

Administrative tasks
Monitoring

15

Copyright
© Postgres Professional, 2023
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov
Translated by Alexander Meleshko
Cover photo by Oleg Bartunov (Phu monastery and Bhrikuti peak, Nepal)

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

OS tools
Database statistics
Server message log
External monitoring systems

3

OS tools

Processes
ps (grep postgres)
update_process_title parameter for updating the status of processes

Resource usage
iostat, vmstat, sar, top...

Disk space
df, du, quota...

PostgreSQL runs on an operating system and to a certain extent depends
on its configuration.

Unix provides multiple state and performance monitoring tools.
In particular, you can monitor the processes belonging to PostgreSQL.
The server parameter update_process_title (on by default) displays the state
of each process next to its title, making it even more convenient.
Various tools are available to monitor the use of system resources (CPU,
RAM, disks): iostat, vmstat, sar, top, etc.
Disk space monitoring is also necessary. The space occupied by the
database on disk can be viewed both from the database itself (see the Data
Organization module) and from the OS (with the du command). The amount
of disk space available is also displayed with the df command in the OS.
If disk quotas are used, they must also be taken into account.
The tools and approaches to monitoring differ significantly between various
OS and file systems, so we will not discuss them in detail.

https://postgrespro.com/docs/postgresql/15/monitoring-ps
https://postgrespro.com/docs/postgresql/15/diskusage

4

Database statistics

Statistics collection
Ongoing system activities
Command execution monitoring
Extensions

There are two primary sources of information about the state of the system.
The first one is statistical information collected by PostgreSQL and stored
inside the database.

5

Statistiсs collection

Statistics collection settings
statistics parameter

table and index access track_counts
(touched rows) on by default

needed for vacuuming

page accesses track_io_timing
off by default

user function calls track_functions
off by default

In addition to tracking ongoing activities, PostgreSQL also collects some
statistics.
The amount of information collected is controlled by several server
parameters, since the more information is collected, the greater the
overhead.
https://postgrespro.com/docs/postgresql/15/monitoring-stats

6

server
process
server

process

Architecture (pre-15)

backend stats collector

transaction
statistics

aggregated
statistics

by transaction

statistics
snapshot

twice a second

on first
access

by transaction
PGDATA/pg_stat_tmp/

PGDATA/pg_stat/

on shutdown

Prior to PostgreSQL 15, statistics collection looked like this.
Backends collect statistics from executed transactions. The stats collector
process collects statistics from all backends and aggregates it. Once every
half a second, the collector dumps statistics to temporary files in the
PGDATA/pg_stat_tmp directory. (Therefore, moving this directory to an in-
memory file system can improve overall performance.)
When a backend requests statistics data (via views or functions), it's served
a statistics snapshot, the most recent version of statistics provided by the
collector. Unless explicitly requested, the process will not read new
snapshots until the end of the transaction to ensure consistency.
Due to latency, the worker process will not always have the latest statistics,
but it is seldom necessary.
On server shutdown, the collector dumps statistics data into permanent files
inside the PGDATA/pg_stat catalog. When the server starts up again, it can
keep using the data. Statistics can be reset manually by the administrator,
and always reset after a crash.

7

shared memory
server

process
server

process

Architecture (15+)

backend

transaction
statistics

by transaction

statistics

on shutdown

stats_fetch_consistency
= none, cache, snapshot

PGDATA/pg_stat/

aggregated
statistics

In PostgreSQL 15 a separate stats collector process was removed. Instead,
backends write collected statisitcs right into the shared memory of the
server.
When a backend requests statistics data, it either re-reads data from the
shared memory (if the stats_fetch_consistency parameter is set to none),
or caches the received data until the current transaction ends (cache),
or fetches and caches a snapshot of all statistics data (snapshot).

On server shutdown, the server still flushes statistics data into permanent
files inside the PGDATA/pg_stat directory.

Database	statistics

=>	CREATE	DATABASE	admin_monitoring;

CREATE	DATABASE

=>	\c	admin_monitoring

You	are	now	connected	to	database	"admin_monitoring"	as	user	"student".

