

SQL

Functions

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Functions and their specifics in the context of databases

Parameters and return values

Passing parameters when calling a function

Volatility categories and query planning

3

Functions in Databases

The main goal is simplifying development tasks
interface (parameters) and implementation (function body)
abstracting from other tasks when implementing a particular function

Traditional languages PostgreSQL
side effects global variables the whole database

(volatility categories)

modules have their own interface namespaces,
and implementation client and server

challenges function call overhead hiding the query
(inlining) from the planner

(inlining, subqueries,
views)

The main goal of introducing functions in programming is simplifying
development tasks by decomposing them into smaller subtasks. Such
simplification is possible because you can abstract from the “big” task when
thinking of a function. For this purpose, the function provides a precise
interface to the outside world (parameters and the return value). Its
implementation (the function body) can change; the caller does not see
these changes and does not depend on them. This ideal situation can be
messed up by the global state (global variables), and you have to keep in
mind that in the DB context the whole database constitutes such a state.

In traditional programming languages, functions are often grouped into
modules (packages, classes for OOP, etc.), which have their own interface
and implementation. This separation into modules can be more or less
arbitrary. In PostgreSQL, there is a fixed boundary between client and
server parts: the server code deals with the database, while the client code
manages transactions. There are no modules (or packages), only
namespaces are present.

The only disadvantage of extensive use of functions in traditional languages
is function call overhead. It is sometimes overcome by inlining function code
into the calling program. In databases, the consequences can be more
serious: if some part of the query is moved into a function, the planner stops
seeing the “big picture” and cannot build a good query plan. In some cases,
PostgreSQL can also perform inlining; alternatively, subqueries or views can
be used.

4

General Information

A database object
function declaration is stored in the system catalog

The structure of function declaration
name
parameters
return data type
body

Can be written in various languages, including SQL
the code is stored as a string literal
a function is interpreted when it is called

Is called in the context of an expression

Functions are regular database objects, just like tables or indexes. Function
declarations are stored in the system catalog; that’s why database functions
are called stored functions.

PostgreSQL provides a lot of standard functions. Some of them are listed in
the “Basic Data Types and Functions” handout.

You can also write your own functions in various programming languages.
The information provided in this lecture applies to functions in any
programming language, but we will use SQL in all examples.

Predictably, a function declaration consists of a name, optional parameters,
a return data type, and a body. What may seem unexpected is that the body
is written as a string literal, which contains the code written in the
programming language of your choice. It makes function declarations look
the same regardless of the used programming language. The body string is
stored in the system catalog and is interpreted each time the function is
called. At the moment, the only way to avoid interpretation is to write a
function in the C language, but it’s required not too often, so we are not
going to discuss it in this course.

A function is always called within the context of an expression. For example,
in the list of expressions of the SELECT statement, in the WHERE clause, in
CHECK constraints, etc.

https://postgrespro.com/docs/postgresql/12/sql-createfunction

https://postgrespro.com/docs/postgresql/12/sql-syntax-calling-funcs

Functions	without	Parameters

Here	is	a	simple	example	of	a	function	with	no	parameters:

=>	CREATE	FUNCTION	hello_world()	--	function	name	and	an	empty	list	of	parameters
RETURNS	text																					--	the	type	of	the	return	value
AS	$$	SELECT	'Hello,	world!';	$$	--	function	body
LANGUAGE	sql;																				--	language	specification

CREATE	FUNCTION

It	is	convenient	to	write	the	body	as	a	dollar-quoted	string,	as	shown	in	the	example	above.	Otherwise,	you	have	to	take
care	of	escaping	quotes,	which	are	sure	to	appear	in	the	function	body.	Compare	the	following	strings:

=>	SELECT	'	SELECT	''Hello,	world!'';	';

									?column?										

		SELECT	'Hello,	world!';	
(1	row)

=>	SELECT	$$	SELECT	'Hello,	world!';	$$;

									?column?										

		SELECT	'Hello,	world!';	
(1	row)

If	required,	dollar	quoting	can	be	nested.	It	is	achieved	by	using	different	text	strings	between	dollars	in	each	pair	of
quotes:

=>	SELECT	$func$	SELECT	$$Hello,	world!$$;	$func$;

										?column?											

