autovacuum_vacuum_insert_scale_factor and its ����� counterpart

Which Tables Need to Be Analyzed?

Automatic analysis needs to process only modified rows, so the calculations are a

bit simpler than those for autovacuum.

It is assumed that a table has to be analyzed if the number of rows modified since

the previous analysis exceeds the threshold defined by the following two configu-

ration parameters:

• 50autovacuum_analyze_threshold

• 0.1autovacuum_analyze_scale_factor

Autoanalysis is triggered if the following condition is met:

pg_stat_all_tables.n_mod_since_analyze >

autovacuum_analyze_threshold +

autovacuum_analyze_scale_factor × pg_class.reltuples

To override autoanalysis settings for particular tables, you can use the same-name

storage parameters:

• autovacuum_analyze_threshold

• autovacuum_analyze_scale_factor

Since ����� tables are not analyzed, they have no corresponding parameters.
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Autovacuum in Action

To formalize everything said in this section, let’s create two views that show which

tables currently need to be vacuumed and analyzed1. The function used in these

views returns the current value of the passed parameter, taking into account that

this value can be redefined at the table level:

=> CREATE FUNCTION p(param text, c pg_class) RETURNS float

AS $$

SELECT coalesce(

-- use storage parameter if set

(SELECT option_value

FROM pg_options_to_table(c.reloptions)

WHERE option_name = CASE

-- for TOAST tables the parameter name is different

WHEN c.relkind = 't' THEN 'toast.' ELSE ''

END || param

),

-- else take the configuration parameter value

current_setting(param)

)::float;

$$ LANGUAGE sql;

This is how a vacuum-related view can look like:

=> CREATE VIEW need_vacuum AS

WITH c AS (

SELECT c.oid,

greatest(c.reltuples, 0) reltuples,

p('autovacuum_vacuum_threshold', c) threshold,

p('autovacuum_vacuum_scale_factor', c) scale_factor,

p('autovacuum_vacuum_insert_threshold', c) ins_threshold,

p('autovacuum_vacuum_insert_scale_factor', c) ins_scale_factor

FROM pg_class c

WHERE c.relkind IN ('r','m','t')

)

SELECT st.schemaname || '.' || st.relname AS tablename,

st.n_dead_tup AS dead_tup,

c.threshold + c.scale_factor * c.reltuples AS max_dead_tup,

st.n_ins_since_vacuum AS ins_tup,

c.ins_threshold + c.ins_scale_factor * c.reltuples AS max_ins_tup,

st.last_autovacuum

FROM pg_stat_all_tables st

JOIN c ON c.oid = st.relid;

1 backend/postmaster/autovacuum.c, relation_needs_vacanalyze function
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The max_dead_tup column shows the number of dead tuples that will trigger au-

tovacuum, whereas the max_ins_tup column shows the threshold value related to

insertion.

Here is a similar view for analysis:

=> CREATE VIEW need_analyze AS

WITH c AS (

SELECT c.oid,

greatest(c.reltuples, 0) reltuples,

p('autovacuum_analyze_threshold', c) threshold,

p('autovacuum_analyze_scale_factor', c) scale_factor

FROM pg_class c

WHERE c.relkind IN ('r','m')

)

SELECT st.schemaname || '.' || st.relname AS tablename,

st.n_mod_since_analyze AS mod_tup,

c.threshold + c.scale_factor * c.reltuples AS max_mod_tup,

st.last_autoanalyze

FROM pg_stat_all_tables st

JOIN c ON c.oid = st.relid;

Themax_mod_tup column shows the threshold value for autoanalysis.

To speed up the experiment, we will be starting autovacuum every second:

=> ALTER SYSTEM SET autovacuum_naptime = '1s';

=> SELECT pg_reload_conf();

Let’s truncate the vac table and then insert �,��� rows. Note that autovacuum is

turned off at the table level.

=> TRUNCATE TABLE vac;

=> INSERT INTO vac(id,s)

SELECT id, 'A' FROM generate_series(1,1000) id;

Here is what our vacuum-related view will show:

=> SELECT * FROM need_vacuum WHERE tablename = 'public.vac' \gx

−[ RECORD 1 ]−−−+−−−−−−−−−−−

tablename | public.vac

dead_tup | 0

max_dead_tup | 50

ins_tup | 1000

max_ins_tup | 1000

last_autovacuum |
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The actual threshold value is max_dead_tup = 50, although the formula listed

above suggests that it should be 50 + 0.2 × 1000 = 250. The thing is that statistics

on this table are not available yet since the ������ command does not update it:

=> SELECT reltuples FROM pg_class WHERE relname = 'vac';

reltuples

−−−−−−−−−−−

−1

(1 row)

The pg_class.reltuples valuev. �� is set to −1; this special constant is used instead of

zero to differentiate between a table without any statistics and a really empty table

that has already been analyzed. For the purpose of calculation, the negative value

is taken as zero, which gives us 50 + 0.2 × 0 = 50.

The value of max_ins_tup = 1000 differs from the projected value of �,��� for the

same reason.

Let’s have a look at the analysis view:

=> SELECT * FROM need_analyze WHERE tablename = 'public.vac' \gx

−[ RECORD 1 ]−−−−+−−−−−−−−−−−

tablename | public.vac

mod_tup | 1006

max_mod_tup | 50

last_autoanalyze |

We have updated (inserted in this case) �,��� rows; as a result, the threshold is

exceeded: since the table size is unknown, it is currently set to ��. It means that

autoanalysis will be triggered immediately when we turn it on:

=> ALTER TABLE vac SET (autovacuum_enabled = on);

Once the table analysis completes, the threshold is reset to an adequate value of

��� rows.

=> SELECT reltuples FROM pg_class WHERE relname = 'vac';

reltuples

−−−−−−−−−−−

1000

(1 row)
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=> SELECT * FROM need_analyze WHERE tablename = 'public.vac' \gx

−[ RECORD 1 ]−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

tablename | public.vac

mod_tup | 0

max_mod_tup | 150

last_autoanalyze | 2022−07−10 18:39:54.149651+03

Let’s get back to autovacuum:

=> SELECT * FROM need_vacuum WHERE tablename = 'public.vac' \gx

−[ RECORD 1 ]−−−+−−−−−−−−−−−

tablename | public.vac

dead_tup | 0

max_dead_tup | 250

ins_tup | 1000

max_ins_tup | 1200

last_autovacuum |

The max_dead_tup and max_ins_tup values have also been updated based on the

actual table size discovered by the analysis.