Enable	collection	of	input-output	statistics	first:

=>	ALTER	SYSTEM	SET	track_io_timing=on;

ALTER	SYSTEM

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

Monitoring	server	activity	only	makes	sense	if	there	is	any	activity	to	be	monitored	in	the	first	place.	We	can	imitate	load	with	pgbench,
a	stock	benchmarking	utility.

First,	it	creates	a	number	of	tables	and	fills	them	with	data.

student$	pgbench	-i	admin_monitoring

dropping	old	tables...
NOTICE:		table	"pgbench_accounts"	does	not	exist,	skipping
NOTICE:		table	"pgbench_branches"	does	not	exist,	skipping
NOTICE:		table	"pgbench_history"	does	not	exist,	skipping
NOTICE:		table	"pgbench_tellers"	does	not	exist,	skipping
creating	tables...
generating	data	(client-side)...
100000	of	100000	tuples	(100%)	done	(elapsed	0.10	s,	remaining	0.00	s)
vacuuming...
creating	primary	keys...
done	in	0.24	s	(drop	tables	0.00	s,	create	tables	0.01	s,	client-side	generate	0.13	s,	vacuum	0.04	s,	primary	keys	0.06	s).

Reset	any	previously	collected	statistics:

=>	SELECT	pg_stat_reset();

	pg_stat_reset	

(1	row)

=>	SELECT	pg_stat_reset_shared('bgwriter');

	pg_stat_reset_shared	

(1	row)

Start	the	TPC-B	test	and	let	it	run	for	a	few	seconds:

student$	pgbench	-T	10	admin_monitoring

pgbench	(15.1	(Ubuntu	15.1-1.pgdg22.04+1))
starting	vacuum...end.
transaction	type:	<builtin:	TPC-B	(sort	of)>
scaling	factor:	1
query	mode:	simple
number	of	clients:	1
number	of	threads:	1
maximum	number	of	tries:	1
duration:	10	s
number	of	transactions	actually	processed:	6447
number	of	failed	transactions:	0	(0.000%)
latency	average	=	1.551	ms
initial	connection	time	=	2.465	ms
tps	=	644.773375	(without	initial	connection	time)

Now,	let’s	check	the	statistics	on	table	touches	in	terms	of	rows:

=>	SELECT	*
FROM	pg_stat_all_tables
WHERE	relid	=	'pgbench_accounts'::regclass	\gx

-[RECORD	1]-------+-----------------
relid															|	16448
schemaname										|	public
relname													|	pgbench_accounts
seq_scan												|	0
seq_tup_read								|	0
idx_scan												|	12894
idx_tup_fetch							|	12894
n_tup_ins											|	0
n_tup_upd											|	6447
n_tup_del											|	0
n_tup_hot_upd							|	4822
n_live_tup										|	0
n_dead_tup										|	3101
n_mod_since_analyze	|	6447
n_ins_since_vacuum		|	0
last_vacuum									|	
last_autovacuum					|	
last_analyze								|	
last_autoanalyze				|	
vacuum_count								|	0
autovacuum_count				|	0
analyze_count							|	0
autoanalyze_count			|	0

And	in	terms	of	pages:

=>	SELECT	*
FROM	pg_statio_all_tables
WHERE	relid	=	'pgbench_accounts'::regclass	\gx

-[RECORD	1]---+-----------------
relid											|	16448
schemaname						|	public
relname									|	pgbench_accounts
heap_blks_read		|	26
heap_blks_hit			|	32433
idx_blks_read			|	276
idx_blks_hit				|	28845
toast_blks_read	|	
toast_blks_hit		|	
tidx_blks_read		|	
tidx_blks_hit			|	

There	are	similar	views	for	indexes:

=>	SELECT	*
FROM	pg_stat_all_indexes
WHERE	relid	=	'pgbench_accounts'::regclass	\gx

-[RECORD	1]-+----------------------
relid									|	16448
indexrelid				|	16462
schemaname				|	public
relname							|	pgbench_accounts
indexrelname		|	pgbench_accounts_pkey
idx_scan						|	12894
idx_tup_read		|	14601
idx_tup_fetch	|	12894

