

Access Control
Access Control Overview

15

Copyright
© Postgres Professional, 2023
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov
Translated by Liudmila Mantrova
Cover photo by Oleg Bartunov (Phu monastery and Bhrikuti peak, Nepal)

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and
losses, including loss of income, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Roles and attributes
Connecting to a server
Privileges
Row-level security policies

3

Roles and Attributes

A role is a database user
roles are not associated with OS users

Role properties are defined by attributes
LOGIN permission to connect
PASSWORD a password
SUPERUSER permission for everything
CREATEDB permission to create databases
CREATEROLE permission to create roles
REPLICATION permission to use the replication protocol
etc.

A role is a database user. (A role can also comprise a group of users, but
we’ll discuss it later.)
Formally, roles are not associated with operating system users in any way,
but many programs imply it when choosing default values. For example,
if psql is started on behalf of the student OS user, the connection is
established on behalf of the database role with the same name, i.e.,
student (unless another role is explicitly specified in the psql options).

At the time of cluster initialization, an initial role is defined, which has
superuser privileges (this role is usually called postgres). Later on, you can
create, modify, and delete roles.
https://postgrespro.com/docs/postgresql/15/database-roles
A role has several attributes that define its general properties and rights
(unrelated to object access).
There are usually two flavors of each attribute; for example, CREATEDB
(gives the right to create a database) and NOCREATEDB (gives no such
right). As a rule, a restrictive flavor is the default one.
If a role has no LOGIN attribute, it cannot connect to a server. (Such roles
can be used as group ones.)
This slide lists only some of the available attributes. INHERIT and
BYPASSRLS attributes will be covered in more detail further in this lecture.

https://postgrespro.com/docs/postgresql/15/role-attributes
https://postgrespro.com/docs/postgresql/15/sql-createrole

Roles	and	Attributes

Let’s	create	a	role	for	user	Alice.	The	command	specifies	two	attributes.

In	the	context	of	this	demo,	it	is	important	to	see	the	name	of	the	role	that	executes	commands,	so	the	name	of	the	current
role	is	displayed	in	the	prompt.

student=#	CREATE	ROLE	alice	LOGIN	PASSWORD	'alicepass';

CREATE	ROLE

The	following	command	displays	the	list	of	roles:

student=#	\du

																																			List	of	roles
	Role	name	|																									Attributes																									|	Member	of	
-----------+--+-----------
	alice					|																																																												|	{}
	postgres		|	Superuser,	Create	role,	Create	DB,	Replication,	Bypass	RLS	|	{}
	student			|	Superuser,	Create	role,	Create	DB,	Replication,	Bypass	RLS	|	{}

Note	that	the	student	role	is	a	superuser.	That’s	why	there	has	been	no	need	to	take	care	of	access	rights	so	far.

Let’s	create	a	database	as	well:

student=#	CREATE	DATABASE	access_overview;

CREATE	DATABASE

5

Connection

1. The rows of pg_hba.conf are searched from top to bottom
2. The first row that corresponds to the provided connection
 parameters (type, database, user, address) will be used

TYPE DATABASE USER ADDRESS METHOD
local all postgres peer
local all all peer
host all all 127.0.0.1/32 scram-sha-256
host all all ::1/128 scram-sha-256

local — socket all — any role
host — TCP/IP role name

all — any database all — any IP
database name IP/mask

domain name

listen_addresses

For each new client, the server has to evaluate whether a database
connection should be allowed. Connection parameters are defined in the
pg_hba.conf configuration file (hba stands for host-based authentication).
As with the main configuration file (postgresql.conf), changes come into
effect only after the server reloads this file (SELECT pg_reload_conf() in
SQL, or pg_ctl reload in the operating system terminal).

When a new client appears, the server reads the configuration file from top
to bottom to find the row that matches the requested connection. The match
is defined by four fields: connection type, database name, user name, and
IP address.
Here we list only the main basic options.
Connection: local (unix sockets, unavailable for Windows) or host
(a TCP/IP connection).
Database: all (this keyword corresponds to any database) or the name
of a particular database.
User: all or the name of a particular role.

