

Architecture

Buffer Cache and WAL

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Buffer cache overview

Eviction algorithm

Write-ahead log

Checkpoints

3

Buffer Cache

An array of buffers
data page (8 kB)
additional metadata

Memory locks
for shared access

PostgreSQL
postmaster

backend

OS
cache

background workers

shared memory

buffer cache

Buffer cache is used to even out the speed difference between disk and
RAM access. It consists of an array of buffers that store data pages and
additional metadata (such as the name of the file and page location within
this file).

Page size is usually 8 kB (it can be configured at build time, but there is
usually no point in doing it).

All data page access operations go via buffer cache. If any process needs to
access a page, it first tries to find it in cache. If the page is not found there,
the process asks the operating system to read this page and loads it into
buffer cache. (Note that the OS can read the page from disk or find it in its
own cache.)

Once the page is in buffer cache, it can be accessed multiple times without
any overhead caused by system calls.

However, buffer cache (just like other shared memory structures) is
protected by locks to handle concurrent access. Even though locks are
implemented quite efficiently, buffer cache access is not as fast as direct
access to RAM. So in most cases, the less data is read and updated by a
query, the faster this query completes.

4

Eviction

Eviction of rarely
accessed pages

a “dirty” buffer
is flushed to disk

another page is loaded
into the freed space

PostgreSQL
postmaster

backend

background workers

shared memory

buffer cache

OS
cache

Buffer cache size is usually not big enough to hold the whole database. It is
limited both by the available RAM and by additional overhead that arises
when we try to increase it. Sooner or later, buffer cache will become
completely full while a new page is being read. In this case, page eviction is
applied.

An eviction algorithm selects a page in cache that has been recently used
less often than others, and replaces it with the new page. If the selected
page has been updated, it must be flushed to disk first not to lose these
changes (a buffer that contains an updated page is called “dirty”).

This eviction algorithm is called LRU (Least Recently Used). It ensures that
actively used data is kept in cache. Such “hot” data is usually not abundant,
so having just enough buffer cache allows to significantly reduce the number
of system calls (and disk operations).

Buffer	Cache	and	Query	Execution

Let’s	create	a	database	and	a	table	in	it:

=>	CREATE	DATABASE	arch_wal_overview;

CREATE	DATABASE

=>	\c	arch_wal_overview

You	are	now	connected	to	database	"arch_wal_overview"	as	user	"student".

=>	CREATE	TABLE	t(n	integer);

CREATE	TABLE

Fill	the	table	with	some	rows:

=>	INSERT	INTO	t	SELECT	id	FROM	generate_series(1,100000)	AS	id;

INSERT	0	100000

=>	VACUUM	ANALYZE	t;

VACUUM

Now	restart	the	server	to	clear	buffer	cache.

=>	\q

student$	sudo	pg_ctlcluster	12	main	restart

student$	psql	arch_wal_overview

Let’s	compare	what	happens	in	two	subsequent	runs	of	the	same	query.	In	this	course,	we	will	not	discuss	query	plans	in
detail,	but	we	are	going	to	take	a	look	at	some	of	them	from	time	to	time.	Now	we’ll	run	the	EXPLAIN	ANALYZE	command,
which	executes	a	query	and	displays	both	the	query	plan	and	some	additional	information:

=>	EXPLAIN	(analyze,	buffers,	costs	off,	timing	off)
SELECT	*	FROM	t;

																	QUERY	PLAN																	
--
	Seq	Scan	on	t	(actual	rows=100000	loops=1)
			Buffers:	shared	read=443
	Planning	Time:	2.249	ms
	Execution	Time:	8.169	ms
(4	rows)

The	“Buffers:	shared”	row	shows	how	buffer	cache	is	used.

read	—	the	number	of	buffers	into	which	pages	from	disk	had	to	be	read.

=>	EXPLAIN	(analyze,	buffers,	costs	off,	timing	off)
SELECT	*	FROM	t;

																	QUERY	PLAN																	
--
	Seq	Scan	on	t	(actual	rows=100000	loops=1)
			Buffers:	shared	hit=443
	Planning	Time:	0.030	ms
	Execution	Time:	8.132	ms
(4	rows)

hit	—	the	number	of	buffers	that	already	contained	the	queried	pages.

Note	that	in	addition	to	faster	execution,	the	second	run	also	shows	shorter	planning	time	(that’s	because	system	catalog
tables	are	also	cached).

6

Write-Ahead Log (WAL)

Problem: in case of a failure, all data from RAM will be lost
if not flushed to disk

WAL
a stream of information about all performed operations,
which allows repeating them if they are lost because of a failure
WAL entry is written to disk before the modified data

WAL protects
pages of tables, indexes, and other objects
transaction status information (xact)

WAL does not protect
temporary and unlogged tables

Buffer cache (like other buffers in RAM) boosts performance, but negatively
affects reliability. If the database system fails, all buffer cache contents will
be lost. In case of operating system or hardware failures, OS buffer contents
will also be cleared (but the operating system copes with it on its own).