Vacuuming will be started if at least one of the following conditions is met:

• More than ��� dead tuples are accumulated.

• More than ��� rows are inserted into the table. v. ��

Let’s turn off autovacuum again and update ��� rows so that the threshold value

is exceeded by one:

=> ALTER TABLE vac SET (autovacuum_enabled = off);

=> UPDATE vac SET s = 'B' WHERE id <= 251;

=> SELECT * FROM need_vacuum WHERE tablename = 'public.vac' \gx

−[ RECORD 1 ]−−−+−−−−−−−−−−−

tablename | public.vac

dead_tup | 251

max_dead_tup | 250

ins_tup | 1000

max_ins_tup | 1200

last_autovacuum |

Now the trigger condition is satisfied. Let’s enable autovacuum; after a while, we

will see that the table has been processed, and its usage statistics has been reset:
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=> ALTER TABLE vac SET (autovacuum_enabled = on);

=> SELECT * FROM need_vacuum WHERE tablename = 'public.vac' \gx

−[ RECORD 1 ]−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

tablename | public.vac

dead_tup | 0

max_dead_tup | 250

ins_tup | 0

max_ins_tup | 1200

last_autovacuum | 2022−07−10 18:40:00.252794+03

6.6. Managing the Load

Operating at the page level, vacuuming does not block other processes; but never-

theless, it increases the system load and can have a noticeable impact on perfor-

mance.

Vacuum Throttling

To control vacuuming intensity, Postgre��� makes regular pauses in table pro-

cessing. After completing about200 vacuum_cost_limit units of work, the process falls

asleep and remains idle for the0 vacuum_cost_delay time interval.

The default zero value of vacuum_cost_delay means that routine vacuuming actu-

ally never sleeps, so the exact vacuum_cost_limit value makes no difference. It is

assumed that if administrators have to resort to manual vacuuming, they are likely

to expect its completion as soon as possible.

If the sleep time is set, then the process will pause each time it has spent vac-

uum_cost_limit units of work on page processing in the buffer cache. The cost of

each page read is estimated at1 vacuum_cost_page_hit units if the page is found in

the buffer cache, or2 vacuum_cost_page_miss units otherwise1. If a clean page is dirt-

ied by vacuum, it adds another20 vacuum_cost_page_dirty units2.

1 backend/storage/buffer/bufmgr.c, ReadBuffer_common function
2 backend/storage/buffer/bufmgr.c, MarkBufferDirty function
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If you keep the default value of the vacuum_cost_limit parameter, ������ can pro-

cess up to ��� pages per cycle in the best-case scenario (if all the pages are cached,

and no pages are dirtied by ������) and only nine pages in the worst case (if all the

pages are read from disk and become dirty).

Autovacuum Throttling

Throttling for autovacuum1 is quite similar to ������ throttling. However, auto-

vacuum can be run with a different intensity as it has its own set of parameters:

• −1autovacuum_vacuum_cost_limit

• 2msautovacuum_vacuum_cost_delay

If any of these parameters is set to −1, it falls back on the corresponding parameter

for regular ������. Thus, the autovacuum_vacuum_cost_limit parameter relies on

the vacuum_cost_limit value by default.

Prior to version ��, the default value of autovacuum_vacuum_cost_delay was �� ms, and it

led to very poor performance on modern hardware.

Autovacuumwork units are limited to autovacuum_vacuum_cost_limit per cycle, and

since they are shared between all the workers, the overall impact on the system re-

mains roughly the same, regardless of their number. So if you need to speed up au-

tovacuum, both the autovacuum_max_workers and autovacuum_vacuum_cost_limit

values should be increased proportionally.

If required, you can override these settings for particular tables by setting the fol-

lowing storage parameters:

• autovacuum_vacuum_cost_delay and toast.autovacuum_vacuum_cost_delay

• autovacuum_vacuum_cost_limit and toast.autovacuum_vacuum_cost_limit

1 backend/postmaster/autovacuum.c, autovac_balance_cost function
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6.7. Monitoring

If vacuuming is monitored, you can detect situations when dead tuples cannot be

removed in one go, as references to them do not fit the maintenance_work_mem

memory chunk. In this case, all the indexes will have to be fully scanned several

times. It can take a substantial amount of time for large tables, thus creating a

significant load on the system. Even though queries will not be blocked, extra �/�

operations can seriously limit system throughput.

Such issues can be corrected either by vacuuming the table more often (so that

each run cleans up fewer tuples) or by allocating more memory.

Monitoring Vacuum

When run with the ������� clause, the ������ command performs the cleanup and

displays the status report, whereas the pg_stat_progress_vacuumv. �.� view shows the

current state of the started process.

There is also a similar view for analysisv. �� (pg_stat_progress_analyze), even though it

is usually performed very fast and is unlikely to cause any issues.

Let’s insert more rows into the table and update them all so that ������ has to run

for a noticeable period of time:

=> TRUNCATE vac;

=> INSERT INTO vac(id,s)

SELECT id, 'A' FROM generate_series(1,500000) id;

=> UPDATE vac SET s = 'B';

For the purpose of this demonstration, we will limit the amount of memory allo-

cated for the tid array by � ��:

=> ALTER SYSTEM SET maintenance_work_mem = '1MB';

=> SELECT pg_reload_conf();

Launch the ������ command and query the pg_stat_progress_vacuum view several

times while it is running:
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=> VACUUM VERBOSE vac;

=> SELECT * FROM pg_stat_progress_vacuum \gx

−[ RECORD 1 ]−−−−−−+−−−−−−−−−−−−−−−−−−

pid | 14503

datid | 16391

datname | internals

relid | 16479

phase | vacuuming indexes

heap_blks_total | 17242

heap_blks_scanned | 3009

heap_blks_vacuumed | 0

index_vacuum_count | 0

max_dead_tuples | 174761

num_dead_tuples | 174522

=> SELECT * FROM pg_stat_progress_vacuum \gx

−[ RECORD 1 ]−−−−−−+−−−−−−−−−−−−−−−−−−

pid | 14503

datid | 16391

datname | internals

relid | 16479

phase | vacuuming indexes

heap_blks_total | 17242

heap_blks_scanned | 17242

heap_blks_vacuumed | 6017

index_vacuum_count | 2

max_dead_tuples | 174761

num_dead_tuples | 150956

In particular, this view shows:

• phase—the name of the current vacuumphase (I have described themain ones,

but there are actually more of them1)

• heap_blks_total—the total number of pages in a table

• heap_blks_scanned—the number of scanned pages

• heap_blks_vacuumed—the number of vacuumed pages

• index_vacuum_count—the number of index scans

1 postgresql.org/docs/14/progress-reporting.html#VACUUM-PHASES
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The overall vacuuming progress is defined by the ratio of heap_blks_vacuumed to

heap_blks_total, but you have to keep in mind that it changes in spurts because of

index scans. In fact, it is more important to pay attention to the number of vacuum

cycles: if this value is greater than one, it means that the allocated memory was

not enough to complete vacuuming in one go.