=>	SELECT	*
FROM	pg_statio_all_indexes
WHERE	relid	=	'pgbench_accounts'::regclass	\gx

-[RECORD	1]-+----------------------
relid									|	16448
indexrelid				|	16462
schemaname				|	public
relname							|	pgbench_accounts
indexrelname		|	pgbench_accounts_pkey
idx_blks_read	|	276
idx_blks_hit		|	28845

These	views	can	be	used	to	pinpoint	unused	indexes.	Such	indexes	not	only	occupy	useful	space	on	the	disk,	but	also	waste	resources
on	updates	every	time	data	in	the	table	changes.

There	are	also	views	for	user-defined	and	system	objects	(all,	user,	sys),	current	transaction	statistics	(pg_stat_xact*),	and	more.

You	can	view	global	statistics	across	the	whole	database:

=>	SELECT	*
FROM	pg_stat_database
WHERE	datname	=	'admin_monitoring'	\gx

-[RECORD	1]------------+------------------------------
datid																				|	16441
datname																		|	admin_monitoring
numbackends														|	1
xact_commit														|	6466
xact_rollback												|	0
blks_read																|	348
blks_hit																	|	108423
tup_returned													|	88165
tup_fetched														|	14016
tup_inserted													|	6447
tup_updated														|	19342
tup_deleted														|	0
conflicts																|	0
temp_files															|	0
temp_bytes															|	0
deadlocks																|	0
checksum_failures								|	
checksum_last_failure				|	
blk_read_time												|	7.113
blk_write_time											|	0
session_time													|	21098.084
active_time														|	8591.417
idle_in_transaction_time	|	1073.679
sessions																	|	2
sessions_abandoned							|	0
sessions_fatal											|	0
sessions_killed										|	0
stats_reset														|	2023-05-04	19:46:20.681406+03

It	provides	a	lot	of	data	on	the	number	of	deadlocks	occurred,	committed	and	cancelled	transactions,	utilization	of	temporary	files,	and
checksum	errors.

PostgreSQL	14	also	added	statistics	on	user	sessions.

There	are	separate	statistics	for	background	writer	and	checkpointer,	valuable	as	they	are	for	monitoring:

=>	CHECKPOINT;

CHECKPOINT

=>	SELECT	*	FROM	pg_stat_bgwriter	\gx

-[RECORD	1]---------+------------------------------
checkpoints_timed					|	0
checkpoints_req							|	1
checkpoint_write_time	|	74
checkpoint_sync_time		|	112
buffers_checkpoint				|	2921
buffers_clean									|	0
maxwritten_clean						|	0
buffers_backend							|	1748
buffers_backend_fsync	|	0
buffers_alloc									|	348
stats_reset											|	2023-05-04	19:46:20.726495+03

buffers_clean	—	number	of	pages	written	by	background	writer
buffers_checkpoint	—	number	of	pages	written	with	checkpoints
buffers_backend	—	number	of	pages	written	by	backends

9

Ongoing activities

Configuration
statistics parameter

current activities track_activities
and backends’ and background on by default
processes’ waits

The current activities of all backends and background processes are
displayed in the pg_stat_activity view. We will focus on it more in the demo.
This view depends on the track_activities parameter (enabled by default).

Current	activities

Let’s	imitate	a	scenario	when	one	process	blocks	another,	and	then	figure	it	out	using	system	views.

Create	a	table	with	one	row:

=>	CREATE	TABLE	t(n	integer);

CREATE	TABLE

=>	INSERT	INTO	t	VALUES(42);

INSERT	0	1

Start	two	sessions,	one	of	which	changes	the	table	and	does	nothing	more:

student$	psql	-d	admin_monitoring

=>	BEGIN;

BEGIN

=>	UPDATE	t	SET	n	=	n	+	1;

UPDATE	1

And	the	other	tries	to	change	the	same	row	and	gets	blocked:

student$	psql	-d	admin_monitoring

=>	UPDATE	t	SET	n	=	n	+	2;

View	data	about	backend	processes:

=>	SELECT	pid,	query,	state,	wait_event,	wait_event_type,	pg_blocking_pids(pid)
FROM	pg_stat_activity
WHERE	backend_type	=	'client	backend'	\gx

-[RECORD	1]----+---
pid														|	11305
query												|	UPDATE	t	SET	n	=	n	+	1;
state												|	idle	in	transaction
wait_event							|	ClientRead
wait_event_type		|	Client
pg_blocking_pids	|	{}
-[RECORD	2]----+---
pid														|	10496
query												|	SELECT	pid,	query,	state,	wait_event,	wait_event_type,	pg_blocking_pids(pid)+
																	|	FROM	pg_stat_activity																																																							+
																	|	WHERE	backend_type	=	'client	backend'	
state												|	active
wait_event							|	
wait_event_type		|	
pg_blocking_pids	|	{}
-[RECORD	3]----+---
pid														|	11382
query												|	UPDATE	t	SET	n	=	n	+	2;
state												|	active
wait_event							|	transactionid
wait_event_type		|	Lock
pg_blocking_pids	|	{11305}

The	state	“idle	in	transaction”	means	that	the	session	has	started	a	transaction,	but	isn’t	doing	anything	at	the	moment,
and	the	transaction	isn’t	closed.	This	could	become	a	problem	if	the	situation	comes	up	regularly	(for	example,	because	of
poor	application	code	or	driver	errors),	because	an	open	session	holds	a	data	snapshot	and	prevents	vacuuming.

The	administrator	has	a	parameter	idle_in_transaction_session_timeout	at	their	disposal	to	force	sessions	to	close	after
they	are	idle	inside	a	transaction	for	a	certain	period	of	time.	And	starting	from	PostgreSQL	14,	a	new
idle_session_timeout	parameter	allows	to	terminate	sessions	that	are	idle	between	transactions.

You	can	also	terminate	a	session	manually.	First,	you	need	the	blocked	process	ID.	The	function	pg_blocking_pids	can	help
you	with	that:

=>	SELECT	pid	AS	blocked_pid
FROM	pg_stat_activity
WHERE	backend_type	=	'client	backend'
AND	cardinality(pg_blocking_pids(pid))	>	0;

	blocked_pid	

							11382
(1	row)

You	don’t	need	pg_blocking_pids	to	find	the	blocking	process.	Instead,	you	can	access	the	locks	table	directly.	It	will	return
two	rows	in	this	case:	one	that	has	been	granted	the	lock	and	another	that	has	not	been.

=>	SELECT	locktype,	transactionid,	pid,	mode,	granted
FROM	pg_locks
WHERE	transactionid	IN	(
		SELECT	transactionid	FROM	pg_locks	WHERE	pid	=	11382	AND	NOT	granted
);

			locktype				|	transactionid	|		pid		|					mode						|	granted	
---------------+---------------+-------+---------------+---------
	transactionid	|										7244	|	11382	|	ShareLock					|	f
	transactionid	|										7244	|	11305	|	ExclusiveLock	|	t
(2	rows)

Generally,	you	have	to	keep	the	lock	type	in	mind.

A	process	can	be	cancelled	with	the	pg_cancel_backend	function.	The	transaction	is	idle	in	our	case,	so	we	can	use	the
pg_terminate_backend	command	to	terminate	it:

=>	SELECT	pg_terminate_backend(b.pid)
FROM	unnest(pg_blocking_pids(11382))	AS	b(pid);

	pg_terminate_backend	

	t
(1	row)

The	unnest	function	is	necessary	because	pg_blocking_pids	returns	an	array	of	process	IDs	that	block	the	specified
process.	There	is	only	one	in	our	examples,	but	there	can	be	multiple.

Locks	are	discussed	in	more	detail	in	the	DBA2	course.

Check	the	backend	processes.

