

Data Organization
Physical Structure

15

Copyright
© Postgres Professional, 2023
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov
Translated by Liudmila Mantrova
Cover photo by Oleg Bartunov (Phu monastery and Bhrikuti peak, Nepal)

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Tablespaces and directories
Files and data pages
Forks: data, visibility map, free space map
TOAST

3

template1postgres

Tablespaces

pg_catalog public pg_catalog publicnew schema

pg_global

tablespace

pg_default

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

default
tablespace

default
tablespace

Tablespaces are used to manage physical storage of data; they define the
layout of files in the file system.
For example, one tablespace can be created on slow disks to store archive
data, while another tablespace located on fast disks will be used for the data
that is being actively updated.
During cluster initialization, two tablespaces are created: pg_default and
pg_global.

The same tablespace can be used by several databases, and one database
can store data in several tablespaces.
Besides, each database has a so-called “default tablespace,” in which all
database objects are created unless another location is specified. This
tablespace also stores system catalog objects. Initially, the pg_default
tablespace is used as the default one, but you can change this behavior.
The pg_global tablespace is special: it stores those system catalog
objects that are common to the whole cluster.

4

template1postgres

Catalogs

pg_global

tablespace

pg_default

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject таблицатаблицаobject

PGDATA/global/
 ...
 ...
 ...

PGDATA/base/dboid/
 ...
 NNN
 NNN.1
 NNN.2
 ...

PGDATA/pg_tblspc/tsoid

/path-to-catalog/ver/dboid/
 ...
 ...
 ...

Basically, a tablespace is a reference to the directoty that stores data. The
pre-defined pg_global and pg_default tablespaces are always located
in the PGDATA/global/ and PGDATA/base/ directories, respectively. When
creating a custom tablespace, you can specify an arbitrary directory; the
server always uses relative links, so it creates an additional symlink in
PGDATA/pg_tblspc/ that points to this custom directory.
Within the PGDATA/base/ directory, all data is distributed between
subdirectories of different databases (PGDATA/global/ has no such
subdirectories because it contains the data related to the cluster as a
whole).
Custom tablespaces have one more nesting level to reflect the PostgreSQL
version. It is done to facilitate server upgrades.
Actual database objects are stored in files within these directories: each
object has its own files.
Each file, which is called a segment, takes no more than 1 GB of disk space
(this value can be altered at build time). That’s why each object can have
several corresponding files. Thus, a database can potentially have plenty of
files, and their impact on the file system has to be taken into account.
https://postgrespro.com/docs/postgresql/15/storage-file-layout

Using	Tablespaces

Initially,	there	are	two	tablespaces	in	a	cluster.	They	are	listed	in	the	following	table	of	the	system	catalog:

=>	SELECT	spcname	FROM	pg_tablespace;

		spcname			

	pg_default
	pg_global
(2	rows)

Naturally,	it’s	one	of	the	tables	common	for	the	whole	cluster.

You	can	also	get	the	same	information	with	the	following	psql	command:

=>	\db

							List	of	tablespaces
				Name				|		Owner			|	Location	
------------+----------+----------
	pg_default	|	postgres	|	
	pg_global		|	postgres	|	
(2	rows)

To	add	a	new	tablespace,	it	is	required	to	create	an	empty	directory	owned	by	the	user	that	has	started	the	database
server	(here	we	run	this	command	on	behalf	of	the	postgres	user):

postgres$	mkdir	/var/lib/postgresql/ts_dir

Now	run	the	following	command	specifying	the	created	directory:

=>	CREATE	TABLESPACE	ts	LOCATION	'/var/lib/postgresql/ts_dir';

CREATE	TABLESPACE

=>	\db

																List	of	tablespaces
				Name				|		Owner			|										Location										
------------+----------+----------------------------
	pg_default	|	postgres	|	
	pg_global		|	postgres	|	
	ts									|	student		|	/var/lib/postgresql/ts_dir
(3	rows)

When	creating	a	database,	you	can	set	the	default	tablespace:

=>	CREATE	DATABASE	data_physical	TABLESPACE	ts;

CREATE	DATABASE

=>	\c	data_physical

You	are	now	connected	to	database	"data_physical"	as	user	"student".

It	means	that	all	objects	will	be	created	in	this	tablespace	unless	another	tablespace	is	explicitly	specified.