You can see thewhole picture in the output of the ������ ������� command,which

has already finished by this time:

INFO: vacuuming "public.vac"

INFO: scanned index "vac_s" to remove 174522 row versions

DETAIL: CPU: user: 0.03 s, system: 0.00 s, elapsed: 0.06 s

INFO: table "vac": removed 174522 dead item identifiers in

3009 pages

DETAIL: CPU: user: 0.01 s, system: 0.00 s, elapsed: 0.06 s

INFO: scanned index "vac_s" to remove 174522 row versions

DETAIL: CPU: user: 0.03 s, system: 0.00 s, elapsed: 0.06 s

INFO: table "vac": removed 174522 dead item identifiers in

3009 pages

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.01 s

INFO: scanned index "vac_s" to remove 150956 row versions

DETAIL: CPU: user: 0.02 s, system: 0.00 s, elapsed: 0.05 s

INFO: table "vac": removed 150956 dead item identifiers in

2603 pages

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

INFO: index "vac_s" now contains 500000 row versions in

932 pages

DETAIL: 500000 index row versions were removed.

433 index pages were newly deleted.

433 index pages are currently deleted, of which 0 are

currently reusable.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

INFO: table "vac": found 500000 removable, 500000

nonremovable row versions in 17242 out of 17242 pages

DETAIL: 0 dead row versions cannot be removed yet, oldest

xmin: 851

Skipped 0 pages due to buffer pins, 0 frozen pages.

CPU: user: 0.21 s, system: 0.01 s, elapsed: 0.49 s.

VACUUM

index
vacuum

table
vacuum

index
vacuum

table
vacuum

index
vacuum

table
vacuum

All in all, there have been three index scans; each scan has removed ���,���

pointers to dead tuples at the most. This value is defined by the number of

tid pointers (each of them takes � bytes) that can fit into an array of the main-

tenance_work_mem size. The maximum size possible is shown by pg_stat_prog-
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ress_vacuum.max_dead_tuples, but the actually used space is always a bit smaller. It

guarantees that when the next page is read, all its pointers to dead tuples, no mat-

ter how many of them are located in this page, will fit into the remaining memory.

Monitoring Autovacuum

The main approach to monitoring autovacuum is to print its status information

(which is similar to the output of the ������ ������� command) into the server

log for further analysis. If the −1log_autovacuum_min_duration parameter is set to

zero, all autovacuum runs are logged:

=> ALTER SYSTEM SET log_autovacuum_min_duration = 0;

=> SELECT pg_reload_conf();

=> UPDATE vac SET s = 'C';

UPDATE 500000

postgres$ tail -n 13 /home/postgres/logfile

2022−07−10 18:40:19.165 MSK [17329] LOG: automatic vacuum of table

"internals.public.vac": index scans: 3

pages: 0 removed, 17242 remain, 0 skipped due to pins, 0

skipped frozen

tuples: 500000 removed, 500000 remain, 0 are dead but not

yet removable, oldest xmin: 853

index scan needed: 8622 pages from table (50.01% of total)

had 500000 dead item identifiers removed

index "vac_s": pages: 1428 in total, 496 newly deleted, 929

currently deleted, 433 reusable

avg read rate: 12.169 MB/s, avg write rate: 16.846 MB/s

buffer usage: 46041 hits, 5667 misses, 7845 dirtied

WAL usage: 41028 records, 14964 full page images, 93292501

bytes

system usage: CPU: user: 0.37 s, system: 0.25 s, elapsed:

3.63 s

2022−07−10 18:40:19.520 MSK [17329] LOG: automatic analyze of table

"internals.public.vac"

avg read rate: 45.188 MB/s, avg write rate: 0.022 MB/s

buffer usage: 15354 hits, 2036 misses, 1 dirtied

system usage: CPU: user: 0.09 s, system: 0.02 s, elapsed:

0.35 s
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To track the list of tables that have to be vacuumed and analyzed, you can use

the need_vacuum and need_analyze views, which we have already reviewed. If this

list grows, it means that autovacuum does not cope with the load and has to be

sped up by either reducing the gap (autovacuum_vacuum_cost_delay) or increasing

the amount of work done between the gaps (autovacuum_vacuum_cost_limit). It is

not unlikely that the degree of parallelism will also have to be increased (autovac-

uum_max_workers).
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Freezing

7.1. Transaction ID Wraparound

In Postgre���, a transaction �� takes �� bits. Four billions seems to be quite a big

number, but it can be exhausted very fast if the system is being actively used. For

example, for an average load of �,��� transactions per second (excluding virtual

ones), it will happen in about six weeks of continuous operation.

Once all the numbers are used up, the counter has to be reset to start the next

round (this situation is called a “wraparound”). But a transaction with a smaller

�� can only be considered older than another transaction with a bigger �� if the

assigned numbers are always increasing. So the counter cannot simply start using

the same numbers anew after being reset.

Allocating �� bits for transaction ��s would have eliminated this problem alto-

gether, so why doesn’t Postgre��� take advantage of it? The thing is that each

tuple header has to store ��s for two transactions: xmin and xmax. p. ��The header is

quite big already (at least �� bytes if data alignment is taken into account), and

adding more bits would have given another � bytes.

Postgre��� does implement ��-bit transaction ��s that extend a regular ��1 by a ��-bit

epoch, but they are used only internally and never get into data pages.