=>	SELECT	pid,	query,	state,	wait_event,	wait_event_type
FROM	pg_stat_activity
WHERE	backend_type	=	'client	backend'	\gx

-[RECORD	1]---+--
pid													|	10496
query											|	SELECT	pid,	query,	state,	wait_event,	wait_event_type+
																|	FROM	pg_stat_activity																																+
																|	WHERE	backend_type	=	'client	backend'	
state											|	active
wait_event						|	
wait_event_type	|	
-[RECORD	2]---+--
pid													|	11382
query											|	UPDATE	t	SET	n	=	n	+	2;
state											|	idle
wait_event						|	ClientRead
wait_event_type	|	Client

Only	two	remain,	and	the	blocked	one	has	completed	its	transaction	successfully.

The	pg_stat_activity	view	shows	not	only	the	information	about	backend	processes,	but	also	about	the	service	processes
running	on	the	instance:

=>	SELECT	pid,	backend_type,	backend_start,	state
FROM	pg_stat_activity;

		pid		|									backend_type									|									backend_start									|	state		
-------+------------------------------+-------------------------------+--------
		7575	|	logical	replication	launcher	|	2023-05-04	19:45:53.389807+03	|	
		7574	|	autovacuum	launcher										|	2023-05-04	19:45:53.389646+03	|	
	10496	|	client	backend															|	2023-05-04	19:46:20.119914+03	|	active
	11382	|	client	backend															|	2023-05-04	19:46:33.158104+03	|	idle
		7571	|	background	writer												|	2023-05-04	19:45:52.832352+03	|	
		7570	|	checkpointer																	|	2023-05-04	19:45:52.832923+03	|	
		7573	|	walwriter																				|	2023-05-04	19:45:53.39312+03		|	
(7	rows)

Compare	that	to	what	the	OS	sees:

student$	sudo	head	-n	1	/var/lib/postgresql/15/main/postmaster.pid

7569

student$	sudo	ps	-o	pid,command	--ppid	7569

				PID	COMMAND
			7570	postgres:	15/main:	checkpointer	
			7571	postgres:	15/main:	background	writer	
			7573	postgres:	15/main:	walwriter	
			7574	postgres:	15/main:	autovacuum	launcher	
			7575	postgres:	15/main:	logical	replication	launcher	
		10496	postgres:	15/main:	student	admin_monitoring	[local]	idle
		11382	postgres:	15/main:	student	admin_monitoring	[local]	idle

11

Command execution

Views for monitoring command executions
command execution

ANALYZE pg_stat_progress_analyze

CREATE INDEX, REINDEX pg_stat_progress_create_index

VACUUM pg_stat_progress_vacuum
including autovacuuming

CLUSTER, VACUUM FULL pg_stat_progress_cluster

Create base backup pg_stat_progress_basebackup

COPY pg_stat_progress_copy

You can monitor the progress of some potentially long-running commands
using the corresponding views.
The structures of the views are described in the documentation:
https://postgrespro.com/docs/postgresql/15/progress-reporting
Backup is discussed in the Backup module.

12

Additional statistics

Stock extensions
pg_stat_statements query statistics
pgstattuple row versions statistics
pg_buffercache buffer cache status

Other extensions
pg_wait_sampling statistics for waits

pg_stat_kcache CPU and I/O statistics
pg_qualstats predicate statistics
…

There are extensions, both stock and third-party, that enable the collection
of additional statistics.
For example, the pg_stat_statements extension collects information
about queries executed by the system, pg_buffercache provides tools for
monitoring the buffer cache, etc.

13

Server message log

Log record configuration
Log file rotation
Log analysis

The other primary source of information about the state of the server is the
message log.

14

Message receiver (log_destination = list)
stderr error stream
csvlog CSV format
jsonlog JSON format
syslog the syslog daemon
eventlog Windows event log

Message collector (logging_collector = on)
can provide additional info
never loses messages (unlike syslog)
writes stderr and csvlog to the log_directory/log_filename file

Server message log

requires message collector

The server log can be output in various formats and forwarded to various
destinations. The format and the destination are determined primarily by the
log_destination parameter (you can list multiple destinations separated by a
comma).
The stderr flag (on by default) streams message log errors into the standard
error log as plain text. The syslog flag tells the log to forward messages to
the syslog daemon (for Unix systems), and the eventlog flag does the same
for the Windows event log.
The message collector is an auxiliary process that collects additional
information from all PostgreSQL processes to supplement the basic log
messages. It is designed to keep track of every message, therefore it can
become the bottleneck in high-load environments.
The message collector is switched on and off by the logging_collector flag.
When stderr is on, the log writes into the file defined by the log_filename
parameter, which is located in the directory defined by the log_directory
parameter.
When the collector is on and csvlog is selected as a destination, the log will
also write output into a CSV file log_filename.csv. Similarly, with jsonlog
option log will get into a JSON file log_filename.json.

