

PL/pgSQL

Executing Queries

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Using SQL commands in PL/pgSQL code

Eliminating naming ambiguities

Checking command status

Table functions

3

Returning no Rows

SQL commands are embedded into PL/pgSQL code
as in expressions:
the query is prepared, PL/pgSQL variables become parameters

SELECT → PERFORM

it is convenient for calling functions with side effects
WITH queries should be wrapped into a SELECT

INSERT, UPDATE, DELETE, and other SQL commands

except for service commands
transaction control: only in procedures and anonymous blocks

As we have already seen, PL/pgSQL is very closely integrated with SQL.
In particular, all expressions are computed using prepared SQL operators.
Besides, expressions can use PL/pgSQL variables and routine parameters:
they will be implicitly converted to query parameters.

SQL queries can also be executed within PL/pgSQL code. To execute a
query that returns no result (INSERT, UPDATE, DELETE, CREATE, DROP,
etc.), you just need to write an SQL command within the PL/pgSQL code as
a separate operator.

Commands are prepared exactly like expressions. It allows caching the
parsed (or planned) query to avoid repeating this work. Commands can also
use PL/pgSQL variables, which will be implicitly converted to parameters.

In a similar manner, you can also execute a regular SELECT statement if its
result is unimportant; simply replace the SELECT keyword with PERFORM. It
makes sense for cases like calling functions with side effects. WITH queries
have to be wrapped into a SELECT statement (so that it starts with
PERFORM when executed).

COMMIT and ROLLBACK commands are allowed only in procedures and
anonymous blocks (executed by the SQL command DO).

https://postgrespro.com/docs/postgresql/12/plpgsql-statements#PLPGSQL-
STATEMENTS-SQL-NORESULT

Returning	no	Rows

If	the	result	of	the	query	is	not	needed,	replace	SELECT	with	PERFORM:

=>	CREATE	FUNCTION	do_something()	RETURNS	void
AS	$$
BEGIN
				RAISE	NOTICE	'Something	has	been	done.';
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	DO	$$
BEGIN
				PERFORM	do_something();
END;
$$;

NOTICE:		Something	has	been	done.
DO

Almost	any	SQL	command	returning	no	rows	can	be	used	within	the	PL/pgSQL	code	without	any	modifications:

=>	DO	$$
BEGIN
				CREATE	TABLE	test(n	integer);
				INSERT	INTO	test	VALUES	(1),(2),(3);
				UPDATE	test	SET	n	=	n	+	1	WHERE	n	>	1;
				DELETE	FROM	test	WHERE	n	=	1;
				DROP	TABLE	test;
END;
$$;

DO

Transaction	Control	in	Procedures

Procedures	(and	anonymous	blocks)	written	in	PL/pgSQL	support	transaction	control	commands:

=>	CREATE	TABLE	test(n	integer);

CREATE	TABLE

=>	CREATE	PROCEDURE	foo()
AS	$$
BEGIN
				INSERT	INTO	test	VALUES	(1);
				COMMIT;
				INSERT	INTO	test	VALUES	(2);
				ROLLBACK;
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

=>	CALL	foo();

CALL

=>	SELECT	*	FROM	test;

	n	

	1
(1	row)

There	are	certain	limitations.	First	of	all,	a	procedure	must	start	a	new	transaction,	i.e.,	it	must	not	be	executed	in	the
context	of	an	already	started	transaction.

=>	BEGIN;

BEGIN

=>	CALL	foo();	--	error

ERROR:		invalid	transaction	termination
CONTEXT:		PL/pgSQL	function	foo()	line	4	at	COMMIT

=>	ROLLBACK;

ROLLBACK

Second,	the	call	stack	of	this	procedure	must	contain	nothing	but	CALL	operators.

