

Architecture
Vacuum

15

Copyright
© Postgres Professional, 2023
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov
Translated by Alexander Meleshko
Cover photo by Oleg Bartunov (Phu monastery and Bhrikuti peak, Nepal)

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Routine tasks that require periodic execution
Vacuum and analysis
Table and index bloating
Full vacuum and rebuilding of indexes

3

Routine tasks

Vacuuming pages to remove MVCC historical data
dead row versions are vacuumed out of tables
index entries referring to dead versions are vacuumed from indexes

MVCC makes it possible to effectively implement snapshot isolation, but as
a result, old versions of rows accumulate in table pages, and links to these
versions accumulate in index pages. Historical versions are needed for
some time so that transactions can work with their data snapshots. But over
time, a row version will no longer have any snapshot that needs it. Such a
row version is called "dead".
The vacuum procedure cleans out dead row versions from table pages, as
well as unnecessary index entries that reference such versions.
If historical data is not vacuumed in a timely manner, tables and indexes will
bloat uncontrollably and the search for current row versions in them will slow
down.
https://postgrespro.com/docs/postgresql/15/routine-vacuuming

4

Routine tasks

Updating the visibility map
tracks pages where all row versions are visible in all snapshots

used to optimize vacuuming and speed up index access

exists only for tables

In addition to this main task, vacuuming also performs other instance
maintenance tasks. Vacuuming updates the visibility map and the free
space map. This is service information that is stored alongside the main
data.
The visibility map shows pages that contain only the current row versions
visible in all data snapshots. In other words, these are pages that have not
changed for long enough to be cleared out of outdated row versions.
The visibility map has several uses:
● Vacuuming optimization.

The marked pages cannot contain dead row versions, so they can be
skipped during vacuuming.

● Index Only access speedup.
Versioning information is stored only for tables, but not for indexes (that's
why indexes don't have visibility maps). After getting a reference to a row
version from an index, you usually need to read the table page to check
its visibility. But if the index itself already has all the necessary columns,
and at the same time the page is marked in the visibility map, then
reading the table page can be skipped.

If the visibility map isn't updated regularly, index access can slow down. This
is described in more detail in the course "Query Performance Tuning"
(QPT).

5

Routine tasks

Updating the free space map
tracks the free space in the pages after vacuuming

used when inserting new row versions

exists for both tables and indexes

The visibility map tracks available free space within pages. This space is
constantly changing, decreasing when new row versions are added and
increasing when they are removed.
When inserting new row versions, the map helps to quickly find a suitable
page to record the data into. The free space map has a complex tree-like
structure designed to improve search speed.
Indexes can have free space maps as well. However, since index entries
are inserted into specific positions within an index, the map only tracks
empty pages, which form when all index entries are deleted from them.
These pages are excluded from the index and later can be included again
into another part of the index.

6

Routine tasks

Updating statistics
used by the query optimizer
calculated based on a random sample

The query optimizer requires statistical information about the data it's
working with, such as the number of rows in tables and the distribution of
data in columns. The process of collecting the statistics is called analysis.
For analysis, a random sample of data of a certain size is read from the
table. This way, the system can quickly collect statistics even on very large
tables. The result is not accurate, but it is not expected to be. The data
constantly changes, so it is impossible to maintain absolutely accurate
statistics all of the time anyway. It is sufficient to keep it relatively up-to-date
and relatively close to the truth.
If statistics are not updated regularly, they will no longer represent the data
accurately, leading to the optimizer proposing inefficient execution plans.
Because of this, queries may start executing orders of magnitude slower
than they could.

7

Routine tasks

Freezing
prevents the consequences of the 32-bit transaction counter overflow

As already mentioned, PostgreSQL orders events by transaction ID. The
counter has 32 bits allocated for it, and sooner or later it will overflow (this is
known as transaction ID wraparound). But when the counter resets to zero,
the order of transactions will be disrupted.
This is why the transaction ID scope is looped. For each transaction, half of
the IDs are considered to be in the future, half in the past.
Sufficiently old row versions are marked as frozen. This means that they
were created so far in the past that their transaction ID no longer means
anything and can be reused.
To avoid scanning extra pages, the visibility map has a bit that marks the
pages where all row versions are frozen.
Without regular freezing, the server may end up with no available
transaction IDs for new transactions. This is an emergency: the server
stops, all active transactions drop, and the administrator has to manually
restart the server and do the freezing.

