

Architecture
Buffer cache and WAL

15

Copyright
© Postgres Professional, 2023
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov
Translated by Alexander Meleshko
Cover photo by Oleg Bartunov (Phu monastery and Bhrikuti peak, Nepal)

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Buffer cache overview
Replacement algorithm
Write-ahead log
Checkpoint
Processes related to the buffer cache and WAL

3

Buffer array
data page (8 kB)
additional information

Dirty buffers
asynchronous write

Locks in memory
for shared access

Buffer cache

PostgreSQL
postmaster

backend

OS

background processes

shared memory

buffer cache

dirty
buffer

cache

The buffer cache is used to smooth out the difference between the RAM and
disk speed. It consists of an array of buffers that contain data pages and
some additional information (for example, the file name and the position of
the page inside this file).
The page size is usually 8 kB; the size can only be changed when building
PostgreSQL.
Any work with data pages goes through the buffer cache. If any process is
going to work with the page, it first tries to find it in the cache. If the page
does not exist, the process requests the operating system to read this page
and places it in the buffer cache. (Note that the OS can read the page either
from disk or from its own cache.)
After the page gets into the buffer cache, it can be accessed repeatedly
without the overhead of operating system calls.
If a process has changed the data in the page, the corresponding buffer
is called “dirty”. The modified page must be written on disk, but for
performance reasons, the flushing occurs asynchronously and may be
delayed.
The buffer cache, like other shared memory structures, is protected by locks
to control concurrent access. Although locks are implemented effectively,
access to the buffer cache is not nearly as fast as simply accessing RAM.
Therefore, in general, the less data a query reads and modifies, the faster it
will work.

4

Replacement

Least Recently Used
replacement

dirty buffer is
written on disk
another page is read
into the vacant space

PostgreSQL
postmaster

backend

background processes

shared memory

buffer cache

OS
cache

The buffer cache size is usually not so large as to fit the entire database.
It is limited by the available RAM, and also the larger the buffer cache, the
greater the overhead. Therefore, when reading the next page, sooner or
later the buffer cache will run out of space. In this case, page replacement
occurs.
Page replacement selects a page in the cache that has been used less
often than others. If the selected buffer is dirty, the page is written on disk
first to store the changes. Then a new page gets into the buffer.
This is called the Least Recently Used replacement, or LRU. It keeps the
most frequently accessed data in the cache. Such “hot” blocks of data are
not very common, and this approach helps to significantly reduce the
number of requests to OS (and disk operations), provided enough cache
memory.

The	effect	of	buffer	cache	on	query	execution

Create	a	table:

=>	CREATE	TABLE	t(n	integer);

CREATE	TABLE

Populate	it	with	rows:

=>	INSERT	INTO	t	SELECT	id	FROM	generate_series(1,100000)	AS	id;

INSERT	0	100000

=>	VACUUM	ANALYZE	t;

VACUUM

The	shared_buffers	parameter	indicates	the	buffer	cache	size:

=>	SHOW	shared_buffers;

	shared_buffers	

	128MB
(1	row)

The	default	value	is	too	low.	In	the	real	world,	you	should	increase	it	immediately	after	server	installation	(it	will	apply
after	a	restart).

Restart	the	server	to	wipe	the	cache	clean.

student$	sudo	pg_ctlcluster	15	main	restart

student$	psql	

Now,	let’s	compare	the	behaviour	of	the	system	as	we	run	a	query	once,	and	then	the	same	query	again.	Query	execution
plans	are	not	the	topic	of	this	course,	but	we	will	peek	into	them	every	now	and	again.	The	EXPLAIN	ANALYZE	command
used	below	will	execute	the	query	as	well	as	display	the	execution	plan	and	some	extra	details:

=>	EXPLAIN	(analyze,	buffers,	costs	off,	timing	off)
SELECT	*	FROM	t;

																	QUERY	PLAN																	
--
	Seq	Scan	on	t	(actual	rows=100000	loops=1)
			Buffers:	shared	read=443
	Planning:
			Buffers:	shared	hit=12	read=7	dirtied=1
	Planning	Time:	0.171	ms
	Execution	Time:	11.163	ms
(6	rows)

The	“Buffers:	shared”	line	shows	the	buffer	utilization.

read	is	the	number	of	buffers	that	pages	from	disk	were	written	into.