In	other	words,	if	a	procedure	calls	a	procedure...	that	calls	a	procedure	that	performs	transaction	control,	everything
works	fine:

=>	CREATE	OR	REPLACE	PROCEDURE	foo()
AS	$$
BEGIN
				CALL	bar();
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

=>	CREATE	PROCEDURE	bar()
AS	$$
BEGIN
				CALL	baz();
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

=>	CREATE	PROCEDURE	baz()
AS	$$
BEGIN
				COMMIT;
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

=>	CALL	foo();	--	it	works

CALL

But	should	this	stack	include,	say,	a	function	call,	the	transaction	would	have	to	be	completed	somewhere	in	the	middle	of
the	SELECT	operator,	which	is	prohibited:

=>	CREATE	FUNCTION	qux()	RETURNS	void
AS	$$
BEGIN
				CALL	bar();
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	SELECT	qux();	--	error

ERROR:		invalid	transaction	termination
CONTEXT:		PL/pgSQL	function	baz()	line	3	at	COMMIT
SQL	statement	"CALL	baz()"
PL/pgSQL	function	bar()	line	3	at	CALL
SQL	statement	"CALL	bar()"
PL/pgSQL	function	qux()	line	3	at	CALL

5

Returning a Single Row

SELECT … INTO

getting the first returned row

one variable of a composite type
or an appropriate number of scalar variables

INSERT, UPDATE, DELETE RETURNING … INTO

getting the inserted (updated, deleted) row

one variable of a composite type
or an appropriate number of scalar variables

If the query result is important, you can use the INTO clause to save it into
a single variable of a composite type or into several scalar variables. If the
query returns several rows, only the first one makes it into the variable (you
can control the output order using the ORDER BY clause). If the query
returns no rows, the variable will be set to NULL.

In a similar manner, you can also use INSERT, UPDATE, and DELETE
command with the RETURNING clause. The difference is that these
commands must not return more than one row: it will lead to an error as
there is no way to specify which row should be considered the “first” one.

https://postgrespro.com/docs/postgresql/12/plpgsql-statements#PLPGSQL-
STATEMENTS-SQL-ONEROW

If a query returns several rows, but only one of them is used, it’s highly
likely that this query is incorrect. PL/pgSQL can report such suspicious
situations (and several other ones).

https://postgrespro.com/docs/postgresql/12/plpgsql-development-tips#PLP
GSQL-EXTRA-CHECKS

More powerful debugging capabilities are provided by an external extension
plpgsql_check (developed by Pavel Stehule).

https://github.com/okbob/plpgsql_check

Returning	a	Single	Row

A	SELECT	command	returning	a	single	row	is	probably	the	most	frequently	used	one	in	PL/pgSQL.	Here	is	an	example
that	would	be	impossible	to	execute	using	an	expression	with	a	subquery	(because	two	columns	are	returned	at	once):

=>	CREATE	TABLE	t(id	integer,	code	text);

CREATE	TABLE

=>	INSERT	INTO	t	VALUES	(1,	'One'),	(2,	'Two');

INSERT	0	2

=>	DO	$$
DECLARE
				r	record;
BEGIN
				SELECT	id,	code	INTO	r	FROM	t	WHERE	id	=	1;
				RAISE	NOTICE	'%',	r;
END;
$$;

NOTICE:		(1,One)
DO

INSERT,	UPDATE,	and	DELETE	commands	can	also	return	the	result	using	the	RETURNING	clause.	They	can	be	used	in
PL/pgSQL	with	the	INTO	clause,	just	like	SELECT:

=>	DO	$$
DECLARE
				r	record;
BEGIN
				UPDATE	t	SET	code	=	code	||	'!'	WHERE	id	=	1	RETURNING	*	INTO	r;
				RAISE	NOTICE	'Modified:	%',	r;
END;
$$;

NOTICE:		Modified:	(1,One!)
DO

Compile-Time	and	Run-Time	Checks	for	Routines

In	some	suspicious	cases,	PL/pgSQL	can	issue	warnings.	Warnings	can	be	enabled	with	the	following	parameter	(set	to
none	by	default):

=>	SET	plpgsql.extra_warnings	=	'all';

SET

=>	CREATE	PROCEDURE	bugs(INOUT	a	integer)
AS	$$
DECLARE
				a	integer;
				b	integer;
BEGIN
				SELECT	id	INTO	a,	b	FROM	t;
END;
$$	LANGUAGE	plpgsql;

WARNING:		variable	"a"	shadows	a	previously	defined	variable
LINE	4:					a	integer;
												^
CREATE	PROCEDURE

This	is	a	warning	about	two	variable	declarations	that	override	each	other:

=>	CALL	bugs(42);

