

Architecture

General Overview

11

Copyright
© Postgres Professional, 2017, 2018, 2019.
Authors: Egor Rogov, Pavel Luzanov

Use of course materials
Non-commercial use of course materials (presentations, demonstrations)
is permitted without restrictions. Commercial use is possible only with the
written permission of Postgres Professional. Changes to course materials
are prohibited.

Feedback
Send feedback, comments and suggestions to:
edu@postgrespro.ru

Denial of responsibility
In no event shall Postgres Professional be liable to any party for direct,
indirect, special, incidental, or consequential damages, including lost
profit, arising out of the use of course materials. Postgres Professional
disclaims any warranties on course materials. Course materials are
provided on an “as is” basis and Postgres Professional has no obligations
to provide maintenance, support, updates, enhancements, or
modifications.

2

Topics

Client/Server protocol

Transactions and implementation mechanisms

Parsing and executing queries

Processes and memory structures

On-disk data storage

System extensibility

3

Client and server

client
application

PostgreSQL

dr
iv

er protocol

connecting authenticating
sending query executing queries

transaction management transaction support

Let's start with a simple picture in which the server is represented by a
«black box». A client application — for example, psql, or any other program
written in any programming language (PL) — connects to the server and
somehow «communicates» with it. In order for the client and server to
understand each other, they must use the same communication protocol.
The protocol is rather low-level and, of course, it is not necessary to
implement it in each client. Typically, the client program uses a driver that
provides a set of functions for use in the program. The driver can use
existing PostgreSQL implementation of the protocol (libpq library), or it can
implement the protocol itself.

Therefore, in fact, it is not so important in which PL the client is written — for
different syntax there will be the same possibilities defined by the protocol.

Speaking in general terms, the protocol allows the client to connect; at the
same time the server performs the so-called authentication — for example,
it requests a password and decides whether the connection can be allowed.
Next, the client sends requests to the server in SQL, and the server
executes them and returns the result.

The presence of a sophisticated query language is one of the features that
distinguish a DBMS from just working with data files directly. Another key
feature is support for transactions to ensure consistency.

4

Transactions

client
application

PostgreSQL

dr
iv

er operations

COMMIT /
ROLLBACK;

BEGIN;

atomicity — all or nothing
consistency — data correctness (integrity and other constraints)
isolation — no influence of concurrent transactions

durability — committed data are permanent even in case of failure

A transaction is a logically indivisible part of the work, which preserves the
consistency of data in the database.

Four properties (ACID) are expected from transactions:

- Atomicity: the transaction is either succeeds completely or not at all. For
this purpose the beginning of the transaction is marked with the BEGIN
command, and the end is marked with either COMMIT (preserve changes)
or ROLLBACK (abort transaction).

- Consistency: the transaction begins in a consistent state and, completing,
also maintains consistency.

- Isolation: other concurrent transactions (running at the same time with this
one) should not affect it.

- Durability: after the transaction is committed, changes should not be lost
even in case of failure.

https://postgrespro.com/docs/postgresql/11/tutorial-transactions

It is the client application which is responsible for managing transactions
(start and end transaction commands) in PostgreSQL. However PostgreSQL
11 introduces so-called stored procedures (not to be confused with
functions), which also can execute transaction control statements.

https://postgrespro.com/docs/postgresql/11/xproc

5

Query execution

client
application

PostgreSQL

dr
iv

er query

result

parsing ← system catalog

transformation ← rules

planning ← statistics

execution ← data

Query execution is a challenge.

The request is transmitted from the client to the server as a text string. The
text must be parsed — that is, a syntactic analysis (whether the letters are
folded into words, and words into commands) and semantic analysis (match
names with existing tables or other objects in the database, and also check
access rights) must be performed. This requires information about what is
contained in the database. Such meta-information is called the system
catalog and is stored in the database itself in special tables.

The request can be transformed — for example, the text of the request is
substituted for the name of the view. You can come up with your own
transformations, for which there is a rules mechanism.

SQL is a declarative language: a query on it says what data you need, but
does not say how to get it. Therefore, the request (already parsed and
represented in the internal form of a tree) is transmitted to the planner
(optimizer), which develops the execution plan. For example, the planner
decides whether to use indexes or not. In order to come up with a decent
plan, the planner needs information about the size of the tables, about the
distribution of data — in other words, statistics.

Further, the request is executed in accordance with the plan and the result
is returned to the client.

6

Prepared statements

client
application

PostgreSQL

dr
iv

er binding

result

preparation

parsing
transformation

binding ← parameters values
planning
execution

Each request passes the steps listed above. But if the same query (up to
parameters) is executed many times, there is no point in repeating the
process every time.

PostgreSQL allows to prepare a SQL statement — perform parsing and
transformation in advance and remember the parse tree.

When a query is executed, specific parameter values are bound. If
necessary, planning is performed (in some cases, PostgreSQL remembers
the query plan and does not re-plan the query). Then the query is executed.

7

Cursors

client
application

PostgreSQL

dr
iv

er

preparation

result

result

binding

parsing
transformation

binding ← parameters values
planning
execution

fetching results

It is not always convenient for the client to get all the results at once. There
may be a lot of data, but not all of them may be needed.

For that purpose there is a cursor mechanism: by opening a cursor for
a request, the client can fetch data from it line by line as needed.