To correctly handlewraparound,Postgre��� has to compare the age of transactions

(defined as the number of subsequent transactions that have appeared since the

start of this transaction) rather than transaction ��s. Thus, instead of the terms less

than and greater than we should use the concepts of older (precedes) and younger

(follows).

1 include/access/transam.h, FullTransactionId type
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In the code, this comparison is implemented by simply using the ��-bit arithmetic:

first the difference between ��-bit transaction ��s is found, and then this result is

compared to zero1.

To better visualize this idea, you can imagine a sequence of transaction ��s as a

clock face. For each transaction, half of the circle in the clockwise direction will be

in the future, while the other half will be in the past.

fu
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T1 T1

T2

T1T1

T2

T3

However, this visualization has an unpleasant catch. An old transaction (��) is in

the remote past as compared to more recent transactions. But sooner or later a

new transaction will see it in the half of the circle related to the future. If it were

really so, it would have a catastrophic impact: from now on, all newer transactions

would not see the changes made by transaction ��.

7.2. Tuple Freezing and Visibility Rules

To prevent such “time travel,” vacuuming performs one more task (in addition to

page cleanup)2: it searches for tuples that are beyond the database horizon (so they

are visible in all snapshots) and tags them in a special way, that is, freezes them.

For frozen tuples, visibility rules do not have to take xmin into account since such

tuples are known to be visible in all snapshots, so this transaction �� can be safely

reused.

1 backend/access/transam/transam.c, TransactionIdPrecedes function
2 postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND
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You can imagine that the xmin transaction �� is replaced in frozen tuples by a hy-

pothetical “minus infinity” (pictured as a snowflake below); it is a sign that this

tuple is created by a transaction that is so far in the past that its actual �� does

not matter anymore. Yet in reality xmin remains unchanged, whereas the freezing

attribute is defined by a combination of two hint bits: committed and aborted.

T1̂

T2

T3

T4

^

^

T3

T4T1

T1̂

^

^

T4T1

T2

Many sources (including the documentation) mention FrozenTransactionId = 2. It is the

“minus infinity” that I have already referred to—this value used to replace xmin in versions

prior to �.�, but now hint bits are employed instead. As a result, the original transaction

�� remains in the tuple, which is convenient for both debugging and support. Old systems

can still contain the obsolete FrozenTransactionId, even if they have been upgraded to

higher versions.

The xmax transaction �� does not participate in freezing in any way. It is only

present in outdated tuples, and once such tuples stop being visible in all snap-

shots (which means that the xmax �� is beyond the database horizon), they will be

vacuumed away.

Let’s create a new table for our experiments. The fillfactor parameter should be set

to the lowest value so that each page can accommodate only two tuples—it will be

easier to track the progress this way. Wewill also disable autovacuum tomake sure

that the table is only cleaned up on demand.

=> CREATE TABLE tfreeze(

id integer,

s char(300)

)

WITH (fillfactor = 10, autovacuum_enabled = off);

We are going to create yet another flavor of the function that displays heap pages

using pageinspect. Dealing with a range of pages, it will show the values of the
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freezing attribute (f) and the xmin transaction age for each tuple (it will have to

call the age system function—the age itself is not stored in heap pages, of course):

=> CREATE FUNCTION heap_page(

relname text, pageno_from integer, pageno_to integer

)

RETURNS TABLE(

ctid tid, state text,

xmin text, xmin_age integer, xmax text

) AS $$

SELECT (pageno,lp)::text::tid AS ctid,

CASE lp_flags

WHEN 0 THEN 'unused'

WHEN 1 THEN 'normal'

WHEN 2 THEN 'redirect to '||lp_off

WHEN 3 THEN 'dead'

END AS state,

t_xmin || CASE

WHEN (t_infomask & 256+512) = 256+512 THEN ' f'

WHEN (t_infomask & 256) > 0 THEN ' c'

WHEN (t_infomask & 512) > 0 THEN ' a'

ELSE ''

END AS xmin,

age(t_xmin) AS xmin_age,

t_xmax || CASE

WHEN (t_infomask & 1024) > 0 THEN ' c'

WHEN (t_infomask & 2048) > 0 THEN ' a'

ELSE ''

END AS xmax

FROM generate_series(pageno_from, pageno_to) p(pageno),

heap_page_items(get_raw_page(relname, pageno))

ORDER BY pageno, lp;

$$ LANGUAGE sql;

Now let’s insert some rows into the table and run the ������ command that will

immediately create the visibility map.

=> INSERT INTO tfreeze(id, s)

SELECT id, 'FOO'||id FROM generate_series(1,100) id;

INSERT 0 100

=> VACUUM tfreeze;

We are going to observe the first two heap pages using the pg_visibility exten-

sion. When vacuuming completes, both pages get tagged in the visibility map
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(all_visible) but not in the freeze map (all_frozen v. �.�), as they still contain some un-

frozen tuples:

=> CREATE EXTENSION pg_visibility;

=> SELECT *

FROM generate_series(0,1) g(blkno),

pg_visibility_map('tfreeze',g.blkno)

ORDER BY g.blkno;

blkno | all_visible | all_frozen

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−

0 | t | f

1 | t | f

(2 rows)

The xmin_age of the transaction that has created the rows equals 1 because it is

the latest transaction performed in the system:

=> SELECT * FROM heap_page('tfreeze',0,1);

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | normal | 856 c | 1 | 0 a

(0,2) | normal | 856 c | 1 | 0 a

(1,1) | normal | 856 c | 1 | 0 a

(1,2) | normal | 856 c | 1 | 0 a

(4 rows)

7.3. Managing Freezing

There are four main parameters that control freezing. All of them represent trans-

action age and define when the following events happen:

• Freezing starts (vacuum_freeze_min_age).

• Aggressive freezing is performed (vacuum_freeze_table_age).

• Freezing is forced (autovacuum_freeze_max_age).

• Freezing receives priority v. ��(vacuum_failsafe_age).
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Minimal Freezing Age

The50 million vacuum_freeze_min_age parameter defines the minimal freezing age of xmin

transactions. The lower its value, the higher the overhead: if a row is “hot” and is

actively being changed, then freezing all its newly created versions will be a wasted

effort. Setting this parameter to a relatively high value allows you to wait for a

while.