WARNING:		query	returned	more	than	one	row
HINT:		Make	sure	the	query	returns	a	single	row,	or	use	LIMIT	1.
WARNING:		number	of	source	and	target	fields	in	assignment	does	not	match
DETAIL:		strict_multi_assignment	check	of	extra_warnings	is	active.
HINT:		Make	sure	the	query	returns	the	exact	list	of	columns.
	a		

	42
(1	row)

And	here	we	can	see	two	run-time	warnings:	the	query	has	returned	more	than	one	row,	and	the	INTO	clause	provides	the
wrong	number	of	parameters	(PL/pgSQL	will	assign	NULL	to	the	second	one).	There	are	no	other	checks	available	at	the
moment,	but	they	can	appear	in	the	next	PostgreSQL	versions.

The	plpgsql.extra_warnings	value	can	specify	some	particular	checks.	A	similar	parameter	plpgsql.extra_errors	enables
throwing	errors	instead.

=>	RESET	plpgsql.extra_warnings;

RESET

You	can	perform	more	extensive	code	checks	using	plpgsql_checks,	an	external	extension	developed	and	supported	by
Pavel	Stehule.	This	extension	is	already	installed	in	the	VM	provided	for	this	course.

=>	CREATE	EXTENSION	plpgsql_check;

CREATE	EXTENSION

=>	SELECT	*	FROM	plpgsql_check_function('bugs(integer)');

																								plpgsql_check_function																									

	warning:00000:5:statement	block:parameter	"a"	is	overlapped
	Detail:	Local	variable	overlap	function	parameter.
	warning:00000:6:SQL	statement:too	few	attributes	for	target	variables
	Detail:	There	are	more	target	variables	than	output	columns	in	query.
	Hint:	Check	target	variables	in	SELECT	INTO	statement.
	warning	extra:00000:3:DECLARE:never	read	variable	"a"
	warning	extra:00000:4:DECLARE:never	read	variable	"b"
	warning	extra:00000:unused	parameter	"a"
	warning	extra:00000:unmodified	OUT	variable	"a"
(9	rows)

Unused	variables	and	an	output	parameter	without	an	assigned	value	have	been	detected.

The	plpgsql_checks	extension	provides	many	debugging	features,	including	run-time	error	detection.	It	also	includes	a
profiler	for	tuning	PL/pgSQL	code.

Eliminating	Naming	Ambiguities

Will	the	following	code	be	executed	successfully?

=>	DO	$$
DECLARE
				id			integer	:=	1;
				code	text;
BEGIN
				SELECT	id,	code	INTO	id,	code
				FROM	t	WHERE	id	=	id;
				RAISE	NOTICE	'%,	%',	id,	code;
END;
$$;

ERROR:		column	reference	"id"	is	ambiguous
LINE	1:	SELECT	id,	code																			FROM	t	WHERE	id	=	id
															^
DETAIL:		It	could	refer	to	either	a	PL/pgSQL	variable	or	a	table	column.
QUERY:		SELECT	id,	code																			FROM	t	WHERE	id	=	id
CONTEXT:		PL/pgSQL	function	inline_code_block	line	6	at	SQL	statement

No,	because	of	the	ambiguity	in	SELECT:	id	can	mean	both	the	name	of	the	column	and	the	name	of	the	variable.

Note	that	there	is	no	ambiguity	in	the	INTO	clause:	it	relates	to	PL/pgSQL	only.	By	the	way,	the	message	shows	that
PL/pgSQL	cuts	off	the	INTO	clause	before	passing	the	query	to	SQL.

There	are	several	approaches	to	eliminating	such	ambiguities.

The	first	one	is	to	prevent	them.	It	can	be	achieved	by	prepending	variable	names	with	a	prefix,	which	usually	corresponds
to	the	variable	type,	for	example:

p_	for	parameters
l_	or	v_	for	regular	(local)	variables
c_	for	constants

It	is	a	simple	and	effective	method	if	you	use	it	consistently	and	never	add	prefixes	to	column	names.	Its	disadvantage	is
that	it	makes	the	code	look	sloppy	and	somewhat	lively	because	of	extra	underscores.