8

Autovacuum

Autovacuum launcher
background process
periodically launches
worker processes

Autovacuum worker
vacuums tables of a
separate database that
require attention

PostgreSQL

backend

postmaster

background processes

autovacuum

shared memory

OS
cache

All the maintenance tasks discussed above are taken care of by the
autovacuum process. It dynamically reacts to the frequency of table
updates, and the more active the changes, the more often the table will be
vacuumed.
The autovacuum launcher process runs in the background, scheduling the
vacuuming work and launching the required number of parallel autovacuum
workers.
Vacuuming works page-by-page, so it doesn't block other transactions. It
still does require additional resources from the I/O system.
Autovacuum will stop when either of the two parameters autovacuum or
track_counts is switched off. It may seem that disabling autovacuum can
increase system performance by eliminating "unnecessary" I/O operations,
but it cannot. Failure to vacuum will lead to the consequences described
above: uncontrolled bloating, slower query processing, and the risk of an
emergency server shutdown. Ultimately, this will lead to a complete system
paralysis.
Autovacuuming is absolutely necessary. There is a large number of
configuration parameters that allow tweaking the autovacuum process.
They are discussed in detail in the course DBA2 "Configuration and
monitoring".

9

Manual vacuuming

Vacuuming
VACUUM [table, ...] vacuuming specific tables
VACUUM vacuuming the entire database
$ vacuumdb wrapper for the OS

Analysis
ANALYZE
$ vacuumdb --analyze-only

Vacuum and analysis
VACUUM ANALYZE
$ vacuumdb --analyze

If necessary, vacuuming and analysis can be started manually using the
following commands:
VACUUM (vacuuming only), ANALYZE (analysis only), and VACUUM
ANALYZE (both vacuuming and analysis).
Autovacuum is different from running scheduled vacuum and analysis in that
it reacts to the frequency of data changes. Running it on a schedule too
often will create unnecessary load on the system. On the other hand, if you
vacuum too rarely, and data is changed often, the files may have time to
bloat significantly between vacuums.

https://postgrespro.com/docs/postgresql/15/sql-vacuum
https://postgrespro.com/docs/postgresql/15/sql-analyze

Vacuum

Let’s	create	a	table	and	turn	autovacuum	off	so	that	we	can	vacuum	manually:

=>	CREATE	TABLE	bloat(
		id	integer	GENERATED	ALWAYS	AS	IDENTITY,
		d	timestamptz
)	WITH	(autovacuum_enabled	=	off);

CREATE	TABLE

Fill	the	table	with	data	and	build	an	index:

=>	INSERT	INTO	bloat(d)
		SELECT	current_timestamp	FROM	generate_series(1,100000);

INSERT	0	100000

=>	CREATE	INDEX	ON	bloat(d);

CREATE	INDEX

All	table	rows	have	only	one	row	version.

Now,	let’s	update	a	row:

=>	UPDATE	bloat	SET	d	=	d	+	interval	'1	day'	WHERE	id	=	1;

UPDATE	1

Run	vacuum	and	have	it	tell	us	what	it	is	doing:

=>	VACUUM	(verbose)	bloat;

INFO:		vacuuming	"arch_vacuum_overview.public.bloat"
INFO:		finished	vacuuming	"arch_vacuum_overview.public.bloat":	index	scans:	0
pages:	0	removed,	541	remain,	541	scanned	(100.00%	of	total)
tuples:	1	removed,	100000	remain,	0	are	dead	but	not	yet	removable
removable	cutoff:	750,	which	was	0	XIDs	old	when	operation	ended
new	relfrozenxid:	747,	which	is	1	XIDs	ahead	of	previous	value
index	scan	bypassed:	1	pages	from	table	(0.18%	of	total)	have	1	dead	item	identifiers
avg	read	rate:	2.228	MB/s,	avg	write	rate:	4.456	MB/s
buffer	usage:	1086	hits,	2	misses,	4	dirtied
WAL	usage:	542	records,	1	full	page	images,	40350	bytes
system	usage:	CPU:	user:	0.00	s,	system:	0.00	s,	elapsed:	0.00	s
VACUUM

Here	we	can	see	that	vacuum	has	scanned	all	the	table	pages	and	removed	one	row	version.