To ensure fault tolerance, PostgreSQL uses write-ahead logging. For each
operation, a WAL entry is generated; it contains the essential information
required to repeat this operation. Such entry must be written to disk (or any
other persistent storage) before the actual data update (hence the “write-
ahead” log).

WAL protects all objects that are handled in RAM, such as tables or
indexes, as well as transaction status metadata.

WAL files do not store any data about temporary tables (such tables can be
accessed only by their owner within the current session or transaction) and
unlogged tables (such tables are just like regular ones, except that they are
not protected by WAL). In case of a failure, such tables are simply cleared.
They are used to speed up access to data that can be recovered by other
means.

https://postgrespro.com/docs/postgresql/12/wal-intro

7

Checkpoints

Periodic flushing of all dirty buffers to disk
guarantees that all changes before the checkpoint are saved on disk
reduces the size of WAL required for recovery

Crash recovery
starts from the latest checkpoint
replays WAL entries one by one if the corresponding changes are missing

xid
checkpoint checkpoint crash

required WAL files

start
of recovery

When PostgreSQL server is started after a failure, it enters the recovery
mode. At this moment, the data stored on disk is inconsistent: some "hot"
pages may not have been flushed yet, even though they got updated before
other pages already written to disk.

To restore consistency, PostgreSQL reads WAL and replays all WAL entries
one by one if the corresponding changes have not been flushed to disk.
Thus, it restarts all transactions and then aborts those that were not
registered in WAL as committed.

However, WAL size could become huge during server operation. It is
absolutely impossible to store all WAL entries and replay them all after a
failure. That’s why the database system periodically performs a checkpoint:
all dirty buffers are forced to disk (including xact buffers that store
transaction status metadata). It guarantees that all transaction changes that
had happened before the checkpoint are saved on disk.

A checkpoint can take a lot of time, and that’s OK. The “point” itself in the
sense of a particular moment marks the beginning of the process. But the
checkpoint is considered complete only after all dirty buffers that were
present at that moment are flushed to disk.

Crash recovery starts from the latest checkpoint, which allows PostgreSQL
to store only those WAL files that were written after the last completed
checkpoint.

Using	WAL	for	Recovery

WAL	files	are	stored	in	a	separate	directory;	they	are	not	a	part	of	any	database.	You	can	access	this	directory	via	the	file
system,	or	display	its	contents	using	the	following	query:

=>	SELECT	*	FROM	pg_ls_waldir()	ORDER	BY	name;

											name											|			size			|						modification						
--------------------------+----------+------------------------
	000000010000000000000001	|	16777216	|	2021-10-19	17:00:41+03
	000000010000000000000002	|	16777216	|	2021-10-19	17:00:41+03
(2	rows)

Once	the	checkpoint	is	complete,	PostgreSQL	can	delete	redundant	files.

Let’s	make	some	changes:

=>	DELETE	FROM	t;

DELETE	100000

=>	INSERT	INTO	t(n)	VALUES	(0);

INSERT	0	1

All	the	modified	table	pages	are	available	in	buffer	cache,	but	are	not	yet	flushed	to	disk.	Let’s	simulate	a	system	failure	by
stopping	the	server	in	the	immediate	mode.	When	stopped	normally,	the	server	executes	the	checkpoint	to	flush	all	dirty
pages	to	disk,	but	it	doesn’t	happen	in	the	immediate	mode.

student$	sudo	pg_ctlcluster	12	main	stop	-m	immediate	--skip-systemctl-redirect

student$	sudo	pg_ctlcluster	12	main	start

At	the	server	start,	data	consistency	is	restored	using	WAL.	Let’s	check	the	result:

student$	psql	arch_wal_overview

=>	SELECT	*	FROM	t;

	n	

	0
(1	row)

All	the	changes	have	been	restored.

9

Performance

Synchronous mode
flushed at commit time
by backend

Asynchronous mode
flushed in the background
by walwriter

PostgreSQL

backend

postmaster

checkpointer

background workers

walwriter

shared memory

buffer cachexactwal

OS

WAL

transaction
status

fsync

cache

Using write-ahead logging is more efficient than direct unbuffered disk
writes. First of all, the size of WAL entries is smaller than the size of the
whole data page. Second, WAL entries are written sequentially (and are
usually not read until a failure), so this process can be easily handled even
by HDDs.

You can also tune performance by changing some settings. If the data is
flushed at once (synchronously), it is guaranteed that a committed
transaction won’t disappear. But flushing is quite expensive, and the
backend performing the commit has to wait for its completion. For WAL
entries not to get stuck in the operating system cache, fsync is called:
PostgreSQL assumes it is enough to ensure that the data reaches a
persistent storage.

That’s why PostgreSQL also provides a delayed (asynchronous) commit
mode. In this case, commits are gradually flushed to disk by the walwriter
background worker (with some delay). It is less reliable, but provides better
performance in return. In case of a failure, a consistent recovery is still
guaranteed, but some of the recently committed transactions may be lost.