Address: all, a particular IP address with a subnet mask, or a domain
name. The address is omitted for the local connection type. By default,
PostgreSQL listens for incoming connections only on localhost; the
listen_addresses parameter is usually set to * (listen on all interfaces),
while the access is controlled using pg_hba.conf settings.
https://postgrespro.com/docs/postgresql/15/client-authentication

6

Connection

3. The server performs authentication using the chosen method
4. If successful, access is allowed; otherwise, it is forbidden
 (if no rows match the given parameters, access is forbidden)

TYPE DATABASE USER ADDRESS METHOD
local all postgres peer
local all all peer
host all all 127.0.0.1/32 scram-sha-256
host all all ::1/128 scram-sha-256

trust — allow all
reject — forbid all

scram-sha-256 and md5 — request a password
peer — ask OS

Once the server finds an appropriate row in the file, it performs client
authentication using the method specified in this row, and checks for the
LOGIN attribute and the CONNECT privilege. If everything is OK, the
connection is allowed; otherwise, it is forbidden (other rows won’t be
considered in this case).
If no appropriate row is found, the access is also forbidden.
Thus, more specific connection rows should precede more generic ones
while the file is viewed from top to bottom.
There are a lot of different authentication methods:
https://postgrespro.com/docs/postgresql/15/auth-methods
Here we mention only some of the main ones.
The trust method allows connections unconditionally. If security is not a
concern, you can specify the trust method and use all for all the other
parameters; then all connections will be allowed.
The reject method, on the contrary, unconditionally forbids all
connections.
The scram-sha-256 method asks for a password and checks that the
provided password matches the one stored in the system catalog of the
database cluster. The md5 method is considered deprecated.
The peer method checks the name of the operating system user and allows
connections on behalf of the database user with the same name (you can
also define a different name-mapping pattern).

7

Password Authentication

At the server side
the password is set when the role is created and can be altered later
a user that has no password won’t be able to connect
the password is stored in the pg_authid table of the system catalog

Entering the password on the client
manually
using the PGPASSWORD environment variable
using the ~/.pgpass file (its lines have the following format:
node:port:database:role:password)

If password authentication is used, there must be a reference password
stored for the user; otherwise the connection will be rejected.
Passwords are stored in the pg_authid table of the system catalog.

The user can either enter the password manually, or automate password
input using one of the following options.
The first one is to define the password on the client in the PGPASSWORD
environment variable. However, it is inconvenient if you have to connect to
several databases, and it is not recommended for security reasons.
The second option to store passwords on the client is to use the ~/.pgpass
file. The access to this file must be allowed to its owner only, otherwise
PostgreSQL will ignore it.

Connection

To	be	able	to	connect	to	a	database,	a	role	must	have	the	LOGIN	attribute,	and	the	pg_hba.conf	file	must	allow	connections	for	this	role.
The	pg_hba.conf	file	can	be	read	from	SQL:

student=#	SELECT	type,	database,	user_name,	address,	auth_method
FROM	pg_hba_file_rules();

	type		|			database				|	user_name		|		address		|		auth_method		
-------+---------------+------------+-----------+---------------
	local	|	{all}									|	{postgres}	|											|	trust
	local	|	{all}									|	{all}						|											|	trust
	host		|	{all}									|	{all}						|	127.0.0.1	|	scram-sha-256
	host		|	{all}									|	{all}						|	::1							|	scram-sha-256
	local	|	{replication}	|	{all}						|											|	trust
	host		|	{replication}	|	{all}						|	127.0.0.1	|	scram-sha-256
	host		|	{replication}	|	{all}						|	::1							|	scram-sha-256
(7	rows)

(Depending	on	the	PostgreSQL	distribution,	the	contents	of	the	file	may	differ.)

We	are	going	to	use	a	TCP/IP	host	connection.	This	connection	type	corresponds	to	the	third	line	in	pg_hba.conf.	It	requires	password
authentication.