To observe the freezing process, let’s reduce this parameter value to one:

=> ALTER SYSTEM SET vacuum_freeze_min_age = 1;

=> SELECT pg_reload_conf();

Now update one row in the zero page. The new row version will get into the same

page because the fillfactor value is quite small:

=> UPDATE tfreeze SET s = 'BAR' WHERE id = 1;

The age of all transactions has been increased by one, and the heap pages now look

as follows:

=> SELECT * FROM heap_page('tfreeze',0,1);

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | normal | 856 c | 2 | 857

(0,2) | normal | 856 c | 2 | 0 a

(0,3) | normal | 857 | 1 | 0 a

(1,1) | normal | 856 c | 2 | 0 a

(1,2) | normal | 856 c | 2 | 0 a

(5 rows)

At this point, the tuples that are older than vacuum_freeze_min_age = 1 are subject

to freezing. But vacuum will not process any pages tagged in the visibility mapp. ��� :

=> SELECT * FROM generate_series(0,1) g(blkno),

pg_visibility_map('tfreeze',g.blkno)

ORDER BY g.blkno;

blkno | all_visible | all_frozen

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−

0 | f | f

1 | t | f

(2 rows)
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The previous ������ command has removed the visibility bit of the zero page, so

the tuple that has an appropriate xmin age in this page will be frozen. But the first

page will be skipped altogether:

=> VACUUM tfreeze;

=> SELECT * FROM heap_page('tfreeze',0,1);

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | redirect to 3 | | |

(0,2) | normal | 856 f | 2 | 0 a

(0,3) | normal | 857 c | 1 | 0 a

(1,1) | normal | 856 c | 2 | 0 a

(1,2) | normal | 856 c | 2 | 0 a

(5 rows)

Now the zero page appears in the visibility map again, and if nothing changes in

it, vacuuming will not return to this page anymore:

=> SELECT * FROM generate_series(0,1) g(blkno),

pg_visibility_map('tfreeze',g.blkno)

ORDER BY g.blkno;

blkno | all_visible | all_frozen

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−

0 | t | f

1 | t | f

(2 rows)

Age for Aggressive Freezing

As we have just seen, if a page contains only the current tuples that are visible in

all snapshots, vacuuming will not freeze them. To overcome this constraint, Post-

gre��� provides the 150

million

vacuum_freeze_table_age parameter. It defines the transaction

age that allows vacuuming to ignore the visibility map, so any heap page can be

frozen.

For each table, the system catalog keeps a transaction �� for which it is known that

all the older transactions are sure to be frozen. It is stored as relfrozenid:
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=> SELECT relfrozenxid, age(relfrozenxid)

FROM pg_class

WHERE relname = 'tfreeze';

relfrozenxid | age

−−−−−−−−−−−−−−+−−−−−

854 | 4

(1 row)

It is the age of this transaction that is compared to the vacuum_freeze_table_age

value to decide whether the time has come for aggressive freezing.

Thanks to the freeze mapv. �.� , there is no need to perform a full table scan during vac-

uuming: it is enough to check only those pages that do not appear in the map.

Apart from this important optimization, the freezemap also brings fault tolerance:

if vacuuming is interrupted, its next run will not have to get back to the pages that

have already been processed and are tagged in the map.

Postgre��� performs aggressive freezing of all pages in a table each time when

the number of transactions in the system reaches the vacuum_freeze_table_age −
vacuum_freeze_min_age limit (if the default values are used, it happens after each

��� million transactions). Thus, if the vacuum_freeze_min_age value is too big, it

can lead to excessive freezing and increased overhead.

To freeze the whole table, let’s reduce the vacuum_freeze_table_age value to four;

then the condition for aggressive freezing will be satisfied:

=> ALTER SYSTEM SET vacuum_freeze_table_age = 4;

=> SELECT pg_reload_conf();

Run the ������ command:

=> VACUUM VERBOSE tfreeze;

INFO: aggressively vacuuming "public.tfreeze"

INFO: table "tfreeze": found 0 removable, 100 nonremovable row

versions in 50 out of 50 pages

DETAIL: 0 dead row versions cannot be removed yet, oldest xmin: 858

Skipped 0 pages due to buffer pins, 0 frozen pages.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

VACUUM
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Now that the whole table has been analyzed, the relfrozenid value can be ad-

vanced—heap pages are guaranteed to have no older unfrozen xmin transactions:

=> SELECT relfrozenxid, age(relfrozenxid)

FROM pg_class

WHERE relname = 'tfreeze';

relfrozenxid | age

−−−−−−−−−−−−−−+−−−−−

857 | 1

(1 row)

The first page now contains only frozen tuples:

=> SELECT * FROM heap_page('tfreeze',0,1);

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | redirect to 3 | | |

(0,2) | normal | 856 f | 2 | 0 a

(0,3) | normal | 857 c | 1 | 0 a

(1,1) | normal | 856 f | 2 | 0 a

(1,2) | normal | 856 f | 2 | 0 a

(5 rows)

Besides, this page is tagged in the freeze map:

=> SELECT * FROM generate_series(0,1) g(blkno),

pg_visibility_map('tfreeze',g.blkno)

ORDER BY g.blkno;

blkno | all_visible | all_frozen

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−

0 | t | f

1 | t | t

(2 rows)

Age for Forced Autovacuum

Sometimes it is not enough to configure the two parameters discussed above to

timely freeze tuples. Autovacuum might be switched off, while regular ������ is

not being called at all (it is a very bad idea, but technically it is possible). Besides,
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some inactive databases (like template0) may not be vacuumedp. ��� . Postgre��� can

handle such situations by forcing autovacuum in the aggressive mode.

Autovacuum is forced1 (even if it is switched off) when there is a risk that the

age of some unfrozen transaction ��s in the database will exceed the200

million

autovacu-

um_freeze_max_age value. The decision is taken based on the age of the oldest

pg_class.relfrozenxid transaction in all the tables, as all the older transactions are

guaranteed to be frozen. The �� of this transaction is stored in the system catalog:

=> SELECT datname, datfrozenxid, age(datfrozenxid) FROM pg_database;

datname | datfrozenxid | age

−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−

postgres | 726 | 132

template1 | 726 | 132

template0 | 726 | 132

internals | 726 | 132

(4 rows)

xid

datfrozenxid

relfrozenxid

of table 1

relfrozenxid

of table 3

relfrozenxid

of table 2

all row versions
in the database are

guaranteed to be frozen

The autovacuum_freeze_max_age limit is set to � billion transactions (a bit less than

half of the circle), while the default value is �� times smaller. It is done for good

reason: a big value increases the risk of transaction �� wraparound, as Postgre���

may fail to timely freeze all the required tuples. In this case, the server must stop

immediately to prevent possible issues and will have to be restarted by an admin-

istrator.