		SELECT	$$Hello,	world!$$;	
(1	row)

A	function	is	called	in	the	context	of	an	expression.	For	example:

=>	SELECT	hello_world();	--	empty	brackets	are	mandatory

		hello_world		

	Hello,	world!
(1	row)

In	general,	a	function	body	can	contain	several	SQL	operators.	The	return	value	is	taken	from	the	first	row	returned	by	the
last	operator.

Not	all	SQL	operators	can	be	used	in	a	function.	The	following	ones	are	forbidden:

transaction	control	commands	(BEGIN,	COMMIT,	ROLLBACK,	etc.);
service	commands	(such	as	VACUUM	or	CREATE	INDEX).

Here	is	an	example	of	an	invalid	function.	We	have	used	the	void	pseudotype,	which	indicates	that	the	function	returns
nothing.

=>	CREATE	FUNCTION	do_commit()	RETURNS	void	AS	$$
COMMIT;
$$	LANGUAGE	sql;

CREATE	FUNCTION

=>	SELECT	do_commit();

ERROR:		COMMIT	is	not	allowed	in	a	SQL	function
CONTEXT:		SQL	function	"do_commit"	during	startup

You	can	use	procedures	to	manage	transactions;	we	will	cover	this	topic	in	the	next	lecture.

Functions	with	Input	Parameters

Here	is	a	function	with	a	single	parameter:

=>	CREATE	FUNCTION	hello(name	text)	--	a	formal	parameter
RETURNS	text	AS	$$
SELECT	'Hello,	'	||	name	||	'!';
$$	LANGUAGE	sql;

CREATE	FUNCTION

When	calling	this	function,	we	have	to	specify	the	actual	value	that	corresponds	to	the	formal	parameter:

=>	SELECT	hello('Alice');

					hello					

	Hello,	Alice!
(1	row)

When	specifying	parameter	types,	you	can	add	a	modifier	(such	as	varchar(10)),	but	it	will	be	ignored.

You	can	define	a	function	parameter	without	a	name;	then	the	function	body	will	have	to	refer	to	it	by	its	position	number.
Let’s	delete	this	function	and	create	a	new	one:

=>	DROP	FUNCTION	hello(text);	--	it	is	enough	to	specify	the	parameter	type

DROP	FUNCTION

=>	CREATE	FUNCTION	hello(text)
RETURNS	text	AS	$$
SELECT	'Hello,	'	||	$1	||	'!';	--	a	number	instead	of	the	name
$$	LANGUAGE	sql;

CREATE	FUNCTION

=>	SELECT	hello('Alice');

					hello					

	Hello,	Alice!
(1	row)

But	this	approach	is	inconvenient	and	should	be	avoided.

Let’s	delete	and	recreate	the	function	again,	now	adding	one	more	parameter	to	include	the	title	of	a	person.

=>	DROP	FUNCTION	hello(text);

DROP	FUNCTION

Here	we	have	used	an	optional	IN	keyword,	which	means	the	input	parameter.	The	DEFAULT	clause	is	used	to	define	the
default	parameter	value:

=>	CREATE	FUNCTION	hello(IN	name	text,	IN	title	text	DEFAULT	'Mr.')
RETURNS	text	AS	$$
SELECT	'Hello,	'	||	title	||	'	'	||	name	||	'!';
$$	LANGUAGE	sql;

CREATE	FUNCTION

=>	SELECT	hello('Alice',	'Dr.');	--	both	parameters	are	specified

							hello							

	Hello,	Dr.	Alice!
(1	row)

=>	SELECT	hello('Bob');	--	the	parameter	with	the	default	value	is	omitted

						hello						

	Hello,	Mr.	Bob!
(1	row)

So	far,	we	have	provided	function	parameters	as	positional	ones,	in	the	order	they	were	specified	in	the	function
declaration.	In	many	standard	functions,	parameter	names	are	not	set,	so	it	is	the	only	way	possible.

But	if	the	formal	parameters	are	named,	you	can	use	these	names	when	providing	their	actual	values.	In	this	case,
parameters	can	be	specified	in	any	order:

=>	SELECT	hello(title	=>	'Dr.',	name	=>	'Alice');

							hello							

	Hello,	Dr.	Alice!
(1	row)

=>	SELECT	hello(name	=>	'Bob');

						hello						

	Hello,	Mr.	Bob!
(1	row)

This	approach	is	convenient	if	the	order	of	parameters	is	not	quite	obvious,	especially	if	there	are	a	lot	of	them.