11

Bloating

Vacuuming does not reduce the size of tables and indexes
the “holes” in the pages are used for new data,
but never returned to the operating system

Causes of bloating
incorrect autovacuum configuration

massive changes of data

long-running transactions

Negative consequences
inefficient disk space use
slower sequential table scan
less efficient index access

Vacuuming cleans out outdated row versions from pages. This creates spots
of free space in the pages, which is then used to store new data. But the
free space is not returned to the operating system, so, from the point of view
of the OS, the size of the data files does not decrease.
In the case of indexes (B-trees), it is complicated by the fact that if there is
not enough space in the page to place an index entry, the page is split into
two. The resulting pages are never merged again, even if all index entries
are removed from them.
If autovacuuming is configured correctly, the data files grow by a certain
constant amount due to updates between vacuumings. But if a large amount
of data is being changed at the same time, or there are active long
transactions (keeping old data snapshots active and not allowing you to
vacuum out old row versions), vacuuming will not be able to free up the
space in time. As a result, the tables and indexes may continue to grow in
size.
File size bloating leads not only to disk space overuse (including for
backups), but also to a decrease in performance.
https://wiki.postgresql.org/wiki/Show_database_bloat
https://postgrespro.com/docs/postgresql/15/pgstattuple

Table	and	index	bloating	estimation

There	are	several	ways	to	assess	bloating	and	its	impact:

Queries	to	the	system	catalog
The	pgstattuple	extension

=>	CREATE	EXTENSION	pgstattuple;

CREATE	EXTENSION

The	extension	helps	monitor	the	state	of	a	table:

=>	SELECT	*	FROM	pgstattuple('bloat')	\gx

-[RECORD	1]------+--------
table_len										|	4431872
tuple_count								|	100000
tuple_len										|	4000000
tuple_percent						|	90.26
dead_tuple_count			|	0
dead_tuple_len					|	0
dead_tuple_percent	|	0
free_space									|	16720
free_percent							|	0.38

tuple_percent	is	data	payload	(never	100%	because	of	overhead).

Same	for	an	index:

=>	SELECT	*	FROM	pgstatindex('bloat_d_idx')	\gx

-[RECORD	1]------+-------
version												|	4
tree_level									|	1
index_size									|	712704
root_block_no						|	3
internal_pages					|	1
leaf_pages									|	85
empty_pages								|	0
deleted_pages						|	0
avg_leaf_density			|	89.17
leaf_fragmentation	|	0

leaf_pages	is	the	number	of	leaf	pages	in	the	index,
avg_leaf_density	is	how	full	they	are,
leaf_fragmentation	is	how	ordered	they	are	on	disk.

Let’s	update	half	the	rows	at	once:

=>	UPDATE	bloat	SET	d	=	d	+	interval	'1	day'	WHERE	id	%	2	=	0;

UPDATE	50000

Check	the	table	again:

=>	SELECT	*	FROM	pgstattuple('bloat')	\gx

-[RECORD	1]------+--------
table_len										|	6643712
tuple_count								|	100000
tuple_len										|	4000000
tuple_percent						|	60.21
dead_tuple_count			|	50000
dead_tuple_len					|	2000000
dead_tuple_percent	|	30.1
free_space									|	21000
free_percent							|	0.32

The	density	went	down.

To	avoid	scanning	the	whole	table,	pgstattuple	can	display	approximate	information:

=>	SELECT	*	FROM	pgstattuple_approx('bloat')	\gx

-[RECORD	1]--------+--------------------
table_len												|	6643712
scanned_percent						|	100
approx_tuple_count			|	100000
approx_tuple_len					|	4000000
approx_tuple_percent	|	60.207305795314426
dead_tuple_count					|	50000
dead_tuple_len							|	2000000
dead_tuple_percent			|	30.103652897657213
approx_free_space				|	21000
approx_free_percent		|	0.31608835542540076

Check	the	index:

=>	SELECT	*	FROM	pgstatindex('bloat_d_idx')	\gx

-[RECORD	1]------+--------
version												|	4
tree_level									|	1
index_size									|	1040384
root_block_no						|	3
internal_pages					|	1
leaf_pages									|	125
empty_pages								|	0
deleted_pages						|	0
avg_leaf_density			|	90.95
leaf_fragmentation	|	0

Leaf	page	density	remained	the	same,	but	the	number	of	pages	has	increased.