=>	CREATE	TABLE	t(id	integer	PRIMARY	KEY,	s	text);

CREATE	TABLE

=>	INSERT	INTO	t(id,	s)
				SELECT	id,	id::text	FROM	generate_series(1,100000)	id;

INSERT	0	100000

=>	VACUUM	t;

VACUUM

6

The main fork
the data itself

Free space map
appears in pages
after vacuum

Visibility map
marks pages
in which all
row versions are
visible in all snapshots

Files and Forks
segment

1 GB

page
8 kB

Each object is usually represented by several forks. Each fork is a set of
segments (i.e., a file or several files). All segments are split into separate
pages. The page size is usually 8 kB; it can be configured for the whole
cluster, but only at build time. The pages of different objects are read from
disk using the same buffer cache mechanism.
The main fork is the data itself: index rows or different versions of table
rows.
The vm fork is a visibility map (a bitmap). It marks the pages that contain
only the current tuples visible in all data snapshots. Visibility map is used to
optimize vacuum and to speed up index access.
The fsm fork is a free space map. It tracks free space within pages, which
can appear after vacuum. This map is used to quickly find a page that is
suitable for inserting a new tuple.

Files	and	Forks

You	can	determine	the	location	of	the	files	related	to	a	particular	object	as	follows:

=>	SELECT	pg_relation_filepath('t');

												pg_relation_filepath													

	pg_tblspc/16428/PG_15_202209061/16429/16430
(1	row)

Let’s	take	a	look	at	these	files	(their	name	and	size	in	bytes):

student$	sudo	find	/var/lib/postgresql/15/main/pg_tblspc/16428/PG_15_202209061/16429	-name	16430*	-printf	'%f\t%s\n'

16430	 4423680
16430_fsm	 24576
16430_vm	 8192

We	can	see	that	they	belong	to	three	forks:	the	main	one,	fsm,	and	vm.

Objects	can	be	moved	between	tablespaces,	but	(unlike	moving	between	schemas)	it	results	in	a	physical	move	of	the	data:

=>	ALTER	TABLE	t	SET	TABLESPACE	pg_default;

ALTER	TABLE

=>	SELECT	pg_relation_filepath('t');

	pg_relation_filepath	

	base/16429/16437
(1	row)

Object	Size

There	are	several	functions	that	return	the	size	of	the	database	and	its	objects.

=>	SELECT	pg_database_size('data_physical');

	pg_database_size	

									14373679
(1	row)

To	facilitate	comprehension,	the	value	can	be	displayed	in	a	human-readable	format:

=>	SELECT	pg_size_pretty(pg_database_size('data_physical'));

	pg_size_pretty	

	14	MB
(1	row)

The	full	size	of	the	table	(including	all	indexes):

=>	SELECT	pg_size_pretty(pg_total_relation_size('t'));

	pg_size_pretty	

	6568	kB
(1	row)

The	size	of	the	table	itself...

=>	SELECT	pg_size_pretty(pg_table_size('t'));

	pg_size_pretty	

	4360	kB
(1	row)

...and	the	size	of	the	indexes:

=>	SELECT	pg_size_pretty(pg_indexes_size('t'));

	pg_size_pretty	

	2208	kB
(1	row)

You	can	also	learn	the	size	of	separate	table	forks,	if	you	like.	For	example:

=>	SELECT	pg_size_pretty(pg_relation_size('t','main'));

	pg_size_pretty	

	4320	kB
(1	row)

Here	is	another	function	that	returns	the	tablespace	size:

=>	SELECT	pg_size_pretty(pg_tablespace_size('ts'));

	pg_size_pretty	

	9693	kB
(1	row)

8

TOAST

A tuple must fit one page
some attributes can be compressed,
moved to a separate TOAST table,
or both compressed and moved

A TOAST table
is stored in the pg_toast schema
provides its own index
splits “oversized” attributes into chunks that are smaller than a page
is read only when an “oversized” attribute is queried
uses its own versioning
is seamlessly used by applications

In PostgreSQL, any row version must fit a single page. For “oversized”
tuples, the TOAST mechanism is used, which stands for “The Oversized
Attributes Storage Technique”. It implies several strategies. Some oversized
attributes can be compressed for the tuple to fit a page. If it is impossible,
the attribute can be moved into a separate service table. These two
approaches can also be combined.
If required, for each main table, PostgreSQL creates a separate TOAST
table (with a special index). Such tables and indexes are located in a
separate schema called pg_toast, so they are usually invisible.

Tuples in TOAST tables must also fit a single page, so to store oversized
values, PostgreSQL splits them into chunks. When required by an
application, these chunks are seamlessly put together to produce a full
value.
TOAST tables are accessed only if the oversized value has to be returned.
Besides, TOAST tables have their own versioning: if an update does not
affect the oversized value, the new tuple refers to the same value in the
TOAST table. This approach allows us to save some space.
https://postgrespro.com/docs/postgresql/15/storage-toast

TOAST

Let’s	insert	a	very	long	row	into	the	table:

=>	INSERT	INTO	t(id,	s)
SELECT	0,	string_agg(id::text,'.')	FROM	generate_series(1,10000)	AS	id;

INSERT	0	1

=>	VACUUM;

VACUUM

Will	the	table	size	change?

=>	SELECT	pg_size_pretty(pg_table_size('t'));

	pg_size_pretty	

	4440	kB
(1	row)

Yes.	And	what	about	the	main	fork	that	stores	the	data?