You	can	combine	both	conventions:	provide	some	parameters	by	position	(starting	from	the	first	one)	and	specify	the	rest
by	name:

=>	SELECT	hello('Alice',	title	=>	'Dr.');

							hello							

	Hello,	Dr.	Alice!
(1	row)

If	the	function	must	return	NULL	when	at	least	one	of	its	input	parameters	is	NULL,	it	can	be	declared	STRICT.	In	this
case,	the	function	body	will	not	be	executed	at	all.

=>	DROP	FUNCTION	hello(text,	text);

DROP	FUNCTION

=>	CREATE	FUNCTION	hello(IN	name	text,	IN	title	text	DEFAULT	'NULL')
RETURNS	text	AS	$$
SELECT	'Hello,	'	||	title	||	'	'	||	name	||	'!';
$$	LANGUAGE	sql	STRICT;

CREATE	FUNCTION

=>	SELECT	hello('Alice',	NULL);

	hello	

(1	row)

6

Input and Output

Input values
are defined by parameters with IN or INOUT modes

Output value
is defined either by the RETURNS clause
or by parameters with INOUT or OUT modes

if both forms are specified, they must not contradict each other

Formal parameters that have IN or INOUT modes are considered to be
input parameters. Their actual values must be specified in the function call
(or the default values must be defined).

There are two ways to define the return value:

- use the RETURNS clause to specify the return data type

- define output parameters using INOUT or OUT modes

These two approaches are equivalent. For example, a function with the
RETURNS integer clause and a function with the OUT integer parameter both
return an integer number.

You can combine these two approaches. In this case, the function will also
return one integer number. But note that the types of the output parameters
and the RETURNS clause must not contradict each other.

Thus, you cannot write a function that returns one value, but passes
another value into the OUT parameter (which is allowed in many traditional
programming languages). In PostgreSQL, such functions return both
values.

Functions	with	Output	Parameters

An	alternative	way	to	return	a	value	is	to	use	an	output	parameter.

=>	DROP	FUNCTION	hello(text,	text);

DROP	FUNCTION

=>	CREATE	FUNCTION	hello(
				IN	name	text,
				OUT	text	--	you	can	omit	the	parameter	name	if	it	is	not	required
)
AS	$$
SELECT	'Hello,	'	||	name	||	'!';
$$	LANGUAGE	sql;

CREATE	FUNCTION

=>	SELECT	hello('Alice');

					hello					

	Hello,	Alice!
(1	row)

The	result	is	the	same.

You	can	use	the	RETURNS	clause	and	the	OUT	parameter	together:	the	result	will	be	the	same	anyway:

=>	DROP	FUNCTION	hello(text);	--	OUT	parameters	are	omitted

DROP	FUNCTION

=>	CREATE	FUNCTION	hello(IN	name	text,	OUT	text)
RETURNS	text	AS	$$
SELECT	'Hello,	'	||	name	||	'!';
$$	LANGUAGE	sql;

CREATE	FUNCTION

=>	SELECT	hello('Alice');

					hello					

	Hello,	Alice!
(1	row)

Or	even	use	an	INOUT	parameter:

=>	DROP	FUNCTION	hello(text);

DROP	FUNCTION

=>	CREATE	FUNCTION	hello(INOUT	name	text)
AS	$$
SELECT	'Hello,	'	||	name	||	'!';
$$	LANGUAGE	sql;

CREATE	FUNCTION

=>	SELECT	hello('Alice');

					hello					

	Hello,	Alice!
(1	row)

Note	that	the	actual	value	passed	to	the	SQL	function	in	an	INOUT	parameter	is	not	modified:	we	pass	an	input	value,	and
the	output	value	is	returned	as	a	result	(SQL	differs	from	many	other	programming	languages	in	this	respect).	That’s	why
we	can	specify	a	constant,	although	other	languages	would	require	a	variable.