13

Rebuilding objects

Full vacuum
VACUUM FULL
$ vacuumdb --full

completely rebuilds the contents of tables and indexes
locks the table completely

Rebuilding indexes
REINDEX

rebuilds indexes
locks the index completely and locks
the associated table for write operations

In order to reduce the physical size of bloated tables and indexes, a full
vacuum is required.
The VACUUM FULL command completely rewrites the contents of the table
and its indexes, minimizing the space occupied. However, this process
requires an exclusive table lock and therefore cannot be executed in parallel
with other transactions.
https://postgrespro.com/docs/postgresql/15/sql-vacuum
You can rebuild an index or several indexes without touching the table. This
is done by the REINDEX command. It locks the table for writing (reading is
still available), so transactions trying to change the table will be blocked.
https://postgrespro.com/docs/postgresql/15/sql-reindex
If prolonged exclusive locking is undesirable, you can consider pg_repack, a
third-party extension (https://github.com/reorg/pg_repack) that allows you to
rebuild tables and their indexes on the fly.

14

Rebuilding objects

Non-blocking index rebuilding
REINDEX ... CONCURRENTLY

rebuilds indexes without blocking tables for writing
takes longer and may fail
not transactional
does not work for system indexes
does not work for indexes associated with exclusion constraints

In PostgreSQL 12 and higher, the REINDEX ... CONCURRENTLY command
can work without blocking the table for writing. However, non-blocking
rebuilding takes longer and may fail (due to deadlocks). In this case, the
index will need to be rebuilt again.
Non-blocking index rebuilding has a number of limitations: it cannot be
performed inside a transaction, and it cannot rebuild system indexes and
indexes with exclusion constraints (EXCLUDE).

Rebuilding	objects

You	can	rebuild	an	index	with	the	REINDEX	command	with	the	CONCURRENTLY	keyword.	It	rebuilds	the	index	without
stopping	the	system.

=>	REINDEX	TABLE	CONCURRENTLY	bloat;

REINDEX

Check	the	index	again:

=>	SELECT	*	FROM	pgstatindex('bloat_d_idx')	\gx

-[RECORD	1]------+-------
version												|	4
tree_level									|	1
index_size									|	712704
root_block_no						|	3
internal_pages					|	1
leaf_pages									|	85
empty_pages								|	0
deleted_pages						|	0
avg_leaf_density			|	89.17
leaf_fragmentation	|	0

The	density	is	back	to	nominal.

To	rebuild	a	table	together	with	its	indexes,	you	can	use	VACUUM	FULL.	However,	unlike	REINDEX	..	CONCURRENTLY,
it	does	lock	the	table.

=>	VACUUM	FULL	bloat;

VACUUM

=>	SELECT	*	FROM	pgstattuple('bloat')	\gx

-[RECORD	1]------+--------
table_len										|	4431872
tuple_count								|	100000
tuple_len										|	4000000
tuple_percent						|	90.26
dead_tuple_count			|	0
dead_tuple_len					|	0
dead_tuple_percent	|	0
free_space									|	16724
free_percent							|	0.38

The	density	has	increased,	the	freed	up	space	is	returned	to	the	operating	system.

16

Takeaways

Row versions accumulate, so periodic vacuuming is necessary
Vacuuming serves multiple goals:

updating visibility maps and free space maps
collecting statistics for the planner
freezing old row versions

Autovacuuming is necessary, but requires configuration
Full vacuum may be necessary to combat bloating

17

Practice

1. Disable autovacuuming and make sure it doesn’t work.
2. In a new database, create a table with one numeric column and

an index for this table. Insert 100,000 random numbers into the
table.

3. Change half of the table rows several times. Write down the size
of the table and the index each time.

4. Run a full vacuum.
5. Repeat step 4, running a regular vacuum each time you change

the values. Compare the results.
6. Turn autovacuuming back on.

Task 1. Set the autovacuum parameter to off and reload the configuration
files.

Task 3. Use the functions pg_table_size (table_name) and
pg_indexes_size (table_name). For more information about calculating
the sizes of various objects, see the module “Data organization”.