The	alice	role	was	created	with	a	password,	but	you	can	change	it	any	time:

student=#	ALTER	ROLE	alice	PASSWORD	'alicepass';

ALTER	ROLE

Let’s	try	to	connect	to	the	database	by	providing	all	the	required	information	in	the	connection	string:

student$	psql	"host=localhost	user=alice	dbname=access_overview	password=alicepass"

alice=>	\conninfo

You	are	connected	to	database	"access_overview"	as	user	"alice"	on	host	"localhost"	(address	"127.0.0.1")	at	port	"5432".
SSL	connection	(protocol:	TLSv1.3,	cipher:	TLS_AES_256_GCM_SHA384,	compression:	off)

Success!

9

Privileges

Privileges define roles’ access rights for different objects
Tables and views

SELECT read data
INSERT insert rows
UPDATE update rows
REFERENCES set a foreign key
DELETE delete rows
TRUNCATE truncate a table
TRIGGER create triggers

 can be used for columns

Privileges are defined for combinations of roles and database objects. They
determine the actions that roles can perform with these objects.
There are different privileges available for different object types.
The widest choice of privileges is available for tables and views. Some of
these privileges can be defined not only at the table level, but also at the
column level.
https://postgrespro.com/docs/postgresql/15/ddl-priv
https://postgrespro.com/docs/postgresql/15/sql-grant

10

Privileges

Tablespaces, databases,
and schemas

Functions and procedures
EXECUTE

etc.

database

schema pg_temp

tablespace
таблицатаблицаobject

CREATE
USAGE

CREATE

таблицатаблицаobject

TEMPORARY

CREATE

CONNECT

For tablespaces, there is a CREATE privilege that allows creating objects in
this tablespace.
When defined for a database, the CREATE privilege allows creating schemas
in this database; for schemas, this privilege allows creating objects in this
schema.
Since the exact name of the schema for temporary objects is unknown in
advance, the privilege for creating temporary tables is defined at the
database level (TEMPORARY).

The USAGE privilege of a schema enables access to objects in this schema.

The CONNECT privilege of a database allows connections to this database.

11

Categories of Roles

Superusers
unlimited access to all objects: no checks are performed

Object owners
initially, all the privileges that can be granted on this object
actions on the owned object that are not regulated by privileges,
such as deleting objects or granting and revoking privileges

Other roles
access rights are defined by the granted privileges

In general, we can simply say that the role’s access to an object is defined
by its privileges. But it makes sense to single out three categories of roles
and discuss them separately.
1. Roles with the superuser attribute follow the most straightforward rules.
Such roles bypass access control checks and can perform any operations.

2. Each object has an owner, i.e., the role that owns this object. Initially, it is
the role that created the object, but you can change the owner later.
The object owner gets the full range of privileges on this object.
In theory, these privileges can be revoked, but the object owner also has an
inalienable right to perform some actions that are not regulated by
privileges. In particular, the owner can grant and revoke privileges (to other
roles and to itself) and delete the owned object.

3. All the other roles can access objects as defined by the privileges granted
to them.

12

Managing Privileges

Granting privileges
alice=> GRANT privileges ON objects TO bob;

Revoking privileges
alice=> REVOKE privileges ON object FROM bob;

alice bobprivileges
on an object

Privileges on a particular object can be granted and revoked by the object
owner (and a superuser).
The syntax of GRANT and REVOKE commands is quite complex. It allows
addressing different scenarios: you can specify either some particular
privileges or all the available privileges at once, grant privileges on individual
objects or on groups of objects that belong to particular schemas, etc.
https://postgrespro.com/docs/postgresql/15/sql-grant
https://postgrespro.com/docs/postgresql/15/sql-revoke

Privileges

Alice	has	managed	to	connect	to	the	database.	Now	she	wants	to	create	a	separate	schema	and	several	objects	in	it.

alice=>	CREATE	SCHEMA	alice;

ERROR:		permission	denied	for	database	access_overview

What	has	gone	wrong?