While	the	RETURNS	clause	can	take	only	one	value,	there	can	be	several	output	parameters.	For	example:

=>	DROP	FUNCTION	hello(text);

DROP	FUNCTION

=>	CREATE	FUNCTION	hello(
				IN	name	text,
				OUT	greeting	text,
				OUT	clock	timetz)
AS	$$
SELECT	'Hello,	'	||	name	||	'!',	current_time;
$$	LANGUAGE	sql;

CREATE	FUNCTION

=>	SELECT	hello('Alice');

																hello																	

	("Hello,	Alice!",17:01:28.935637+03)
(1	row)

Indeed,	our	function	has	returned	not	just	one,	but	several	values	at	once.

We	will	provide	more	details	about	this	feature	and	composite	types	in	the	“SQL.	Composite	Types”	lecture.

8

Volatility Categories

Volatile
returns different values for the same input arguments
is used by default

Stable
the value cannot change within a single SQL operator
the function cannot change the database state

Immutable
the value cannot change, the function is deterministic
the function cannot change the database state

Each function is mapped to a particular volatility category, which defines the
properties of the return value for the same input arguments.

The volatile category means that the return value can change randomly.
Such functions will be executed each time they are called. If the function is
declared without a category specification, it is assumed to be volatile.

The stable category is used for functions that always return the same value
within a single SQL operator. In particular, such functions cannot change
the state of the database. It is possible to execute such a function only once
during the query and then use the computed value.

The immutable category is even more strict: the return value always
remains the same. Such a function can be executed at the planning stage,
before the query is actually executed.

It does not mean that it happens so all the time, but the planner has the
right to perform such optimizations. In some (simple) cases, the planner
makes its own assumptions about function volatility, regardless of the
explicitly provided category.

https://postgrespro.com/docs/postgresql/12/xfunc-volatility

Volatility	Categories	and	Isolation

In	general,	using	functions	within	queries	does	not	violate	the	isolation	level	of	the	transaction,	but	there	are	two	points
worth	knowing.

First,	volatile	functions	can	cause	data	inconsistency	within	the	query	when	used	at	the	Read	Committed	level.

Let’s	create	a	function	that	returns	the	number	of	rows	in	a	table:

=>	CREATE	TABLE	t(n	integer);

CREATE	TABLE

=>	CREATE	FUNCTION	cnt()	RETURNS	bigint
AS	$$
				SELECT	count(*)	FROM	t;
$$	VOLATILE	LANGUAGE	sql;

CREATE	FUNCTION

Now	let’s	call	it	several	times	with	a	delay	and	insert	a	row	into	the	table	in	a	parallel	session.

=>	BEGIN	ISOLATION	LEVEL	READ	COMMITTED;

BEGIN

=>	SELECT	(SELECT	count(*)	FROM	t),	cnt(),	pg_sleep(1)
FROM	generate_series(1,4);

=>	INSERT	INTO	t	VALUES	(1);

INSERT	0	1

	count	|	cnt	|	pg_sleep	
-------+-----+----------
					0	|			0	|	
					0	|			0	|	
					0	|			1	|	
					0	|			1	|	
(4	rows)

=>	END;

COMMIT

It	won’t	happen	at	stricter	isolation	levels,	or	if	the	function	is	stable	or	immutable.

=>	ALTER	FUNCTION	cnt()	STABLE;

ALTER	FUNCTION

=>	TRUNCATE	t;

TRUNCATE	TABLE

=>	BEGIN	ISOLATION	LEVEL	READ	COMMITTED;

BEGIN

=>	SELECT	(SELECT	count(*)	FROM	t),	cnt(),	pg_sleep(1)
FROM	generate_series(1,4);

=>	INSERT	INTO	t	VALUES	(1);

INSERT	0	1

	count	|	cnt	|	pg_sleep	
-------+-----+----------
					0	|			0	|	
					0	|			0	|	
					0	|			0	|	
					0	|			0	|	
(4	rows)

=>	END;

COMMIT

Another	point	is	the	visibility	of	changes	made	by	the	same	transaction.

Volatile	functions	can	see	all	the	changes,	even	those	made	by	the	current	SQL	operator	that	has	not	been	completed	yet.

=>	ALTER	FUNCTION	cnt()	VOLATILE;

ALTER	FUNCTION

=>	TRUNCATE	t;

TRUNCATE	TABLE

=>	INSERT	INTO	t	SELECT	cnt()	FROM	generate_series(1,5);

INSERT	0	5

=>	SELECT	*	FROM	t;

	n	

	0
	1
	2
	3
	4
(5	rows)

It	is	true	for	any	isolation	level.