This	is	how	it	can	look	like	in	our	example:

=>	DO	$$
DECLARE
				l_id			integer	:=	1;
				l_code	text;
BEGIN
				SELECT	id,	code	INTO	l_id,	l_code
				FROM	t	WHERE	id	=	l_id;
				RAISE	NOTICE	'%,	%',	l_id,	l_code;
END;
$$;

NOTICE:		1,	One!
DO

Another	approach	is	to	use	qualified	names,	i.e.,	prepend	the	object	name	by	a	qualifier	separated	by	a	dot:

a	name	or	an	alias	of	a	table	for	columns
a	block	label	for	variables
a	function	name	for	parameters

This	approach	is	more	straightforward	than	adding	prefixes	because	it	works	for	any	column	names.

This	is	how	our	example	will	look	like	if	we	use	qualifiers:

=>	DO	$$
<<local>>
DECLARE
				id			integer	:=	1;
				code	text;
BEGIN
				SELECT	t.id,	t.code	INTO	local.id,	local.code
				FROM	t	WHERE	t.id	=	local.id;
				RAISE	NOTICE	'%,	%',	id,	code;
END;
$$;

NOTICE:		1,	One!
DO

The	third	approach	is	to	prioritize	variables	over	columns,	or	vice	versa.	Such	prioritization	is	managed	by	the
plpgsql.variable_conflict	configuration	parameter.

In	some	cases,	it	facilitates	conflict	resolution,	but	it	does	not	eliminate	conflicts	altogether.	Besides,	such	an	implicit	rule
(which	can	suddenly	change,	to	make	things	worse)	is	sure	to	cause	some	code	to	be	executed	in	a	way	unforeseen	by	the
developer.

Nevertheless,	let’s	see	an	example.	Here	variables	have	priority,	so	it	is	enough	to	add	qualifiers	to	table	columns	only:

=>	SET	plpgsql.variable_conflict	=	use_variable;

SET

=>	DO	$$
DECLARE
				id			integer	:=	1;
				code	text;
BEGIN
				SELECT	t.id,	t.code	INTO	id,	code
				FROM	t	WHERE	t.id	=	id;
				RAISE	NOTICE	'%,	%',	id,	code;
END;
$$;

NOTICE:		1,	One!
DO

=>	RESET	plpgsql.variable_conflict;

RESET

Which	approach	to	follow	is	a	matter	of	taste	and	experience.	We	recommend	choosing	either	the	first	or	the	second	one
(prefixes	or	qualifiers);	make	sure	not	to	use	both	in	one	project	because	consistency	can	greatly	assist	code

comprehension.

In	this	course,	we	are	going	to	use	qualifiers,	but	only	where	it’s	absolutely	necessary,	so	that	examples	don’t	get	too
cluttered.

However,	in	production	code	you	should	always	take	care	of	all	possible	ambiguities:	there	is	no	guarantee	that	a	new
column	won’t	have	the	same	name	as	your	variable.

7

Checking Results

INTO STRICT

guarantees that exactly one row is returned—no more and no less

ROW_COUNT diagnostics

the number of rows returned (processed) by the last SQL command

FOUND variable

after an SQL command: true if the command has returned (processed) a row
after a loop: indicates that at least one iteration has been completed

By adding the STRICT keyword to the INTO clause, we can guarantee that
the command returns or processes exactly one row; otherwise, and error
occurs.

Besides, we can check the status of the SQL command that has just been
executed (unless it has completed with an error). There are two ways to
do it.

The first option is to add the GET DIAGNOSTICS clause that returns the
number of rows processed by this command.

The second option is to use the FOUND boolean variable, which shows
whether the command has processed any data at all.

You can use FOUND as an indicator that the loop body has been executed at
least once.

https://postgrespro.com/docs/postgresql/12/plpgsql-statements#PLPGSQL-
STATEMENTS-DIAGNOSTICS

Exactly	One	Row

What	will	happen	if	the	query	returns	several	rows?