Alice	has	no	privilege	to	create	schemas	in	this	database.	Let’s	grant	it:

student=#	GRANT	CREATE	ON	DATABASE	access_overview	TO	alice;

GRANT

Now	try	once	again:

alice=>	CREATE	SCHEMA	alice;

CREATE	SCHEMA

Since	Alice	owns	a	separate	schema,	this	role	now	has	all	the	privileges	for	this	schema	and	can	create	any	objects	in	it.	It
is	this	schema	that	will	be	used	by	default:

alice=>	SELECT	current_schemas(true);

						current_schemas						

	{pg_catalog,alice,public}
(1	row)

Let’s	create	two	tables.

alice=>	CREATE	TABLE	t1(n	numeric);

CREATE	TABLE

alice=>	INSERT	INTO	t1	VALUES	(1);

INSERT	0	1

alice=>	CREATE	TABLE	t2(n	numeric,	who	text	DEFAULT	current_user);

CREATE	TABLE

alice=>	INSERT	INTO	t2(n)	VALUES	(1);

INSERT	0	1

Now	let’s	create	another	role	for	Bob,	who	is	going	to	access	the	objects	that	belong	to	Alice.

student=#	CREATE	ROLE	bob	LOGIN	PASSWORD	'bobpass';

CREATE	ROLE

student$	psql	"host=localhost	user=bob	dbname=access_overview	password=bobpass"

Bob	tries	to	access	the	t1	table.

bob=>	SELECT	*	FROM	alice.t1;

ERROR:		permission	denied	for	schema	alice
LINE	1:	SELECT	*	FROM	alice.t1;
																						^

What	has	caused	an	error?

The	schema	is	unavailable	because	Bob	is	neither	its	owner	nor	a	superuser.

To	check	access	rights	for	a	schema,	you	can	run	the	following	command	(see	the	Access	privileges	column):

alice=>	\dn+

																																							List	of	schemas
		Name		|							Owner							|											Access	privileges												|						Description							
--------+-------------------+--+------------------------
	alice		|	alice													|																																								|	
	public	|	pg_database_owner	|	pg_database_owner=UC/pg_database_owner+|	standard	public	schema
								|																			|	=U/pg_database_owner																			|	
(2	rows)

Privileges	are	displayed	in	the	following	format:	role=privileges/granted_by.

Each	privilege	is	represented	by	one	symbol;	for	example,	schemas	use	the	following	notation:

U	=	usage
C	=	create

If	the	role	name	is	omitted	(as	in	the	last	row),	the	public	pseudorole	is	implied.

If	the	whole	field	is	omitted	(as	in	the	first	row),	the	default	privileges	of	the	owner	are	in	effect.	We	can	see	that	alice	has
both	privileges	for	her	own	schema.

Let’s	grant	Bob	access	to	the	schema.	Alice	can	do	it	as	the	schema	owner.

alice=>	GRANT	CREATE,	USAGE	ON	SCHEMA	alice	TO	bob;

GRANT

Bob	tries	to	access	the	table	again:

bob=>	SELECT	*	FROM	alice.t1;

ERROR:		permission	denied	for	table	t1

What	has	caused	an	error?

Now	Bob	has	access	to	the	schema,	but	has	no	access	to	the	table	itself.	Here	is	how	we	can	check	access	rights:

alice=>	\dp	alice.t1

																												Access	privileges
	Schema	|	Name	|	Type		|	Access	privileges	|	Column	privileges	|	Policies	
--------+------+-------+-------------------+-------------------+----------
	alice		|	t1			|	table	|																			|																			|	
(1	row)

We	see	an	empty	field	again:	only	the	owner	(i.e.,	Alice)	has	access	permissions.