=>	EXPLAIN	(analyze,	buffers,	costs	off,	timing	off)
SELECT	*	FROM	t;

																	QUERY	PLAN																	
--
	Seq	Scan	on	t	(actual	rows=100000	loops=1)
			Buffers:	shared	hit=443
	Planning	Time:	0.027	ms
	Execution	Time:	7.950	ms
(4	rows)

hit	is	the	number	of	buffers	that	contained	any	of	the	queried	pages.

Note	that	on	the	second	query	execution,	not	only	the	execution	time	went	down,	but	the	planning	time	too	(because
system	catalog	pages	are	cached	as	well).

6

Write-ahead log (WAL)

Problem: when a crash occurs, data from RAM that is not
written on disk is lost
WAL

a stream of records of the actions being performed; can be used to
re-trace the steps lost during the crash
the records are stored on disk before the actual changes are

The log tracks changes to
pages in tables, indexes and other objects
transaction status (clog)

The log does not track changes to
temporary and unlogged tables

Having a buffer cache (and other RAM buffers) increases performance at
the cost of reliability. When a crash happens, all buffer cache content is lost.
If the crash occurs on the OS or hardware level, the content of OS buffers
will also be lost (the OS may have its own failsafes for this).
To ensure reliability, PostgreSQL uses the Write-ahead log. When
performing any operation, the log records minimum necessary information
about the operation to be able to perform it again. The record must be
written into non-volatile memory before the data modified by the operation is
(that's why it's called Write-ahead log).
WAL files are located in the PGDATA/pg_wal directory.
All objects that are being worked on in RAM have their operations logged.
These include tables, indexes and other objects, and transaction statuses.
Operations with temporary tables (tables which exist only during the scope
of a session or a transaction and are only available to the user who has
created them) aren't logged. You can also set a regular table to be explicitly
unlogged. The table will be quicker to work with, but will be wiped on crash.

https://postgrespro.com/docs/postgresql/15/wal-intro

Write-ahead	log	(WAL)

You	can	imagine	WAL	as	a	continuous	stream	of	records.	Each	record	has	a	64-bit	Log	Sequence	Number,	or	LSN	—	an
offset	from	the	beginning	of	the	log,	in	bytes.

The	current	log	position	can	be	seen	with	pg_current_wal_lsn:

=>	SELECT	pg_current_wal_lsn();

	pg_current_wal_lsn	

	0/47C6890
(1	row)

The	position	is	displayed	as	two	32-bit	numbers	separated	by	a	slash.	Let’s	save	it	for	future	reference.

Now	let’s	perform	a	bunch	of	operations	and	see	what’s	changed.

=>	UPDATE	t	SET	n	=	100001	WHERE	n	=	1;

UPDATE	1

=>	SELECT	pg_current_wal_lsn();

	pg_current_wal_lsn	

	0/47C98A8
(1	row)

It’s	not	the	absolute	values	we’re	interested	in,	but	the	distance	between	them,	as	it	shows	the	size	of	generated	log
entries	in	bytes:

=>	SELECT	'0/47C98A8'::pg_lsn	-	'0/47C6890'::pg_lsn	AS	bytes;

	bytes	

	12312
(1	row)

The	log	is	stored	in	files	in	a	separate	catalog	(PGDATA/pg_wal).	By	default,	the	files	are	16	MB	each,	but	you	can	change
that	during	cluster	initialization.