1 backend/access/transam/varsup.c, SetTransactionIdLimit function

146

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/varsup.c;hb=REL_14_STABLE


7.4. Manual Freezing

The autovacuum_freeze_max_age value also affects the size of ����. p. ��There is no

need to keep the status of frozen transactions, and all the transactions that precede

the onewith the oldest datfrozenxid in the cluster are sure to be frozen. Those ����

files that are not required anymore are removed by autovacuum1.

Changing the autovacuum_freeze_max_age parameter requires a server restart.

However, all the freezing settings discussed above can also be adjusted at the table

level via the corresponding storage parameters. Note that the names of all these

parameters start with “auto”:

• autovacuum_freeze_min_age and toast.autovacuum_freeze_min_age

• autovacuum_freeze_table_age and toast.autovacuum_freeze_table_age

• autovacuum_freeze_max_age and toast.autovacuum_freeze_max_age

Age for Failsafe Freezing v. ��

If autovacuum is already struggling to prevent transaction �� wraparound and it is

clearly a race against time, a safety switch is pulled: autovacuum will ignore the

autovacuum_vacuum_cost_delay (vacuum_cost_delay) value andwill stop vacuuming

indexes to freeze heap tuples as soon as possible.

A failsafe freezing mode is enabled2 if there is a risk that the age of an unfrozen

transaction in the databasewill exceed the 1.6 billionvacuum_failsafe_age value. It is assumed

that this value must be higher than autovacuum_freeze_max_age.

7.4. Manual Freezing

It is sometimes more convenient to manage freezing manually rather than rely on

autovacuum.

1 backend/commands/vacuum.c, vac_truncate_clog function
2 backend/access/heap/vacuumlazy.c, lazy_check_wraparound_failsafe function
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Freezing by Vacuum

You can initiate freezing by calling the ������ command with the ������ op-

tion. It will freeze all the heap tuples regardless of their transaction age, as if

vacuum_freeze_min_age = 0.

If the purposev. �� of such a call is to freeze heap tuples as soon as possible, it makes

sense to disable index vacuuming, like it is done in the failsafe mode. You can do it

either explicitly, by running the ������ (freeze, index_cleanup false) command, or

via the vacuum_index_cleanup storage parameter. It is rather obvious that it should

not be done on a regular basis since in this case ������will not be coping well with

its main task of page cleanup.

Freezing Data at the Initial Loading

The data that is not expected to change can be frozen at once, while it is being

loaded into the database. It is done by running the ���� command with the ������

option.

Tuples can be frozen during the initial loading only if the resulting table has been

created or truncated within the same transaction, as both these operations acquire

an exclusive lock on the table. This restriction is necessary because frozen tuples

are expected to be visible in all snapshots, regardless of the isolation level; other-

wise, transactions would suddenly see freshly-frozen tuples right as they are being

uploaded. But if the lock is acquired, other transactions will not be able to get

access to this table.

Nevertheless, it is still technically possible to break isolation. Let’s start a new

transaction at the Repeatable Read isolation level in a separate session:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT 1; -- the shapshot is built

Truncate the tfreeze table and insert new rows into this table within the same

transaction. (If the reading transaction had already accessed the tfreeze table, the

�������� command will be blocked.)
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=> BEGIN;

=> TRUNCATE tfreeze;

=> COPY tfreeze FROM stdin WITH FREEZE;

1 FOO

2 BAR

3 BAZ

\.

=> COMMIT;

Now the reading transaction sees the new data as well:

=> SELECT count(*) FROM tfreeze;

count

−−−−−−−

3

(1 row)

=> COMMIT;

It does break isolation, but since data loading is unlikely to happen regularly, in

most cases it will not cause any issues.

If you load data with freezing v. ��, the visibility map is created at once, and page head-

ers receive the visibility attribute: p. ���

=> SELECT * FROM pg_visibility_map('tfreeze',0);

all_visible | all_frozen

−−−−−−−−−−−−−+−−−−−−−−−−−−

t | t

(1 row)

=> SELECT flags & 4 > 0 AS all_visible

FROM page_header(get_raw_page('tfreeze',0));

all_visible

−−−−−−−−−−−−−

t

(1 row)

Thus, v. ��if the data has been loaded with freezing, the table will not be processed by

vacuum (as long as the data remains unchanged). Unfortunately, this functionality

is not supported for ����� tables yet: if an oversized value is loaded, vacuum will

have to rewrite the whole ����� table to set visibility attributes in all page headers.
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8.1. Full Vacuuming

Why is Routine Vacuuming not Enough?

Routine vacuuming can free more space than page pruning, but sometimes it may

still be not enough.

If table or index files have grown in size, ������ can clean up some space within

pages, but it can rarely reduce the number of pages. The reclaimed space can only

be returned to the operating system if several empty pages appear at the very end

of the file, which does not happen too often.

An excessive size can lead to unpleasant consequences:

• Full table (or index) scan will take longer.

• A bigger buffer cache may be required (pages are cached as a whole, so data

density decreases).

• B-trees can get an extra level, which slows down index access.

• Files take up extra space on disk and in backups.

If the fraction of useful data in a file has dropped below some reasonable level, an

administrator can perform full vacuuming1 by running the ������ ���� command.

In this case, the table and all its indexes are rebuilt from scratch, and the data is

packed as densely as possible (taking the fillfactorp. ��� parameter into account).

1 postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-SPACE-RECOVERY
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When full vacuuming is performed, Postgre��� first fully rebuilds the table and

then each of its indexes. While an object is being rebuilt, both old and new files

have to be stored on disk1, so this process may require a lot of free space.

You should also keep in mind that this operation fully blocks access to the table,

both for reads and writes.