Alice	grants	Bob	the	right	to	read	and	update	table	t1:

alice=>	GRANT	SELECT,UPDATE	ON	alice.t1	TO	bob;

GRANT

For	the	second	table,	Bob	gets	the	right	to	insert	rows	and	read	one	of	the	columns:

alice=>	GRANT	SELECT(n),INSERT	ON	alice.t2	TO	bob;

GRANT

Let’s	see	how	the	privileges	have	changed:

alice=>	\dp	alice.*

																													Access	privileges
	Schema	|	Name	|	Type		|		Access	privileges		|	Column	privileges	|	Policies	
--------+------+-------+---------------------+-------------------+----------
	alice		|	t1			|	table	|	alice=arwdDxt/alice+|																			|	
								|						|							|	bob=rw/alice								|																			|	
	alice		|	t2			|	table	|	alice=arwdDxt/alice+|	n:															+|	
								|						|							|	bob=a/alice									|			bob=r/alice					|	
(2	rows)

The	contents	of	the	field	has	become	visible;	we	can	now	see	the	full	list	of	privileges	in	there.	Here	is	the	adopted
notation,	which	is	sometimes	not	quite	intuitive:

a	=	insert
r	=	select
w	=	update
d	=	delete
D	=	truncate
x	=	reference
t	=	trigger

Column	privileges	are	displayed	separately	(in	the	column	with	the	corresponding	name).

Now	Bob’s	attempts	are	successful.	To	avoid	specifying	the	schema	name	all	the	time,	Bob	adds	it	to	the	search	path.

bob=>	SET	search_path	=	public,	alice;

SET

bob=>	UPDATE	t1	SET	n	=	n	+	1;

UPDATE	1

bob=>	SELECT	*	FROM	t1;

	n	

	2
(1	row)

But	other	operations	are	still	forbidden:

bob=>	DELETE	FROM	t1;

ERROR:		permission	denied	for	table	t1

Bob	can	also	access	the	first	column	of	the	t2	table:

bob=>	INSERT	INTO	t2(n)	VALUES	(100);

INSERT	0	1

bob=>	SELECT	n	FROM	t2;

		n		

			1
	100
(2	rows)

But	it	is	forbidden	to	read	the	second	column:

bob=>	SELECT	*	FROM	t2;

ERROR:		permission	denied	for	table	t2

14

Including a role into a group
student=> GRANT dba TO alice;

the public pseudorole implicitly includes
all the other roles

Excluding a role from a group
student=> REVOKE dba FROM alice;

public

Group Roles

student alicedba

dba

alice

student

Apart from representing a database user, each role can also include other
roles, i.e., represent a group of roles. A role can be included into another
role, just like a Unix user can be included into a group.
It is also possible to include a group role into another group (but circular
membership loops are not allowed). In fact, PostgreSQL does not
differentiate between single-user and group roles.
The idea of such inclusion is to make group role privileges available to
single-user roles.
We can think of a group role as a predefined set of privileges that can be
granted to a role just like any regular privilege. It facilitates database
administration and access control.
There is also a pseudorole called public, which implicitly includes all the
other roles. Any privilege granted to the public role is automatically
granted to all the other roles as well.
The following roles have the right to modify a role by including or excluding
other roles:
- the role to be included (or excluded)
- a role with the SUPERUSER attribute

- a role with the CREATEROLE attribute

https://postgrespro.com/docs/postgresql/15/role-membership

15

pg_signal_backend — terminate sessions and cancel queries

pg_read_all_settings — read server parameters

pg_read_all_stats — access statistics

pg_stat_scan_tables — access statistics that take locks

pg_read_all_data — read data in all tables
pg_write_all_data — modify data in all tables

pg_read_server_files — read files on the server
pg_write_server_files — write files on the server

pg_execute_server_programs — execute programs on the server

pg_checkpoint — execute CHECKPOINT command

Predefined Group Roles

pg
_m

on
ito

r

PostgreSQL provides a number of predefined roles that have some
privileged capabilities. These roles can be granted by superusers to DBA
roles, allowing them to perform specific tasks that otherwise would require
SUPERUSER attribute.
The list of predefined roles increases with each version. The full list of all the
roles, including predefined ones, cat be seen by \duS command in psql.
https://postgrespro.com/docs/postgresql/15/default-roles
You can create your own group roles, e.g. for managing backups etc.