=>	DO	$$
DECLARE
				r	record;
BEGIN
				SELECT	id,	code	INTO	r	FROM	t;
				RAISE	NOTICE	'%',	r;
END;
$$;

NOTICE:		(2,Two)
DO

Only	the	first	row	will	be	written	into	the	variable.	Since	we	have	not	specified	the	ORDER	BY	clause,	the	order	is	virtually
unpredictable:

=>	SELECT	*	FROM	t;

	id	|	code	
----+------
		2	|	Two
		1	|	One!
(2	rows)

INSERT,	UPDATE,	and	DELETE	commands	do	not	allow	specifying	the	order	of	the	rows,	so	a	command	that	affects
several	rows	results	in	an	error:

=>	DO	$$
DECLARE
				r	record;
BEGIN
				UPDATE	t	SET	code	=	code	||	'!'	RETURNING	*	INTO	r;
				RAISE	NOTICE	'Modified:	%',	r;
END;
$$;

ERROR:		query	returned	more	than	one	row
HINT:		Make	sure	the	query	returns	a	single	row,	or	use	LIMIT	1.
CONTEXT:		PL/pgSQL	function	inline_code_block	line	5	at	SQL	statement

And	what	if	the	query	returns	no	rows	at	all?

=>	DO	$$
DECLARE
				r	record;
BEGIN
				r	:=	(-1,'!!!');
				SELECT	id,	code	INTO	r	FROM	t	WHERE	false;
				RAISE	NOTICE	'%',	r;
END;
$$;

NOTICE:		(,)
DO

Variables	will	contain	undefined	values.

It	is	also	true	for	INSERT,	UPDATE,	and	DELETE	commands.	For	example:

=>	DO	$$
DECLARE
				r	record;
BEGIN
				UPDATE	t	SET	code	=	code	||	'!'	WHERE	id	=	-1
								RETURNING	*	INTO	r;
				RAISE	NOTICE	'Modified:	%',	r;
END;
$$;

NOTICE:		Modified:	(,)
DO

Sometimes	you	may	want	to	be	sure	that	the	query	retrieves	exactly	one	row,	no	more	and	no	less.	In	this	case,	it	is
convenient	to	use	the	INTO	STRICT	clause:

=>	DO	$$
DECLARE
				r	record;
BEGIN
				SELECT	id,	code	INTO	STRICT	r	FROM	t;
				RAISE	NOTICE	'%',	r;
END;
$$;

ERROR:		query	returned	more	than	one	row
HINT:		Make	sure	the	query	returns	a	single	row,	or	use	LIMIT	1.
CONTEXT:		PL/pgSQL	function	inline_code_block	line	5	at	SQL	statement

=>	DO	$$
DECLARE
				r	record;
BEGIN
				SELECT	id,	code	INTO	STRICT	r	FROM	t	WHERE	false;
				RAISE	NOTICE	'%',	r;
END;
$$;

ERROR:		query	returned	no	rows
CONTEXT:		PL/pgSQL	function	inline_code_block	line	5	at	SQL	statement

As	we	have	seen,	INSERT,	UPDATE,	and	DELETE	commands	that	affect	several	rows	result	in	an	error.	The	STRICT
keyword	guarantees	that	there	will	be	exactly	one	row	(and	not	zero):

=>	DO	$$
DECLARE
				r	record;
BEGIN
				UPDATE	t	SET	code	=	code	||	'!'	WHERE	id	=	-1	RETURNING	*	INTO	STRICT	r;
				RAISE	NOTICE	'Modified:	%',	r;
END;
$$;

ERROR:		query	returned	no	rows
CONTEXT:		PL/pgSQL	function	inline_code_block	line	5	at	SQL	statement

Explicit	Checks	of	the	Execution	State

You	can	also	check	the	state	of	the	last	SQL	command	executed:

The	GET	DIAGNOSTICS	command	retrieves	the	number	of	processed	rows	(row_count).
A	predefined	boolean	variable	FOUND	shows	whether	any	row	has	been	processed.

=>	DO	$$
DECLARE
				r	record;
				rowcount	integer;
BEGIN
				SELECT	id,	code	INTO	r	FROM	t	WHERE	false;

				GET	DIAGNOSTICS	rowcount	=	row_count;
				RAISE	NOTICE	'rowcount	=	%',	rowcount;
				RAISE	NOTICE	'found	=	%',	FOUND;
END;
$$;

NOTICE:		rowcount	=	0
NOTICE:		found	=	f
DO

=>	DO	$$
DECLARE
				r	record;
				rowcount	integer;
BEGIN
				SELECT	id,	code	INTO	r	FROM	t;

				GET	DIAGNOSTICS	rowcount	=	row_count;
				RAISE	NOTICE	'rowcount	=	%',	rowcount;
				RAISE	NOTICE	'found	=	%',	FOUND;
END;
$$;

NOTICE:		rowcount	=	1
NOTICE:		found	=	t
DO

Note:	such	diagnostics	does	not	detect	that	the	query	affects	several	rows	as	row_count	returns	1.