15

What to log

Settings
information parameter

level of messages log_min_messages
long command execution time log_min_duration_statement
command execution time log_duration
application name application_name
checkpoints log_checkpoints
connections and disconnections log_(dis)connections
long lock waits log_lock_waits
command execution outputs log_statement
temporary files usage log_temp_files
etc.

A lot of useful information can be output to the server message log. By
default, almost all output is disabled so as not to turn logging into the
bottleneck for the disk subsystem. The administrator must decide what
information is important, provide the necessary disk space to store it, and
evaluate the impact on the overall system performance.

16

Log file rotation

By the message collector
statistics parameter
file name mask log_filename
rotation time, minutes log_rotation_age
rotation file size, kB log_rotation_size
allow to rewrite files log_truncate_on_rotation = on

different file name masks and rotation times allow for different
combinations:

'postgresql-%H.log', '1h' 24 files a day
'postgresql-%a.log', '1d' 7 files a week

External tools
logrotate system utility

If all the log output goes into a single file, sooner or later the file will grow to
an unmanageable size, making administration and analysis highly
inconvenient. Therefore, a log rotation scheme is usually employed.
https://postgrespro.com/docs/postgresql/15/logfile-maintenance
The message collector has its own rotation tools. Some of the parameters
that configure them are listed on the slide.
The log_filename parameter can specify not just a name, but a file name
mask using designated date and time characters.
The log_rotation_age parameter determines how log a file is used before the
log switches to a new one (and log_rotation_size is the file size at which to
switch to the next one).
The log_truncate_on_rotation flag determines if the log should overwrite
existing files or not.
Different rotation schemes can be defined by using various file name mask
and switch time combinations.
https://postgrespro.com/docs/postgresql/15/runtime-config-logging.html#RU
NTIME-CONFIG-LOGGING-WHERE
Alternatively, external rotation management tools can be used, such as
logrotate from the Ubuntu package (it's configured through the
/etc/logrotate.d/postgresql-common file).

17

Log analysis

OS tools
grep, awk...

Special analysis tools
pgBadger — requires a certain log configuration

There are different ways to analyze logs.
You can search for certain information using OS tools or specially designed
scripts.
The de facto standard for log analysis is the PgBadger application
(https://github.com/dalibo/pgbadger), but it imposes certain restrictions on
the contents of the log. In particular, only messages in English are allowed.

Log	analysis

Let’s	start	simple.	For	example,	display	all	messages	of	the	FATAL	level:

student$	sudo	grep	FATAL	/var/log/postgresql/postgresql-15-main.log	|	tail	-n	10

2023-05-04	19:45:49.578	MSK	[6915]	student@student	FATAL:		terminating	connection	due	to	administrator	command
2023-05-04	19:45:52.566	MSK	[7147]	student@student	FATAL:		terminating	connection	due	to	unexpected	postmaster	exit
2023-05-04	19:46:34.537	MSK	[11305]	student@admin_monitoring	FATAL:		terminating	connection	due	to	administrator	command

The	“terminating	connection”	message	is	caused	by	us	terminating	the	blocking	process.