Group	Roles

Remember,	Bob	cannot	read	the	second	column	of	the	table:

bob=>	SELECT	*	FROM	t2;

ERROR:		permission	denied	for	table	t2

Let’s	grant	pg_read_all_data	privilege	to	Bob.	This	can	be	done	by	a	superuser:

student=#	GRANT	pg_read_all_data	TO	bob;

GRANT	ROLE

Now	Bob	can	access	all	tables,	as	if	he	was	granted	SELECT	on	all	tables	and	USAGE	on	all	schemas:

bob=>	SELECT	*	FROM	t2;

		n		|		who		
-----+-------
			1	|	alice
	100	|	bob
(2	rows)

17

Default Privileges

Privileges of the public pseudorole
connection to any database
access to the public schema and the right to create objects in it
access to the system catalog
execution of any routines
privileges are automatically granted on each new object

Configuring default privileges
a possibility to grant or revoke privileges on a newly created object

revoked as of
PostgreSQL 15

As we have already said, the public pseudorole includes all other roles, so
they inherit all the privileges granted to public.

And public has quite an extensive list of privileges by default. In particular:

- The right to connect to any database (that’s why the role alice could
connect to the database although the CONNECT privilege had not been
explicitly granted to this role).
- Access to the system catalog.
- Write access to the public schema (this was revoked in PostgreSQL 15).
- The right to execute any routines.
On the one hand, it enables seamless operation without having to deal with
privileges; but on the other hand, it brings extra complications if access
control is really required.
The public role automatically receives all the privileges listed above for all
newly created objects. So it is not enough to simply revoke the EXECUTE
privilege from public: once a new routine appears, public immediately
gets the right to execute it.
There is a special mechanism of default privileges that enables you to
automatically grant the required privileges on newly created objects. It can
be also used to revoke the EXECUTE privilege from the public pseudorole.

https://postgrespro.com/docs/postgresql/15/sql-alterdefaultprivileges

Default	Privileges	and	Routines

Alice	creates	a	function:

alice=>	CREATE	FUNCTION	foo()	RETURNS	integer	AS	$$
SELECT	1;
$$	LANGUAGE	sql	IMMUTABLE;

CREATE	FUNCTION

Can	Bob	call	it	if	Alice	has	not	granted	him	the	EXECUTE	privilege?

bob=>	SELECT	foo();

	foo	

			1
(1	row)

Yes,	the	call	is	possible.	The	EXECUTE	privilege	is	automatically	granted	to	the	public	role	for	each	newly	created
function.

It	can	be	avoided	if	you	modify	the	default	privileges:

alice=>	ALTER	DEFAULT	PRIVILEGES
FOR	ROLE	alice
REVOKE	EXECUTE	ON	FUNCTIONS	FROM	public;

ALTER	DEFAULT	PRIVILEGES

alice=>	\ddp

											Default	access	privileges
	Owner	|	Schema	|			Type			|	Access	privileges	
-------+--------+----------+-------------------
	alice	|								|	function	|	alice=X/alice
(1	row)

Now	the	public	role	has	no	EXECUTE	privilege	for	functions	owned	by	Alice,	so	only	Alice	can	run	them.

alice=>	CREATE	FUNCTION	bar()	RETURNS	integer	AS	$$
SELECT	1;
$$	LANGUAGE	sql	IMMUTABLE;

CREATE	FUNCTION

bob=>	SELECT	bar();

ERROR:		permission	denied	for	function	bar

19

Row-Level Security

Policies complement privileges
to manage access to tables at the row level
A policy is applied

to particular roles
to particular commands (SELECT, INSERT, UPDATE, DELETE)

A policy defines row access conditions
permissive: allows row access if the condition is true
restrictive: forbids row access if the condition is false
different conditions (predicates) for existing rows and the rows to be inserted