In	addition	to	browsing	the	files	by	means	of	the	OS,	you	can	also	display	them	by	the	following	command:

=>	SELECT	*	FROM	pg_ls_waldir()	ORDER	BY	name;

											name											|			size			|						modification						
--------------------------+----------+------------------------
	000000010000000000000004	|	16777216	|	2023-05-04	19:45:52+03
	000000010000000000000005	|	16777216	|	2023-05-04	19:45:41+03
	000000010000000000000006	|	16777216	|	2023-05-04	19:45:42+03
(3	rows)

8

Checkpoint

Regular flushing of all dirty buffers to disk
ensures that all data changes before the checkpoint get to the disk
limits the size of the log required for recovery

Crash recovery
starts from the last checkpoint
WAL records are replayed one-by-one to restore data consistency

xid
checkpoint checkpoint crash

required WAL files

recovery
start

When PostgreSQL crashes, it enters the recovery mode on the next start.
The data on disk at this point is inconsistent. Changes to hot pages were in
the buffer cache and are now lost, while some of the later changes have
been flushed to disk already.
To restore consistency, PostgreSQL reads the WAL log and sequentially
reads the records, replaying the changes that did not make it to the disk.
This way, the state of all transactions at the time of the crash is restored.
Then, any transactions that haven't been logged as committed are aborted.
However, logging all changes throughout a server's lifetime and replaying
everything from day 1 after each crash is impractical, if not impossible.
Instead, PostgreSQL uses checkpoints. Every now and then, it forces all
dirty buffers to disk (including clog buffers with transaction statuses) to
ensure that all data changes up to this point are safe in non-volatile memory.
This state is called a checkpoint. The “point” in checkpoint is the moment in
time when the flushing of all data to disk is started. However, you only have
a valid checkpoint when the flushing is complete, and it may take a bit of
time.
Now, when a crash occurs, you can start recovery from the closest
checkpoint. Consequently, it's sufficient to store WAL files only as far back
as the last checkpoint goes.

WAL	and	crash	recovery

So	far,	current	page	changes	are	in	the	buffer	cache,	but	not	on	disk.	On	a	regular	shutdown,	the	server	will	perform	a
checkpoint	and	write	all	dirty	pages	to	disk.	Instead,	let’s	simulate	a	crash	by	sending	the	following	command	to
postmaster:

student$	sudo	head	-n	1	/var/lib/postgresql/15/main/postmaster.pid

7103

student$	sudo	kill	-9	7103

When	the	server	comes	back	up,	it	should	begin	recovery:

student$	sudo	pg_ctlcluster	15	main	start

student$	psql	

=>	SELECT	min(n),	max(n)	FROM	t;

	min	|		max			
-----+--------
			2	|	100001
(1	row)

All	the	changes	have	been	recovered.

After	performing	a	checkpoint,	PostgreSQL	automatically	deletes	log	files	that	are	no	longer	necessary	for	recovery.

10

Performance

Synchronous mode
write on commit
backend

Asynchronous mode
write in background
walwriter

PostgreSQL

backend

postmaster

checkpointerwalwriter

shared memory

buffer cacheclogWAL

OS

WAL

transaction
status

fsync

cache

The WAL approach is faster than working directly with disk without a buffer
cache. Firstly, a WAL record is smaller than an entire page of data.
Secondly, the log is written sequentially (and usually not read until a crash
occurs), which is better for basic hard disk drives.
Various configurations also affect WAL performance. If the records are
stored to disk immediately (synchronous mode), this guarantees that the
committed operation will get to disk one way or the other. But recording to
disk is expensive, and forces the committing process to wait in line. To
prevent log entries from being “stuck” in the OS cache, PostgreSQL calls
the fsync function, which forces the data into non-volatile storage.
There is also asynchronous mode, which has a background process
(walwriter) constantly sending WAL records to disk with a certain delay. It's
more efficient at the cost of some reliability, but still ensures consistency
after crash recovery.
In fact, both modes work together. Long transaction log records are written
asynchronously (to free up WAL buffers). And if a pages is getting flushed to
disk and the corresponding log record isn't there yet, it will immediately be
recorded in synchronous mode.