Estimating Data Density

For the purpose of illustration, let’s insert some rows into the table:

=> TRUNCATE vac;

=> INSERT INTO vac(id,s)

SELECT id, id::text FROM generate_series(1,500000) id;

Storage density can be estimated using the pgstattuple extension:

=> CREATE EXTENSION pgstattuple;

=> SELECT * FROM pgstattuple('vac') \gx

−[ RECORD 1 ]−−−−−−+−−−−−−−−−

table_len | 70623232

tuple_count | 500000

tuple_len | 64500000

tuple_percent | 91.33

dead_tuple_count | 0

dead_tuple_len | 0

dead_tuple_percent | 0

free_space | 381844

free_percent | 0.54

The function reads the whole table and displays statistics on space distribution in

its files. The tuple_percent field shows the percentage of space taken up by use-

ful data (heap tuples). This value is inevitably less than ���% because of various

metadata within pages, but in this example it is still quite high.

For indexes, the displayed information differs a bit, but the avg_leaf_density field

has the samemeaning: it shows the percentage of useful data (in �-tree leaf pages).

1 backend/commands/cluster.c
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=> SELECT * FROM pgstatindex('vac_s') \gx

−[ RECORD 1 ]−−−−−−+−−−−−−−−−−

version | 4

tree_level | 3

index_size | 114302976

root_block_no | 2825

internal_pages | 376

leaf_pages | 13576

empty_pages | 0

deleted_pages | 0

avg_leaf_density | 53.88

leaf_fragmentation | 10.59

The previously used pgstattuple functions read the table or index in full to get the

precise statistics. For large objects, it can turn out to be too expensive, so the

extension also provides another function called pgstattuple_approx, which skips

the pages tracked in the visibility map to show approximate figures.

A faster but even less accurate method is to roughly estimate the ratio between the

data volume and the file size using the system catalog1.

Here are the current sizes of the table and its index:

=> SELECT pg_size_pretty(pg_table_size('vac')) AS table_size,

pg_size_pretty(pg_indexes_size('vac')) AS index_size;

table_size | index_size

−−−−−−−−−−−−+−−−−−−−−−−−−

67 MB | 109 MB

(1 row)

Now let’s delete ��% of all the rows:

=> DELETE FROM vac WHERE id % 10 != 0;

DELETE 450000

Routine vacuuming does not affect the file size because there are no empty pages

at the end of the file:

=> VACUUM vac;

1 wiki.postgresql.org/wiki/Show_database_bloat.
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=> SELECT pg_size_pretty(pg_table_size('vac')) AS table_size,

pg_size_pretty(pg_indexes_size('vac')) AS index_size;

table_size | index_size

−−−−−−−−−−−−+−−−−−−−−−−−−

67 MB | 109 MB

(1 row)

However, data density has dropped about �� times:

=> SELECT vac.tuple_percent, vac_s.avg_leaf_density

FROM pgstattuple('vac') vac, pgstatindex('vac_s') vac_s;

tuple_percent | avg_leaf_density

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−

9.13 | 6.71

(1 row)

The table and the index are currently located in the following files:

=> SELECT pg_relation_filepath('vac') AS vac_filepath,

pg_relation_filepath('vac_s') AS vac_s_filepath \gx

−[ RECORD 1 ]−−+−−−−−−−−−−−−−−−−−

vac_filepath | base/16391/16514

vac_s_filepath | base/16391/16515

Let’s check what we will get after ������ ����. While the command is running, v. ��its

progress can be tracked in the pg_stat_progress_cluster view (which is similar to the

pg_stat_progress_vacuum view provided for ������):

=> VACUUM FULL vac;

=> SELECT * FROM pg_stat_progress_cluster \gx

−[ RECORD 1 ]−−−−−−−+−−−−−−−−−−−−−−−−−

pid | 19452

datid | 16391

datname | internals

relid | 16479

command | VACUUM FULL

phase | rebuilding index

cluster_index_relid | 0

heap_tuples_scanned | 50000

heap_tuples_written | 50000

heap_blks_total | 8621

heap_blks_scanned | 8621

index_rebuild_count | 0
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Expectedly, ������ ���� phases1 differ from those of routine vacuuming.

Full vacuuming has replaced old files with new ones:

=> SELECT pg_relation_filepath('vac') AS vac_filepath,

pg_relation_filepath('vac_s') AS vac_s_filepath \gx

−[ RECORD 1 ]−−+−−−−−−−−−−−−−−−−−

vac_filepath | base/16391/16526

vac_s_filepath | base/16391/16529

Both index and table sizes are much smaller now:

=> SELECT pg_size_pretty(pg_table_size('vac')) AS table_size,

pg_size_pretty(pg_indexes_size('vac')) AS index_size;

table_size | index_size

−−−−−−−−−−−−+−−−−−−−−−−−−

6904 kB | 6504 kB

(1 row)

As a result, data density has increased. For the index, it is even higher than the

original one: it is more efficient to create a �-tree from scratch based on the avail-

able data than to insert entries row by row into an already existing index:

=> SELECT vac.tuple_percent,

vac_s.avg_leaf_density

FROM pgstattuple('vac') vac,

pgstatindex('vac_s') vac_s;

tuple_percent | avg_leaf_density

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−

91.23 | 91.08

(1 row)

Freezing

When the table is being rebuilt, Postgre��� freezes its tuples because this opera-

tion costs almost nothing compared to the rest of the work:

1 postgresql.org/docs/14/progress-reporting.html#CLUSTER-PHASES
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=> SELECT * FROM heap_page('vac',0,0) LIMIT 5;

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | normal | 861 f | 5 | 0 a

(0,2) | normal | 861 f | 5 | 0 a

(0,3) | normal | 861 f | 5 | 0 a

(0,4) | normal | 861 f | 5 | 0 a

(0,5) | normal | 861 f | 5 | 0 a

(5 rows)

But pages are registered neither in the visibilitymap nor in the freezemap, and the

page header does not receive the visibility attribute (as it happens when the ����

command is executed with the ������ option p. ���):

=> SELECT * FROM pg_visibility_map('vac',0);

all_visible | all_frozen

−−−−−−−−−−−−−+−−−−−−−−−−−−

f | f

(1 row)

=> SELECT flags & 4 > 0 all_visible

FROM page_header(get_raw_page('vac',0));

all_visible

−−−−−−−−−−−−−

f

(1 row)

The situation improves only after ������ is called (or autovacuum is triggered):

=> VACUUM vac;

=> SELECT * FROM pg_visibility_map('vac',0);

all_visible | all_frozen

−−−−−−−−−−−−−+−−−−−−−−−−−−

t | t

(1 row)

=> SELECT flags & 4 > 0 AS all_visible

FROM page_header(get_raw_page('vac',0));

all_visible

−−−−−−−−−−−−−

t

(1 row)
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It essentially means that even if all tuples in a page are beyond the database hori-

zon, such a page will still have to be rewritten.