While privileges provide access control at the table and column levels, row-
level security policies do it at the row level.
By default, RLS is switched off. If required, it has to be enabled for each
table explicitly.
Policies can be defined for a table, a set of commands (SELECT, INSERT,
UPDATE, DELETE), and for particular roles. In fact, each policy is a boolean
condition (a predicate), which is computed for each selected row. If the
condition is true, the access is allowed (the access must not be forbidden by
any restrictive policy and must be allowed by at least one permissive policy
at the same time). Otherwise, the row won’t be visible.
The predicates defining access to existing and newly added rows can differ
(in this case, an UPDATE operation will be successful only if both predicates
are true).
Predicates are computed with the rights of the caller.
RLS policies do not apply to the table owner (in most cases), superusers,
roles with the BYPASSRLS attribute, and cannot be used for integrity
constraints (uniqueness, foreign keys).
https://postgrespro.com/docs/postgresql/15/ddl-rowsecurity

Row-Level	Security

Security	policies	enable	us	to	control	table	access	at	the	row	level,	for	each	particular	role.

alice=>	SELECT	*	FROM	t2;

		n		|		who		
-----+-------
			1	|	alice
	100	|	bob
(2	rows)

To	see	how	it	works,	let’s	make	the	role	reading	the	table	see	only	its	own	rows,	i.e.,	in	which	the	who	field	contains	this
role’s	name.

alice=>	CREATE	POLICY	who_policy	ON	t2
USING	(who	=	current_user);

CREATE	POLICY

For	security	policy	to	come	into	effect,	it	has	to	be	enabled	at	the	table	level:

alice=>	ALTER	TABLE	t2	ENABLE	ROW	LEVEL	SECURITY;

ALTER	TABLE

Now	Bob	sees	only	its	own	rows.	In	fact,	each	row	has	to	be	checked	separately	during	query	execution	to	verify	that	it
satisfies	the	predicate	specified	in	the	policy.

bob=>	SELECT	n	FROM	t2;

		n		

	100
(1	row)

bob=>	INSERT	INTO	t2(n)	VALUES	(101);

INSERT	0	1

bob=>	SELECT	n	FROM	t2;

		n		

	100
	101
(2	rows)

Row-level	security	policies	do	not	apply	to	superusers	and	roles	with	the	BYPASSRLS	attribute.	The	table	owner	usually
bypasses	these	policies	as	well:

alice=>	SELECT	*	FROM	t2;

		n		|		who		
-----+-------
			1	|	alice
	100	|	bob
	101	|	bob
(3	rows)

But	the	owner	can	choose	to	limit	its	own	rights:

alice=>	ALTER	TABLE	t2	FORCE	ROW	LEVEL	SECURITY;

ALTER	TABLE

alice=>	SELECT	*	FROM	t2;

	n	|		who		
---+-------
	1	|	alice
(1	row)

21

Takeaways

Roles, privileges, and policies provide a flexible access control
mechanism for different usage scenarios

you can easily allow everything to everyone
you can set up strict access control if required

When creating a new role, it is important to ensure that it can
connect to the server

22

Practice

1. Create a database, a schema, and a table with two columns:
a key and a value.
Create a role.

2. Find out the IP address and the subnet mask of the virtual
machine and configure the system so that the connection from
this address is allowed only to the created role and only to the
created database, using password authentication.
Make sure that student is still locally trusted by the server.

3. Configure access control so that the created role can query the
table and change the values in it, but not the keys.

4. Restore original authentication settings.

Task 2. Make sure you have a backup copy of the pg_hba.conf file before
making changes.
The IP address and the subnet mask can be found with the following
command:
ip a | awk '/scope global/ {print $2}'

Do not forget about the listen_addresses parameter.