11

Main processes

WAL Writer
Checkpointer

flush all dirty buffers

Background writer
flush some dirty buffers

Backend
flush the replaced dirty buffer

PostgreSQL

backend

postmaster

checkpointer bgwriterwalwriter

shared memory

buffer cacheclogWAL

OS
cache

Let's take a step back and look at the processes that maintain the buffer
cache and the WAL.
First, there is walwriter. This process writes WAL records to disk in
asynchronous mode. In synchronous mode, this job is handled by the
process that commits the transaction.
Second, checkpointer, the checkpoint process. It periodically flushes all dirty
buffers to disk.
Third, bgwriter (or background writer). It operates similarly to checkpointer,
but it only flushes some of the dirty buffers, prioritizing the ones which are at
a high risk of being replaced soon. It frees up buffer space so that when a
background worker selects a buffer to put a new page in, it doesn't have to
flush the old contents of the buffer to disk itself.
Fourth, there are backends that put data into the buffer cache.
Whenever a buffer being replaced is still dirty (despite the efforts of
checkpointer and bgwriter), the background process will flush it to disk.

12

Log levels

Minimal
guarantees crash recovery

Replica (default)
backup
replication: transfer and replay of the log on another server

Logical
logical replication: information about adding, changing,
and deleting table rows

WAL was developed as a data protection tool to mitigate the risk of data loss
due to crashes.
However, the WAL mechanism turned out to have other applications, if its
records are supplemented with additional info.
The amount of data stored in each WAL record is controlled by the wal_level
parameter.
- The minimal level is sufficient to recover after a crash, and nothing else.
- The replica level stores additional information that allows it to be used for
backup (see the Backup module) and replication (see the Replication
module). During replication, WAL records are streamed to the replica and
applied there, creating an exact copy of the original server.
- At the logical level, information is added to the log that allows decoding
“physical” log entries and forming “logical” records of adding, changing and
deleting table rows. This is logical replication (also discussed in the
“Replication” module).

13

Takeaways

Buffer cache increases performance by
reducing the number of disk operations
WAL ensures reliability
WAL size is kept in check by checkpoints
WAL has multiple uses

crash recovery
backup
replication

14

Practice

1. Using the OS tools, find the processes responsible for the buffer
cache and the WAL.

2. Stop PostgreSQL in fast mode; start it again.
Check the server message log.

3. Now stop PostgreSQL in immediate mode; start it again.
Check the server message log and compare
with the previous one.

Task 2. To stop in fast mode, use the command
pg_ctlcluster 15 main stop

This makes the server abort all open connections and perform a checkpoint
before shutting down, so that all data is flushed to disk and consistent. In
this mode, the shutdown may take some time, but on startup the server will
be good to go right away.

Task 3. To stop in immediate mode, use the command
pg_ctlcluster 15 main stop -m immediate --skip-systemctl-redirect

The server will also abort open connections, but will not perform a
checkpoint. Data on disk will be inconsistent, like after a crash. In this mode,
the server shuts down quickly, but will enter recovery mode on startup and
will use the WAL to reach consistency.

If your PostgreSQL is compiled from source code, the fast stop command
will be
pg_ctl stop

and the immediate stop command will be
pg_ctl stop -m immediate

Task	1.	Operating	system	processes

First,	we	need	to	get	the	postmaster	process	ID.	It	is	stored	in	the	first	line	of	the	postmaster.pid	file.	The	file	is	located	in	the	data	directory	and	is	created	each	time	the	server	starts.

student$	sudo	cat	/var/lib/postgresql/15/main/postmaster.pid

17295
/var/lib/postgresql/15/main
1683219035
5432
/var/run/postgresql
localhost
			655372								62
ready			

Check	all	the	child	processes	of	postmaster:

student$	sudo	ps	-o	pid,command	--ppid	17295

				PID	COMMAND
		17296	postgres:	15/main:	checkpointer	
		17297	postgres:	15/main:	background	writer	
		17299	postgres:	15/main:	walwriter	
		17301	postgres:	15/main:	logical	replication	launcher	
		19390	postgres:	15/main:	autovacuum	launcher	

Processes	that	support	the	buffer	cache	and	WAL	include:

checkpointer;
background	writer;
walwriter.