=>	SELECT	pg_size_pretty(pg_relation_size('t','main'));

	pg_size_pretty	

	4320	kB
(1	row)

The	size	remains	the	same.

Since	the	row	does	not	fit	into	a	single	page,	the	value	of	the	s	attribute	will	be	split	into	chunks	and	stored	in	a	separate
TOAST	table.	You	can	find	it	in	the	system	catalog	(we	use	the	regclass	type	to	convert	oid	into	the	relation	name):

=>	SELECT	reltoastrelid::regclass::text	FROM	pg_class	WHERE	relname='t';

						reltoastrelid						

	pg_toast.pg_toast_16430
(1	row)

Our	row	is	split	into	chunks	to	be	stored;	PostgreSQL	puts	these	chunks	together	to	get	the	full	value	when	required:

=>	SELECT	chunk_id,	chunk_seq,	left(chunk_data::text,45)	AS	chuck_data
FROM	pg_toast.pg_toast_16430	LIMIT	5;

	chunk_id	|	chunk_seq	|																		chuck_data																			
----------+-----------+---
				16440	|									0	|	\xfdbe000000312e322e332e342e00352e362e372e382
				16440	|									1	|	\x392e353161ff31002e3531322e353133002e3531342
				16440	|									2	|	\xe215e216e217e218abe219e11a30e11b30e11c30e11
				16440	|									3	|	\x11f4aa3611f43611f43611f43611f4aa3611f43611f
				16440	|									4	|	\xf43211f4325511f43211f43211f43211f4325511f43
(5	rows)

Let’s	delete	this	database	since	we	no	longer	need	it.

=>	\c	postgres

You	are	now	connected	to	database	"postgres"	as	user	"student".

=>	DROP	DATABASE	data_physical;

DROP	DATABASE

Once	there	are	no	objects	left	in	the	tablespace,	you	can	delete	it,	too:

=>	DROP	TABLESPACE	ts;

DROP	TABLESPACE

10

Takeaways

At the physical level
the data is distributed between tablespaces (directories)
an object is represented by several forks
each fork consists of one or more segments

Tablespaces are managed by DBAs
Files, forks, and TOAST are managed internally by PostgreSQL

11

Practice

1. Create a new database and establish a connection with it.
Create a tablespace called ts.
Create table t in tablespace ts
and insert several rows into this table.

2. Calculate the size of the database, the table, as well as the size of
ts and pg_default tablespaces.

3. Move the table into the pg_default tablespace.
How has the tablespace size changed?

4. Delete the ts tablespace.

Task	1.	Tablespaces	and	Tables

Let’s	create	a	database:

=>	CREATE	DATABASE	data_physical;

CREATE	DATABASE

=>	\c	data_physical

You	are	now	connected	to	database	"data_physical"	as	user	"student".

Create	a	tablespace:

postgres$	mkdir	/var/lib/postgresql/ts_dir

=>	CREATE	TABLESPACE	ts	LOCATION	'/var/lib/postgresql/ts_dir';

CREATE	TABLESPACE

Create	a	table:

=>	CREATE	TABLE	t(n	integer)	TABLESPACE	ts;

CREATE	TABLE

=>	INSERT	INTO	t	SELECT	1	FROM	generate_series(1,1000);

INSERT	0	1000

Task	2.	Data	Size

The	database	size:

=>	SELECT	pg_size_pretty(pg_database_size('data_physical'))	AS	db_size;

	db_size	

	7549	kB
(1	row)

The	table	size:

=>	SELECT	pg_size_pretty(pg_total_relation_size('t'))	AS	t_size;

	t_size	

	64	kB
(1	row)

The	tablespace	size:

=>	SELECT
				pg_size_pretty(pg_tablespace_size('pg_default'))	AS	pg_default_size,
				pg_size_pretty(pg_tablespace_size('ts'))	AS	ts_size;

	pg_default_size	|	ts_size	
-----------------+---------
	62	MB											|	68	kB
(1	row)

The	tablespace	size	is	a	bit	bigger	than	the	table	size	because	the	tablespace	directory	also	contains	some	service	files.

Task	3.	Moving	a	Table

Let’s	move	our	table:

=>	ALTER	TABLE	t	SET	TABLESPACE	pg_default;

ALTER	TABLE

Check	the	new	tablespace	size:

=>	SELECT
				pg_size_pretty(pg_tablespace_size('pg_default'))	AS	pg_default_size,
				pg_size_pretty(pg_tablespace_size('ts'))	AS	ts_size;

	pg_default_size	|		ts_size			
-----------------+------------
	62	MB											|	4096	bytes
(1	row)

Task	4.	Deleting	a	Tablespace

Let’s	delete	our	tablespace:

=>	DROP	TABLESPACE	ts;

DROP	TABLESPACE