Logs	are	usually	used	to	analyse	the	queries	that	execute	the	longest.	We	can	make	the	log	display	all	executed	commands	and	their	execution	times:

=>	ALTER	SYSTEM	SET	log_min_duration_statement=0;

ALTER	SYSTEM

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

Now,	run	a	command:

=>	SELECT	sum(random())	FROM	generate_series(1,1000000);

								sum								

	499691.4027035802
(1	row)

Check	the	log:

student$	sudo	tail	-n	1	/var/log/postgresql/postgresql-15-main.log

2023-05-04	19:46:35.295	MSK	[10496]	student@admin_monitoring	LOG:		duration:	213.149	ms		statement:	SELECT	sum(random())	FROM	generate_series(1,1000000);

19

External monitoring

Universal monitoring systems
Zabbix, Munin, Cacti...
cloud-based: Okmeter, NewRelic, Datadog...

PostgreSQL monitoring systems
PGObserver
PostgreSQL Workload Analyzer (PoWA)
Open PostgreSQL Monitoring (OPM)
pg_profile, pgpro_pwr
etc.

In practice, for any serious environment, you need a full-fledged monitoring
system that collects various metrics from both PostgreSQL and the
operating system, stores the history of these metrics, displays them as
readable graphs, notifies when certain metrics reach certain thresholds, etc.
PostgreSQL does not come with such a system by itself, it only provides the
means by which such information can be acquired. We've gone over them
already. Therefore, for full-scale monitoring, an external system is required.
There are quite a few such systems on the market. Some are universal and
come with PostgreSQL plugins or settings. These include Zabbix, Munin,
Cacti, cloud services such as Okmeter, NewRelic, Datadog, and others.
There are also systems specifically designed for PostgreSQL: PGObserver,
PoWA, OPM, etc. The pg_profile extension allows you to build snapshots of
static data and compare them, identifying resource-intensive operations and
their dynamics. pgpro_pwr is its extended, commercially available version.
An incomplete but representative list of monitoring systems can be viewed
here: https://wiki.postgresql.org/wiki/Monitoring

20

Takeaways

Monitoring collects data on server operations
both from the operating system
and from the database points of view
PostgreSQL provides collected statistics
and the server message log
Full-scale monitoring requires an external system

21

Practice

1. In a new database, create a table, insert several rows, and then
delete all rows.

Look at the table access statistics and reference the values
(n_tup_ins, n_tup_del, n_live_tup, n_dead_tup)
against your activity.

Perform a vacuum, check the statistics again
and compare with the previous figures.

2. Create a deadlock with two transactions.

See what information is recorded in
the server message log.

Task 2. Deadlock is a situation when two (or more) transactions are waiting
for each other to complete first. Unlike a normal lock, transactions have no
way to get out of deadlock, and the DBMS is forced to resolve it by forcibly
interrupting one of the transactions.
The easiest way to reproduce a deadlock is on a table with two rows. The
first transaction changes (and locks) the first row, and the second one locks
the second row. Then the first transaction tries to change the second row,
discovers that it's locked, and starts waiting. And then the second
transaction tries to change the first row, and also waits for the lock to be
released.

Task	1.	Table	access	statistics

Create	a	database	and	a	table:

=>	CREATE	DATABASE	admin_monitoring;

CREATE	DATABASE

=>	\c	admin_monitoring

You	are	now	connected	to	database	"admin_monitoring"	as	user	"student".

=>	CREATE	TABLE	t(n	numeric);

CREATE	TABLE

=>	INSERT	INTO	t	SELECT	1	FROM	generate_series(1,1000);

INSERT	0	1000

=>	DELETE	FROM	t;

DELETE	1000

Check	access	statistics.

=>	SELECT	*	FROM	pg_stat_all_tables	WHERE	relid	=	't'::regclass	\gx

-[RECORD	1]-------+-------
relid															|	16565
schemaname										|	public
relname													|	t
seq_scan												|	1
seq_tup_read								|	1000
idx_scan												|	
idx_tup_fetch							|	
n_tup_ins											|	1000
n_tup_upd											|	0
n_tup_del											|	1000
n_tup_hot_upd							|	0
n_live_tup										|	0
n_dead_tup										|	1000
n_mod_since_analyze	|	2000
n_ins_since_vacuum		|	1000
last_vacuum									|	
last_autovacuum					|	
last_analyze								|	
last_autoanalyze				|	
vacuum_count								|	0
autovacuum_count				|	0
analyze_count							|	0
autoanalyze_count			|	0

We	inserted	1000	rows	(n_tup_ins	=	1000),	then	removed	1000	rows	(n_tup_del	=	1000).