9

Set-Returning Functions

Query rows
RETURN QUERY query;

One row
RETURN NEXT expression; if there are no output parameters
RETURN NEXT; if there are output parameters

Distinctive features
rows are added to the result,
but function execution is not terminated
commands can be executed several times
the result is not returned until the function completes

To create a set-returning function in PL/pgSQL, you have to declare it with
RETURNS SETOF or RETURNS TABLE clauses (just like in SQL).

To return a set of rows, a function must use a special construct RETURNS
QUERY query. It will return almost the same result as an SQL function
containing the same query, but it does not support inlining (while the SQL
function query has all the chances to be inserted into the main query).

The result can also be returned row by row using the RETURN NEXT
construct. It is similar to an ordinary RETURN, but instead of stopping the
function execution, it adds the return value as another row of the future
result. The RETURN NEXT command (and RETURN QUERY as well) can be
called several times.

The final result will be returned only after the function execution is fully
complete (you can use a regular RETURN command for this purpose).
In other words, RETURN NEXT is different from yield in generator
functions provided by modern languages.

https://postgrespro.com/docs/postgresql/12/plpgsql-control-structures#PLP
GSQL-STATEMENTS-RETURNING

Set-Returning	Functions

Here	is	an	example	of	a	set-returning	function	written	in	PL/pgSQL:

=>	CREATE	FUNCTION	t()	RETURNS	TABLE(LIKE	t)
AS	$$
BEGIN
				RETURN	QUERY	SELECT	id,	code	FROM	t	ORDER	BY	id;
END;
$$	STABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	SELECT	*	FROM	t();

	id	|	code	
----+------
		1	|	One!
		2	|	Two
(2	rows)

Another	option	is	to	return	values	row	by	row.

=>	CREATE	FUNCTION	days_of_week()	RETURNS	SETOF	text
AS	$$
BEGIN
				FOR	i	IN	7	..	13	LOOP
								RETURN	NEXT	to_char(to_date(i::text,'J'),'TMDy');
				END	LOOP;
END;
$$	STABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	SELECT	*	FROM	days_of_week()	WITH	ORDINALITY;

	days_of_week	|	ordinality	
--------------+------------
	Mon										|										1
	Tue										|										2
	Wed										|										3
	Thu										|										4
	Fri										|										5
	Sat										|										6
	Sun										|										7
(7	rows)

Why	is	this	function	declared	STABLE?

Although	the	function	value	depends	neither	on	parameters	nor	on	data,	it	is	still	affected	by	the	current	locale:

=>	SET	lc_time	=	'en_US.UTF8';

SET

=>	SELECT	*	FROM	days_of_week()	WITH	ORDINALITY;

	days_of_week	|	ordinality	
--------------+------------
	Mon										|										1
	Tue										|										2
	Wed										|										3
	Thu										|										4
	Fri										|										5
	Sat										|										6
	Sun										|										7
(7	rows)

11

Summary

PL/pgSQL is closely integrated with SQL
procedural code can contain queries
(provided as expressions or as separate commands)
queries can use variables
you can get query results and check query status

You have to take care of resolving naming ambiguities

12

Practice

1. Create the add_author function for adding new authors.
The function must take three parameters (last name, first name,
middle name) and return the ID of the added author.

Check that the application allows adding authors.

2. Create the buy_book function for buying books. The function
takes the book ID as a parameter and reduces the number of such
books by one. There is no return value.

Check that the “Store” tab now allows buying books.

Task 1.
FUNCTION add_author(last_name text, first_name text, surname text)
RETURNS integer

Task 2.
FUNCTION buy_book(book_id integer)
RETURNS void

You can notice that the application allows selling more books than actually
available. If the total number of books were stored in a table column, adding
a CHECK constraint would be a good and simple solution. But our
implementation calculates the number of books, so we are not going to
address this until we get to the “Triggers” lecture.