Stable	and	immutable	functions	see	only	the	changes	performed	by	an	already	completed	operator.

=>	ALTER	FUNCTION	cnt()	STABLE;

ALTER	FUNCTION

=>	TRUNCATE	t;

TRUNCATE	TABLE

=>	INSERT	INTO	t	SELECT	cnt()	FROM	generate_series(1,5);

INSERT	0	5

=>	SELECT	*	FROM	t;

	n	

	0
	0
	0
	0
	0
(5	rows)

Volatility	Categories	and	Performance	Tuning

Thanks	to	the	volatility	labels	that	provide	additional	information	about	the	function	behavior,	the	optimizer	can	spare
some	function	calls.

To	try	it	out,	let’s	create	a	function	that	returns	a	random	number:

=>	CREATE	FUNCTION	rnd()	RETURNS	float
AS	$$
				SELECT	random();
$$	VOLATILE	LANGUAGE	sql;

CREATE	FUNCTION

Let’s	check	the	execution	plan	of	the	following	query:

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	generate_series(1,10)	WHERE	rnd()	>	0.5;

																			QUERY	PLAN																			
--
	Function	Scan	on	generate_series
			Filter:	(random()	>	'0.5'::double	precision)
(2	rows)

The	query	plan	shows	that	the	generate_series	function	is	honestly	called	several	times;	each	result	is	compared	with	a
random	number	and	is	filtered	out,	if	required.

You	can	see	it	for	yourself	(we	expect	to	get	about	5	rows	on	average):

=>	SELECT	*	FROM	generate_series(1,10)	WHERE	rnd()	>	0.5;

	generate_series	

															1
															4
															5
															6
(4	rows)

A	stable	function	will	be	called	only	once,	because	we	have	virtually	specified	that	its	value	cannot	change	within	a	single
operator:

=>	ALTER	FUNCTION	rnd()	STABLE;

ALTER	FUNCTION

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	generate_series(1,10)	WHERE	rnd()	>	0.5;

																						QUERY	PLAN																						
--
	Result
			One-Time	Filter:	(rnd()	>	'0.5'::double	precision)
			->		Function	Scan	on	generate_series
(3	rows)

Finally,	immutable	functions	are	computed	at	the	planning	stage,	so	we	do	not	need	any	filters	during	execution:

=>	ALTER	FUNCTION	rnd()	IMMUTABLE;

ALTER	FUNCTION

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	generate_series(1,10)	WHERE	rnd()	>	0.5;

												QUERY	PLAN												

	Function	Scan	on	generate_series
(1	row)

It	is	the	developer’s	responsibility	to	provide	the	correct	information.

Function	Inlining

In	some	(very	simple)	cases,	a	function	can	be	inlined:	the	function	body	written	in	SQL	can	be	inserted	right	into	the	main
SQL	operator	while	the	query	is	being	parsed.	In	this	case,	we	can	save	some	time	on	the	function	call.

Roughly	speaking,	the	following	conditions	should	be	met:

The	function	body	contains	only	one	SELECT	operator.
There	are	no	table	lookups,	subqueries,	grouping	operations,	etc.
There	must	be	only	one	return	value.
The	called	functions	must	not	violate	the	specified	volatility	category.

We	have	already	seen	such	an	example:	the	rnd()	function,	which	is	declared	volatile.

Let’s	take	another	look.

=>	ALTER	FUNCTION	rnd()	VOLATILE;

ALTER	FUNCTION

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	generate_series(1,10)	WHERE	rnd()	>	0.5;

																			QUERY	PLAN																			
--
	Function	Scan	on	generate_series
			Filter:	(random()	>	'0.5'::double	precision)
(2	rows)

The	Filter	does	not	mention	the	rnd()	function,	only	random()	is	present;	it	will	be	called	directly,	without	using	the	rnd()
wrapper.

10

Summary

You can create your own function and use it
in the same manner as the built-in ones

Functions can be written in various languages, including SQL

Volatility categories affect optimization opportunities

An SQL function can sometimes be inlined

11

Practice

1. Create the author_name function to construct author names.
The function takes three parameters (last_name, first_name,
and middle_name) and returns the full name, with the middle
name abbreviated to its initial.