Task	2.	Stopping	the	server	in	the	fast	mode

In	order	to	easily	separate	new	log	messages	from	old	ones,	we	will	simply	delete	the	log	file	before	we	start	the	server.	Of	course,	this	is	not	a	good	idea	to	do	in	production.

student$	sudo	rm	/var/log/postgresql/postgresql-15-main.log

student$	sudo	pg_ctlcluster	15	main	restart

Server	message	log:

student$	cat	/var/log/postgresql/postgresql-15-main.log

2023-05-04	19:51:01.222	MSK	[19615]	LOG:		starting	PostgreSQL	15.1	(Ubuntu	15.1-1.pgdg22.04+1)	on	x86_64-pc-linux-gnu,	compiled	by	gcc	(Ubuntu	11.3.0-1ubuntu1~22.04)	11.3.0,	64-bit
2023-05-04	19:51:01.223	MSK	[19615]	LOG:		listening	on	IPv4	address	"127.0.0.1",	port	5432
2023-05-04	19:51:01.225	MSK	[19615]	LOG:		listening	on	Unix	socket	"/var/run/postgresql/.s.PGSQL.5432"
2023-05-04	19:51:01.232	MSK	[19618]	LOG:		database	system	was	shut	down	at	2023-05-04	19:51:00	MSK
2023-05-04	19:51:01.239	MSK	[19615]	LOG:		database	system	is	ready	to	accept	connections

Task	3.	Stopping	the	server	in	the	immediate	mode

student$	sudo	rm	/var/log/postgresql/postgresql-15-main.log

student$	sudo	pg_ctlcluster	15	main	stop	-m	immediate	--skip-systemctl-redirect

student$	sudo	pg_ctlcluster	15	main	start

Server	message	log:

student$	cat	/var/log/postgresql/postgresql-15-main.log

2023-05-04	19:51:04.153	MSK	[19732]	LOG:		starting	PostgreSQL	15.1	(Ubuntu	15.1-1.pgdg22.04+1)	on	x86_64-pc-linux-gnu,	compiled	by	gcc	(Ubuntu	11.3.0-1ubuntu1~22.04)	11.3.0,	64-bit
2023-05-04	19:51:04.154	MSK	[19732]	LOG:		listening	on	IPv4	address	"127.0.0.1",	port	5432
2023-05-04	19:51:04.155	MSK	[19732]	LOG:		listening	on	Unix	socket	"/var/run/postgresql/.s.PGSQL.5432"
2023-05-04	19:51:04.162	MSK	[19735]	LOG:		database	system	was	interrupted;	last	known	up	at	2023-05-04	19:51:01	MSK
2023-05-04	19:51:04.993	MSK	[19735]	LOG:		database	system	was	not	properly	shut	down;	automatic	recovery	in	progress
2023-05-04	19:51:04.996	MSK	[19735]	LOG:		invalid	record	length	at	0/12A43668:	wanted	24,	got	0
2023-05-04	19:51:04.996	MSK	[19735]	LOG:		redo	is	not	required
2023-05-04	19:51:04.999	MSK	[19733]	LOG:		checkpoint	starting:	end-of-recovery	immediate	wait
2023-05-04	19:51:05.007	MSK	[19733]	LOG:		checkpoint	complete:	wrote	3	buffers	(0.0%);	0	WAL	file(s)	added,	0	removed,	0	recycled;	write=0.003	s,	sync=0.001	s,	total=0.009	s;	sync	files=2,	longest=0.001	s,	average=0.001	s;	distance=0	kB,	estimate=0	kB
2023-05-04	19:51:05.011	MSK	[19732]	LOG:		database	system	is	ready	to	accept	connections

Before	getting	ready	to	receive	queries,	the	system	performed	an	automatic	recovery	(automatic	recovery	in	progress).