8.2. Other Rebuilding Methods

Alternatives to Full Vacuuming

In addition to ������ ����, there are several other commands that can fully rebuild

tables and indexes. All of themexclusively lock the table, all of themdelete old data

files and recreate them anew.

The ������� command is fully analogous to ������ ����, but it also reorders tuples

in files based on one of the available indexes. In some cases, it can help the planner

use index scans more efficiently. But you should bear in mind that clusterization

is not supported: all further table updates will be breaking the physical order of

tuples.

Programmatically, ������ ���� is simply a special instance of the ������� com-

mand that does not require tuple reordering1.

The ������� command rebuilds one or more indexes2. In fact, ������ ���� and

������� use this command under the hood when rebuilding indexes.

The �������� 3 command deletes all table rows; it is a logical equivalent of ������

runwithout the����� clause. Butwhile������p. �� simplymarks heap tuples as deleted

(so they still have to be vacuumed), �������� creates a new empty file, which is

usually faster.

Reducing Downtime during Rebuilding

������ ���� is not meant to be run regularly, as it exclusively locks the table (even

for queries) for the whole duration of its operation. This is usually not an option

for highly available systems.

1 backend/commands/cluster.c
2 backend/commands/indexcmds.c
3 backend/commands/tablecmds.c, ExecuteTruncate function
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8.3. Preventive Measures

There are several extensions (such as pg_repack1) that can rebuild tables and in-

dexes with almost zero downtime. An exclusive lock is still required, but only at the

beginning and at the end of this process, and only for a short time. It is achieved

by a more complex implementation: all the changes made on the original table

while it is being rebuilt are saved by a trigger and then applied to the new table. To

complete the operation, the utility replaces one table with the other in the system

catalog.

An unconventional solution is offered by the pgcompacttable2 utility. It performs

multiple fake row updates (that do not change any data) so that current row ver-

sions gradually move towards the start of the file.

Between these update series, vacuuming removes outdated tuples and truncates p. ���

the file little by little. This approach takes much more time and resources, but it

requires no extra space for rebuilding the table and does not lead to load spikes.

Short-time exclusive locks are still acquired while the table is being truncated, but

vacuuming handles them rather smoothly.

8.3. Preventive Measures

Read-Only Queries

One of the reasons for file bloating is executing long-running transactions that

hold the database horizon p. ��alongside intensive data updates.

As such, long-running (read-only) transactions do not cause any issues. So a com-

mon approach is to split the load between different systems: keep fast ���� queries

on the primary server and direct all ���� transactions to a replica. Although it

makes the solution more expensive and complicated, such measures may turn out

to be indispensable.

In some cases, long transactions are the result of application or driver bugs rather

than a necessity. If an issue cannot be resolved in a civilized way, the administrator

can resort to the following two parameters:

1 github.com/reorg/pg_repack.
2 github.com/dataegret/pgcompacttable.
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• The old_snapshot_thresholdv. �.� parameter defines the maximum lifetime of a

snapshot. Once this time is up, the server has the right to remove outdated

tuples; if a long-running transaction still requires them, it will get an error

(“snapshot too old”).

• The idle_in_transaction_session_timeoutv. �.� parameter limits the lifetime of an idle

transaction. The transaction is aborted upon reaching this threshold.

Data Updates

Another reason for bloating is simultaneous modification of a large number of tu-

ples. If all table rows get updated, the number of tuples can double, and vacuuming

will not have enough time to interfere. Page pruning can reduce this problem, but

not resolve it entirely.

Let’s extend the output with another column to keep track of the processed rows:

=> ALTER TABLE vac ADD processed boolean DEFAULT false;

=> SELECT pg_size_pretty(pg_table_size('vac'));

pg_size_pretty

−−−−−−−−−−−−−−−−

6936 kB

(1 row)

Once all the rows are updated, the table gets almost two times bigger:

=> UPDATE vac SET processed = true;

UPDATE 50000

=> SELECT pg_size_pretty(pg_table_size('vac'));

pg_size_pretty

−−−−−−−−−−−−−−−−

14 MB

(1 row)

To address this situation, you can reduce the number of changes performed by a

single transaction, spreading them out over time; then vacuuming can delete out-

dated tuples and free some space for new ones within the already existing pages.

Assuming that each row update can be committed separately, we can use the fol-

lowing query that selects a batch of rows of the specified size as a template:
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SELECT ID

FROM table

WHERE filtering the already processed rows

LIMIT batch size

FOR UPDATE SKIP LOCKED

This code snippet selects and immediately locks a set of rows that does not ex-

ceed the specified size. The rows that are already locked by other transactions are

skipped: they will get into another batch next time. It is a rather flexible and con-

venient solution that allows you to easily change the batch size and restart the

operation in case of a failure. Let’s unset the processed attribute and perform full

vacuuming to restore the original size of the table:

=> UPDATE vac SET processed = false;

=> VACUUM FULL vac;

Once the first batch is updated, the table size grows a bit:

=> WITH batch AS (

SELECT id FROM vac WHERE NOT processed LIMIT 1000

FOR UPDATE SKIP LOCKED

)

UPDATE vac SET processed = true

WHERE id IN (SELECT id FROM batch);

UPDATE 1000

=> SELECT pg_size_pretty(pg_table_size('vac'));

pg_size_pretty

−−−−−−−−−−−−−−−−

7064 kB

(1 row)

But from now on, the size remains almost the same because new tuples replace the

removed ones:

=> VACUUM vac;

=> WITH batch AS (

SELECT id FROM vac WHERE NOT processed LIMIT 1000

FOR UPDATE SKIP LOCKED

)

UPDATE vac SET processed = true

WHERE id IN (SELECT id FROM batch);

UPDATE 1000
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=> SELECT pg_size_pretty(pg_table_size('vac'));

pg_size_pretty

−−−−−−−−−−−−−−−−

7072 kB

(1 row)
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