Use this function in the authors_v view.

2. Create the book_name function to construct book titles.
The function takes two parameters (book ID and the title) and
returns a concatenation of the book title and the list of authors,
in the seq_num order. The name of each author is produced by
the author_name function.

Use this function in the catalog_v view.

Check the changes in the application.

Just a friendly reminder: all the required functions are listed in the “Basic
Data Types and Functions” handout.

Task 1. FUNCTION author_name(
 first_name text, middle_name text, last_name text
)
RETURNS text

For example: author_name('Alexander','Sergeyevich', 'Pushkin')
→ 'Alexander S. Pushkin'

Task 2. FUNCTION book_name(book_id integer, title text)
RETURNS text

For example: book_name(3,'Good Omens') →
→ 'Good Omens. Terry Pratchett, Neil Gaiman'

Stored functions can be edited directly in any tool. For example, psql
provides the \ef command that opens the function body in an editor and
saves the changes in the database.

You should avoid using this capability (or at least do not overuse it).
A properly set up development process requires that all the code is stored
in files under version control. If a function has to be changed, the file is
modified and executed (using psql or an IDE). Function modifications made
directly in the database can be easily lost. (In fact, setting up development
processes is much more complex, but we are not going to cover it in this
course.)

Task	1.	The	author_name	Function

=>	CREATE	OR	REPLACE	FUNCTION	author_name(
				last_name	text,
				first_name	text,
				middle_name	text
)	RETURNS	text
AS	$$
SELECT	first_name	||
							CASE	WHEN	middle_name	!=	''	--	NOT	NULL	is	implied
											THEN	'	'	||	left(middle_name,	1)	||	'.'
											ELSE	''
							END	||	'	'	||
							last_name;
$$	IMMUTABLE	LANGUAGE	sql;

CREATE	FUNCTION

Volatility	category:	immutable.	The	function	always	returns	the	same	value	given	the	same	input	arguments.

=>	CREATE	OR	REPLACE	VIEW	authors_v	AS
SELECT	a.author_id,
							author_name(a.last_name,	a.first_name,	a.middle_name)	AS	display_name
FROM			authors	a
ORDER	BY	display_name;

CREATE	VIEW

Task	2.	The	book_name	Function

=>	CREATE	OR	REPLACE	FUNCTION	book_name(book_id	integer,	title	text)
RETURNS	text
AS	$$
SELECT	title	||	'.	'	||
							string_agg(
											author_name(a.last_name,	a.first_name,	a.middle_name),	',	'
											ORDER	BY	ash.seq_num
)
FROM			authors	a
							JOIN	authorship	ash	ON	a.author_id	=	ash.author_id
WHERE		ash.book_id	=	book_name.book_id;
$$	STABLE	LANGUAGE	sql;

CREATE	FUNCTION

Volatility	category:	stable.	The	function	returns	the	same	value	given	the	same	input	arguments,	but	only	within	a	single
SQL	query.

=>	DROP	VIEW	IF	EXISTS	catalog_v;

DROP	VIEW

=>	CREATE	VIEW	catalog_v	AS
SELECT	b.book_id,
							book_name(b.book_id,	b.title)	AS	display_name
FROM			books	b
ORDER	BY	display_name;

CREATE	VIEW

12

Practice

1. Write a function that returns random timestamps,
equally distributed within the specified time range.
The lower bound of the range is set by a timestamptz, while
the upper bound is either a timestamptz or an interval.

2. Sometimes phonewords are used as a mnemonic equivalent of
telephone numbers, like 1-800-TAXICAB. A phoneword is
constructed by replacing some digits with the corresponding
letters, as seen on the keypad (even on modern phones).
Write a function that returns number representation of a
phoneword, no dashes.

3. Write a function that finds square roots of an equation.

In all tasks, make sure to pay attention to volatility categories of the
functions.

Task 2. The correspondence between digits and letters is as follows:

 2 – abc, 3 – def, 4 – ghi, 5 – jkl, 6 – mno, 7 – pqrs, 8 – tuv, 9 – wxyz

Note that a phoneword can be written in lowercase as well as in uppercase.