10

Summary

Buffer cache boosts performance by reducing the number of
disk access operations

Reliability is ensured by write-ahead logging

WAL size is reduced by using checkpoints

WAL is a convenient mechanism used in many scenarios
to perform recovery after a failure
during backup
for replicating data between servers

11

Practice

1. Check how buffer cache is used when updating a single row
in a regular table and in a temporary table. Try to explain the
difference.

2. Create an unlogged table and insert several rows into it. Simulate
a system failure by stopping the server in the immediate mode
as shown in the demo.
Start the server and check the table state.
In the server log, find the entries related to recovery.

Task 1. Temporary tables look just like regular ones, but their lifetime is
limited to the current session. Likewise, such tables are visible only in the
current session.

Use the following command as shown in the demo:
EXPLAIN (analyze, buffers, costs off, timing off)

Task 2. To stop the server in the immediate mode, run:
sudo pg_ctlcluster 12 main stop -m immediate –skip-systemctl-redirect

The --skip-systemctl-redirect parameter is required because PostgreSQL
has been installed on Ubuntu from a package. The server is managed by
the pg_ctlcluster command that calls the systemctl utility, and the specified
mode gets lost by the time pg_ctl is started. This parameter allows us to do
without systemctl and pass the command to pg_ctl directly.

Task	1.	Using	Cache	with	Regular	and	Temporary	Tables

=>	CREATE	DATABASE	arch_wal_overview;

CREATE	DATABASE

=>	\c	arch_wal_overview

You	are	now	connected	to	database	"arch_wal_overview"	as	user	"student".

Let’s	create	a	regular	table	with	one	row...

=>	CREATE	TABLE	t(n	integer);

CREATE	TABLE

=>	INSERT	INTO	t(n)	VALUES	(1);

INSERT	0	1

...and	a	temporary	table	that	looks	exactly	the	same.

=>	CREATE	TEMPORARY	TABLE	tt(n	integer);

CREATE	TABLE

=>	INSERT	INTO	tt(n)	VALUES	(1);

INSERT	0	1

Update	the	row	in	the	regular	table:

=>	EXPLAIN	(analyze,	buffers,	costs	off,	timing	off)
UPDATE	t	SET	n	=	n	+	1;

																	QUERY	PLAN																		

	Update	on	t	(actual	rows=0	loops=1)
			Buffers:	shared	hit=2
			->		Seq	Scan	on	t	(actual	rows=1	loops=1)
									Buffers:	shared	hit=1
	Planning	Time:	0.158	ms
	Execution	Time:	0.075	ms
(6	rows)

The	page	was	found	in	buffer	cache	(“shared	hit=1”)	during	the	table	scan	(“Seq	Scan”).
It	was	required	to	read	two	pages	while	performing	the	update	(“shared	hit=2”).	The	second	page	belongs	to	a	visibility
map	(we	are	going	to	discuss	visibility	maps	in	the	“Data	Organization”	module).

Let’s	update	the	row	in	our	temporary	table:

=>	EXPLAIN	(analyze,	buffers,	costs	off,	timing	off)
UPDATE	tt	SET	n	=	n	+	1;

																		QUERY	PLAN																		
--
	Update	on	tt	(actual	rows=0	loops=1)
			Buffers:	local	hit=2
			->		Seq	Scan	on	tt	(actual	rows=1	loops=1)
									Buffers:	local	hit=1
	Planning	Time:	0.062	ms
	Execution	Time:	0.044	ms
(6	rows)

Instead	of	the	shared	buffer	cache,	which	is	located	in	the	server’s	shared	memory,	this	operation	uses	local	cache	of	the
current	(“local”)	session.

Task	2.	Unlogged	Tables	and	Failures

Let’s	create	an	unlogged	table:

=>	CREATE	UNLOGGED	TABLE	u(s	text);

CREATE	TABLE

=>	INSERT	INTO	u	VALUES	('Hello!');

INSERT	0	1

Simulate	a	failure:

student$	sudo	pg_ctlcluster	12	main	stop	-m	immediate	--skip-systemctl-redirect

Start	the	server:

student$	sudo	pg_ctlcluster	12	main	start

student$	psql	arch_wal_overview

=>	SELECT	*	FROM	u;

	s	

(0	rows)

The	table	is	here,	but	it	is	empty.	The	contents	of	unlogged	tables	is	not	restored	after	a	failure;	such	tables	are	simply	cleared
instead.

Let’s	check	the	server	log:

student$	tail	-n	5	/var/log/postgresql/postgresql-12-main.log

2021-10-19	17:05:08.739	MSK	[35603]	LOG:		database	system	was	not	properly	shut	down;	automatic	recovery	in	progress
2021-10-19	17:05:08.742	MSK	[35603]	LOG:		redo	starts	at	0/382470A0
2021-10-19	17:05:08.743	MSK	[35603]	LOG:		invalid	record	length	at	0/382671E0:	wanted	24,	got	0
2021-10-19	17:05:08.743	MSK	[35603]	LOG:		redo	done	at	0/382671B8
2021-10-19	17:05:08.781	MSK	[35602]	LOG:		database	system	is	ready	to	accept	connections

It	shows	that	an	abnormal	termination	was	detected	at	the	server	start,	and	an	automatic	recovery	was	performed.