Task	1.	Create	a	database,	objects,	and	a	role

student=#	CREATE	DATABASE	access_overview;

CREATE	DATABASE

student=#	\c	access_overview

You	are	now	connected	to	database	"access_overview"	as	user	"student".

student=#	CREATE	SCHEMA	s;

CREATE	SCHEMA

student=#	CREATE	TABLE	s.t(
				key	integer	PRIMARY	KEY,
				value	text
);

CREATE	TABLE

student=#	INSERT	INTO	s.t	VALUES	(1,'One'),(2,'Two');

INSERT	0	2

student=#	CREATE	ROLE	alice	LOGIN	PASSWORD	'alicepass';

CREATE	ROLE

Task	2.	Set	up	authentication

It’s	always	a	good	idea	to	make	a	backup	copy	of	a	configuration	file	before	modifications:

postgres$	cp	-n	/etc/postgresql/15/main/pg_hba.conf	/etc/postgresql/15/main/pg_hba.conf.backup

Here	is	the	IP	address	and	the	subnet	mask:

postgres$	ip	a	|	awk	'/scope	global/	{print	$2}'

10.0.2.15/24

Rewrite	the	HBA	file:

postgres$	echo	'host		access_overview	alice			10.0.2.15/24	scram-sha-256'	>	/etc/postgresql/15/main/pg_hba.conf

postgres$	echo	'local	all													student	trust'	>>	/etc/postgresql/15/main/pg_hba.conf

Set	the	listen_addresses	parameter:

student=#	SHOW	listen_addresses;

	listen_addresses	

	localhost
(1	row)

student=#	ALTER	SYSTEM	SET	listen_addresses	=	'*';

ALTER	SYSTEM

student$	sudo	pg_ctlcluster	15	main	restart

Test	the	changes.

Local	connection	is	not	allowed	for	alice:

student$	psql	"host=localhost	user=alice	dbname=access_overview	password=alicepass"	-c	"SELECT	now();"

psql:	error:	connection	to	server	at	"localhost"	(127.0.0.1),	port	5432	failed:	FATAL:		no	pg_hba.conf	entry	for	host	"127.0.0.1",	user	"alice",	database	"access_overview",	SSL	encryption
connection	to	server	at	"localhost"	(127.0.0.1),	port	5432	failed:	FATAL:		no	pg_hba.conf	entry	for	host	"127.0.0.1",	user	"alice",	database	"access_overview",	no	encryption

Connection	to	other	databases	is	also	not	allowed:

student$	psql	"host=10.0.2.15		user=alice	dbname=student	password=alicepass"	-c	"SELECT	now();"

psql:	error:	connection	to	server	at	"10.0.2.15",	port	5432	failed:	FATAL:		no	pg_hba.conf	entry	for	host	"10.0.2.15",	user	"alice",	database	"student",	SSL	encryption
connection	to	server	at	"10.0.2.15",	port	5432	failed:	FATAL:		no	pg_hba.conf	entry	for	host	"10.0.2.15",	user	"alice",	database	"student",	no	encryption

student$	psql	"host=10.0.2.15		user=alice	dbname=access_overview	password=alicepass"

alice=>	SELECT	now();

														now														

	2023-05-04	19:51:33.285121+03
(1	row)

Task	3.	Restrict	access

student$	psql	-d	access_overview

student=#	GRANT	ALL	ON	SCHEMA	s	TO	alice;

GRANT

student=#	GRANT	SELECT	ON	s.t	TO	alice;

GRANT

student=#	GRANT	UPDATE(value)	ON	s.t	TO	alice;

GRANT

Test	the	privileges:

alice=>	SELECT	*	FROM	s.t;

	key	|	value	
-----+-------
			1	|	One
			2	|	Two
(2	rows)

alice=>	UPDATE	s.t	SET	value	=	'Unity'	WHERE	key	=	1;

UPDATE	1

alice=>	UPDATE	s.t	SET	key	=	key+1	WHERE	key	=	2;

ERROR:		permission	denied	for	table	t

Everything	works	as	expected.

Task	4.	Revert	changes

student=#	ALTER	SYSTEM	RESET	ALL;

ALTER	SYSTEM

postgres$	cp	/etc/postgresql/15/main/pg_hba.conf.backup	/etc/postgresql/15/main/pg_hba.conf