No	live	row	versions	remain	(n_live_tup	=	0),	all	1000	rows	are	dead	(n_dead_tup	=	1000).

Run	vacuuming.

=>	VACUUM;

VACUUM

=>	SELECT	*	FROM	pg_stat_all_tables	WHERE	relid	=	't'::regclass	\gx

-[RECORD	1]-------+------------------------------
relid															|	16565
schemaname										|	public
relname													|	t
seq_scan												|	1
seq_tup_read								|	1000
idx_scan												|	
idx_tup_fetch							|	
n_tup_ins											|	1000
n_tup_upd											|	0
n_tup_del											|	1000
n_tup_hot_upd							|	0
n_live_tup										|	0
n_dead_tup										|	0
n_mod_since_analyze	|	2000
n_ins_since_vacuum		|	0
last_vacuum									|	2023-05-04	19:51:18.706113+03
last_autovacuum					|	
last_analyze								|	
last_autoanalyze				|	
vacuum_count								|	1
autovacuum_count				|	0
analyze_count							|	0
autoanalyze_count			|	0

Dead	row	versions	vacuumed	(n_dead_tup	=	0),	vacuuming	performed	in	one	pass	(vacuum_count	=	1).

Task	2.	Deadlocks

=>	INSERT	INTO	t	VALUES	(1),(2);

INSERT	0	2

One	transaction	locks	the	first	row	of	the	table...

student$	psql	

=>	\c	admin_monitoring

You	are	now	connected	to	database	"admin_monitoring"	as	user	"student".

=>	BEGIN;

BEGIN

=>	UPDATE	t	SET	n	=	10	WHERE	n	=	1;

UPDATE	1

The	other	locks	the	second	row...

student$	psql	

=>	\c	admin_monitoring

You	are	now	connected	to	database	"admin_monitoring"	as	user	"student".

=>	BEGIN;

BEGIN

=>	UPDATE	t	SET	n	=	200	WHERE	n	=	2;

UPDATE	1

Now,	the	first	transaction	tries	to	change	the	second	row	and	waits	for	it	to	release...

=>	UPDATE	t	SET	n	=	20	WHERE	n	=	2;

While	the	second	transaction	waits	for	the	first	row	to	release...

=>	UPDATE	t	SET	n	=	100	WHERE	n	=	1;

...and	so	a	deadlock	occurs.

UPDATE	1

ERROR:		deadlock	detected
DETAIL:		Process	21628	waits	for	ShareLock	on	transaction	7348;	blocked	by	process	21747.
Process	21747	waits	for	ShareLock	on	transaction	7347;	blocked	by	process	21628.
HINT:		See	server	log	for	query	details.
CONTEXT:		while	updating	tuple	(0,2)	in	relation	"t"

Check	the	message	log:

student$	sudo	tail	-n	8	/var/log/postgresql/postgresql-15-main.log

2023-05-04	19:51:20.371	MSK	[21628]	student@admin_monitoring	ERROR:		deadlock	detected
2023-05-04	19:51:20.371	MSK	[21628]	student@admin_monitoring	DETAIL:		Process	21628	waits	for	ShareLock	on	transaction	7348;	blocked	by	process	21747.
	 Process	21747	waits	for	ShareLock	on	transaction	7347;	blocked	by	process	21628.
	 Process	21628:	UPDATE	t	SET	n	=	20	WHERE	n	=	2;
	 Process	21747:	UPDATE	t	SET	n	=	100	WHERE	n	=	1;
2023-05-04	19:51:20.371	MSK	[21628]	student@admin_monitoring	HINT:		See	server	log	for	query	details.
2023-05-04	19:51:20.371	MSK	[21628]	student@admin_monitoring	CONTEXT:		while	updating	tuple	(0,2)	in	relation	"t"
2023-05-04	19:51:20.371	MSK	[21628]	student@admin_monitoring	STATEMENT:		UPDATE	t	SET	n	=	20	WHERE	n	=	2;