It is clear that the server has to store auxiliary information: parsed requests
and their plans, the state of open cursors. Where and how does it do it? To
answer this question we need to look inside the server and get familiar with
its structure.

8

backend

Processes and memory

client
application

PostgreSQL

postmaster

backend

background processes

shared memory

local
memory

parsed queries,
state of the cursors,

cache of the system catalog,
temporary place for sorts

and joins, etc.

From the inside, the PostgreSQL server can be represented as several
interacting processes.

First of all, during the server startup the postmaster process starts first. It
starts all other processes (using the Unix fork system call) and «looks
after» them: if any process terminates abnormally, postmaster restarts it (or
restarts the entire server if it considers that the process could damage the
shared data).

The server also run a number of background processes. Later we will
discuss the main ones.

To allow processes to exchange information, postmaster allocates a shared
memory, access to which can be obtained by all processes. In addition to
shared memory, each process has its own local memory, accessible only to
itself.

So that the client can connect to the server, postmaster listens to incoming
connections. When a client appears, the postmaster spawns a backend
process for it, so that each client communicates with its dedicated server
process.

The space required to execute the query (parsed queries and their plans,
the state of the cursors, the cache of the system catalog, the place for sorts
and joins, etc.) is allocated in the local memory of the backend process.

9

Many clients

client
application

PostgreSQL

postmaster

backend

background processes

shared memory

lockingMVCC

When many clients connect to the server, for each of them a separate
backend process is forked. This is not a problem up to a certain number
(say, several hundreds) of processes if the server has enough memory and
connections do not occur too often.

However, concurrent access to objects requires special handling so that one
process does not change any data while another process is working with it.

For objects in shared memory, short-lived locks are used. PostgreSQL does
this quite carefully so that the system scales well with an increase in the
number of CPU cores.

With tables it is more difficult, since locks will have to be held until the end of
transactions (that is, potentially for a long time). That is why scalability may
suffer. Therefore PostgreSQL uses the multiversion concurrency control
(MVCC). The idea is that the same row can simultaneously exist in different
versions. Each process sees its own (but always consistent) snapshot of the
data. This allows PostgreSQL to block only those processes that are trying
to change data that has already been changed (but not yet committed) by
other processes.

MVCC is the main mechanism that provides the first three properties of
transactions (atomicity, consistency, isolation). We will talk about it in more
detail later.

10

Connection pool

client
application

PostgreSQL

postmaster

background processe

shared memory

backendpool

If there are too many clients, or connections are established and dropped
too often, you should consider using a connection pool. This function is
usually provided by an application server or you can use third-party pool
managers (the most famous is PgBouncer https://pgbouncer.github.io/).

Clients connect not to the database server directly, but instead to the pool
manager. The manager keeps several connections to the database server
open and uses one of the free ones to fulfill client requests. Thus, from the
point of view of the database server, the number of clients remains constant
regardless of how many clients access the pool manager.

But with this mode of operation, several clients share the same backend
process, which (as was mentioned) stores a certain state in its local memory
(in particular, parsed requests for prepared statements). This must be
considered when developing an application.

11

Data storage

client
application

PostgreSQL

postmaster

background process

backend

OS

WAL

cache

shared memory

PostgreSQL works with disks on which data is located through the operating
system. It almost does not use direct I/O. Data is stored in regular files and
read or written using the appropriate system calls.

Due to the fact that the disks are much slower than RAM (especially HDD,
but also SSD), caching is used: space for recently read pages is allocated in
RAM in the hope that there will be several hits and you can save on re-
access to the disk. Changed data is also written to disk not immediately, but
after a while in background.

Important point: the data is cached both in the operating system level and in
the PostgreSQL level. The PostgreSQL data cache (called buffer cache) is
located in shared memory so that all processes can access it.

In the case of a failure (for example, power outage), the contents of the
RAM disappear and some data may be lost — which is unacceptable as it
violates the durability property. Therefore, during its operation PostgreSQL
constantly writes the so-called Write-Ahead Log (WAL) to the disk. This
allows to re-perform lost operations and restore data in a consistent state.
We will discuss the buffer cache and the WAL later on.

12

Extensibility

client
application

PostgreSQL

postmaster

background process

backend

OS
cache

shared memory

access
methods

data types

functions,
operators,

triggers

FDW

background
workers

programming
languages

PostgreSQL is designed for extensibility.

An application programmer has the ability to create his own data types
based on existing ones (composite types, ranges, arrays,
enumerations), write stored functions for data processing (including
triggers that fire upon the occurrence of certain events).

If you are familiar with the C programming language, you can write an
extension that adds the necessary functionality and usually can be
installed on the fly without restarting the server. Thanks to this
architecture, a large number of extensions is available that:

- add support for programming languages (in addition to standard SQL,
PL/pgSQL, PL/Perl, PL/Python and PL/Tcl);

- introduce new data types and operators to work with them;

- create new types of indices (access methods) for efficient work with
various data types (in addition to standard B-trees, there is also a hash
index, GiST, SP-GiST, GIN, BRIN, Bloom);

- connect to external systems with the help of foreign data wrappers
(FDW);

- run background processes to perform periodic tasks.

13

Summary

The protocol allows clients to connect to the server,
perform queries and manage transactions

Each client is served by its own backend process

Data is stored in files; access occurs through the operating
system calls

Caching both in local memory (system catalog, parsed queries)
and in shared memory (buffer cache)