Task 3. For the equation y = ax2 + bx + c:

discriminant D = b2 – 4ac.

if D > 0, then there are two roots x
1,2

 = (–b ± √D) / 2a

if D = 0, then there is one root x = –b / 2a (null can be returned as x
2
)

if D < 0, then there are no roots (both roots are null).

Task	1.	A	Random	Timestamp

Here	is	a	function	with	two	timestamps:

=>	CREATE	FUNCTION	rnd_timestamp(t_start	timestamptz,	t_end	timestamptz)
RETURNS	timestamptz
AS	$$
				SELECT	t_start	+	(t_end	-	t_start)	*	random();
$$	VOLATILE	LANGUAGE	sql;

CREATE	FUNCTION

This	function	is	volatile.	It	will	return	different	values	given	the	same	input	arguments	since	the	random()	function	is	used.

=>	SELECT	current_timestamp,
				rnd_timestamp(
								current_timestamp,
								current_timestamp	+	interval	'1	hour'
)
FROM	generate_series(1,10);

							current_timestamp							|									rnd_timestamp									
-------------------------------+-------------------------------
	2021-10-19	17:05:26.981294+03	|	2021-10-19	17:36:20.432004+03
	2021-10-19	17:05:26.981294+03	|	2021-10-19	18:01:25.771207+03
	2021-10-19	17:05:26.981294+03	|	2021-10-19	17:29:37.688731+03
	2021-10-19	17:05:26.981294+03	|	2021-10-19	17:20:28.820816+03
	2021-10-19	17:05:26.981294+03	|	2021-10-19	17:51:26.45336+03
	2021-10-19	17:05:26.981294+03	|	2021-10-19	17:54:06.357517+03
	2021-10-19	17:05:26.981294+03	|	2021-10-19	17:59:15.308904+03
	2021-10-19	17:05:26.981294+03	|	2021-10-19	17:19:25.796948+03
	2021-10-19	17:05:26.981294+03	|	2021-10-19	17:06:41.498541+03
	2021-10-19	17:05:26.981294+03	|	2021-10-19	17:10:44.500444+03
(10	rows)

The	second	function	(that	has	an	interval	parameter)	can	be	defined	via	the	first	one:

=>	CREATE	FUNCTION	rnd_timestamp(t_start	timestamptz,	t_delta	interval)
RETURNS	timestamptz
AS	$$
				SELECT	rnd_timestamp(t_start,	t_start	+	t_delta);
$$	VOLATILE	LANGUAGE	sql;

CREATE	FUNCTION

=>	SELECT	rnd_timestamp(current_timestamp,	interval	'1	hour');

									rnd_timestamp									

	2021-10-19	17:24:00.635935+03
(1	row)

Task	2.	Phonewords

=>	CREATE	FUNCTION	phoneword_to_number(phoneword	text)	RETURNS	numeric
AS	$$
				SELECT	translate(
													lower(phoneword),
													'abcdefghijklmnopqrstuvwxyz-',
													'22233344455566677778889999'
)::numeric;
$$	IMMUTABLE	LANGUAGE	sql;

CREATE	FUNCTION

Volatility	category:	immutable.	The	function	always	returns	the	same	value	given	the	same	input	arguments.

=>	SELECT	phoneword_to_number('1-800-TAXICAB');

	phoneword_to_number	

									18008294222
(1	row)

Task	3.	Square	Roots

=>	CREATE	FUNCTION	square_roots(
				a	float,
				b	float,
				c	float,
				x1	OUT	float,
				x2	OUT	float
)
AS	$$
WITH	discriminant(d)	AS	(
				SELECT	b*b	-	4*a*c
)
SELECT	CASE	WHEN	d	>=	0.0	THEN	(-b	+	sqrt(d))/2/a	END,
							CASE	WHEN	d	>		0.0	THEN	(-b	-	sqrt(d))/2/a	END
FROM	discriminant;
$$	IMMUTABLE	LANGUAGE	sql;

CREATE	FUNCTION

Volatility	category:	immutable.	The	function	always	returns	the	same	value	given	the	same	input	arguments.

=>	SELECT	square_roots(1,		0,	-4);

	square_roots	

	(2,-2)
(1	row)

=>	SELECT	square_roots(1,	-4,		4);

	square_roots	

	(2,)
(1	row)

=>	SELECT	square_roots(1,		1,		1);

	square_roots	

	(,)
(1	row)