Task 6. Set the autovacuum parameter back to on (or reset this parameter
with the RESET command), then reload the configuration files.

Task	1.	Switching	autovacuum	off

=>	SELECT	pid,	backend_start,	backend_type
FROM	pg_stat_activity
WHERE	backend_type	=	'autovacuum	launcher';

		pid		|									backend_start									|				backend_type					
-------+-------------------------------+---------------------
	17300	|	2023-05-04	19:50:35.804474+03	|	autovacuum	launcher
(1	row)

=>	ALTER	SYSTEM	SET	autovacuum	=	off;

ALTER	SYSTEM

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

=>	SELECT	pid,	backend_start,	backend_type	
FROM	pg_stat_activity	
WHERE	backend_type	=	'autovacuum	launcher';

	pid	|	backend_start	|	backend_type	
-----+---------------+--------------
(0	rows)

Task	2.	Database,	table	and	index

Create	a	database,	a	table	and	an	index:

=>	CREATE	DATABASE	admin_maintenance;

CREATE	DATABASE

=>	\c	admin_maintenance

You	are	now	connected	to	database	"admin_maintenance"	as	user	"student".

=>	CREATE	TABLE	t(n	numeric);

CREATE	TABLE

=>	CREATE	INDEX	t_n	on	t(n);

CREATE	INDEX

Insert	rows:

=>	INSERT	INTO	t	SELECT	random()	FROM	generate_series(1,100000);

INSERT	0	100000

Store	a	query	to	calculate	the	size	of	the	table	and	the	index	as	a	psql	variable	so	that	we	can	use	it	later:

=>	\set	SIZE	'SELECT	pg_size_pretty(pg_table_size(''t''))	table_size,	pg_size_pretty(pg_indexes_size(''t''))	index_size\\g	(footer=off)'

=>	:SIZE

	table_size	|	index_size	
------------+------------
	4360	kB				|	4536	kB

Task	3.	Changing	rows	without	vacuuming

=>	UPDATE	t	SET	n=n	WHERE	n	<	0.5;

UPDATE	49969

=>	:SIZE

	table_size	|	index_size	
------------+------------
	6520	kB				|	6808	kB

=>	UPDATE	t	SET	n=n	WHERE	n	<	0.5;

UPDATE	49969

=>	:SIZE

	table_size	|	index_size	
------------+------------
	8680	kB				|	7568	kB

=>	UPDATE	t	SET	n=n	WHERE	n	<	0.5;

UPDATE	49969

=>	:SIZE

	table_size	|	index_size	
------------+------------
	11	MB						|	11	MB

The	table	and	index	sizes	keep	growing.

Task	4.	Full	vacuum

=>	VACUUM	FULL	t;

VACUUM

=>	:SIZE

	table_size	|	index_size	
------------+------------
	4336	kB				|	3104	kB

The	table	size	is	almost	back	to	where	it	was	initially,	and	the	index	size	decreased	(building	an	index	for	a	large	data	set	is	more	efficient	than
keeping	adding	data	to	the	index	row	by	row).

Task	5.	Changing	rows	with	vacuuming

=>	UPDATE	t	SET	n=n	WHERE	n	<	0.5;

UPDATE	49969

=>	VACUUM	t;

VACUUM

=>	:SIZE

	table_size	|	index_size	
------------+------------
	6528	kB				|	4648	kB

=>	UPDATE	t	SET	n=n	WHERE	n	<	0.5;

UPDATE	49969

=>	VACUUM	t;

VACUUM

=>	:SIZE

	table_size	|	index_size	
------------+------------
	6528	kB				|	4648	kB

=>	UPDATE	t	SET	n=n	WHERE	n	<	0.5;

UPDATE	49969

=>	VACUUM	t;

VACUUM

=>	:SIZE

	table_size	|	index_size	
------------+------------
	6528	kB				|	4648	kB

The	size	increased	once	and	then	stabilized.

The	example	demonstrates	how	removing	(or	changing)	large	chunks	of	data	should	be	done	in	multiple	transactions,	if	possible.	This	will	allow
autovacuum	to	clean	up	unneeded	row	versions	in	time,	avoiding	table	bloating.

Task	6.	Turn	autovacuum	back	on

=>	ALTER	SYSTEM	RESET	autovacuum;

ALTER	SYSTEM

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