Task	1.	The	add_author	Function

=>	CREATE	OR	REPLACE	FUNCTION	add_author(
				last_name	text,
				first_name	text,
				middle_name	text
)	RETURNS	integer
AS	$$
DECLARE
				author_id	integer;
BEGIN
				INSERT	INTO	authors(last_name,	first_name,	middle_name)
								VALUES	(last_name,	first_name,	middle_name)
								RETURNING	authors.author_id	INTO	author_id;
				RETURN	author_id;
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Task	2.	The	buy_book	Function

=>	CREATE	OR	REPLACE	FUNCTION	buy_book(book_id	integer)
RETURNS	void
AS	$$
BEGIN
				INSERT	INTO	operations(book_id,	qty_change)
								VALUES	(book_id,	-1);
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

13

Practice

Create a game in which the server tries to guess the animal chosen by
user by repeatedly asking clarifying yes-no questions.

If the server suggests a wrong answer, it requests the user to provide
the animal name and then asks a different question. This new
information is registered for use in the next games.

1. Create a table for data representation.

2. Design an interface and implement all the required functions.

3. Check your implementation.

A possible dialog (between people):

— Is it a mammal? — Yes.

— Is it an elephant? — No.

— I give up. Who is it? — It’s a whale.

— How can we tell a whale from an elephant? — It lives in the ocean.

Task 1. It is convenient to present this information as a binary tree. Inner
nodes store questions, while leaf nodes store animal names. One of the
child nodes corresponds to “yes,” the other one corresponds to “no.”

Task 2. Between the function calls, it is required to pass the information
about the last node of the tree we have got to (the context of the dialog). For
example, we could have the following functions:

- start the game (no input context)

FUNCTION start_game(OUT context integer, OUT question text)

- continue the game (get the answer, issue the next question)

FUNCTION continue_game(
 INOUT context integer, IN answer boolean,
 OUT you_win boolean, OUT question text)

- end the game (add information about another animal)

FUNCTION end_game(
 IN context integer, IN name text, IN question text)
RETURNS void

Task	1.	A	Table

=>	CREATE	TABLE	animals(
				id					integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY,
				yes_id	integer	REFERENCES	animals(id),
				no_id		integer	REFERENCES	animals(id),
				name			text
);

CREATE	TABLE

=>	INSERT	INTO	animals(name)	VALUES
				('mammal'),	('elephant'),	('tortoise');

INSERT	0	3

=>	UPDATE	animals	SET	yes_id	=	2,	no_id	=	3	WHERE	id	=	1;

UPDATE	1

=>	SELECT	*	FROM	animals	ORDER	BY	id;

	id	|	yes_id	|	no_id	|			name			
----+--------+-------+----------
		1	|						2	|					3	|	mammal
		2	|								|							|	elephant
		3	|								|							|	tortoise
(3	rows)

The	first	row	is	considered	to	be	the	root	of	the	tree.

Task	2.	Functions

=>	CREATE	FUNCTION	start_game(
				OUT	context	integer,
				OUT	question	text
)
AS	$$
DECLARE
				root_id	CONSTANT	integer	:=	1;
BEGIN
				SELECT	id,	name||'?'
				INTO	context,	question
				FROM	animals
				WHERE	id	=	root_id;
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	CREATE	FUNCTION	continue_game(
				INOUT	context	integer,
				IN	answer	boolean,
				OUT	you_win	boolean,
				OUT	question	text
)
AS	$$
DECLARE
				new_context	integer;
BEGIN
				SELECT	CASE	WHEN	answer	THEN	yes_id	ELSE	no_id	END
				INTO	new_context
				FROM	animals
				WHERE	id	=	context;

				IF	new_context	IS	NULL	THEN
								you_win	:=	NOT	answer;
								question	:=	CASE
												WHEN	you_win	THEN	'I	give	up'
												ELSE	'You	lost'
								END;
				ELSE
								SELECT	id,	null,	name||'?'
								INTO	context,	you_win,	question
								FROM	animals
								WHERE	id	=	new_context;
				END	IF;
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	CREATE	FUNCTION	end_game(
				IN	context	integer,
				IN	name	text,
				IN	question	text
)	RETURNS	void
AS	$$
DECLARE
				new_animal_id	integer;
				new_question_id	integer;
BEGIN
				INSERT	INTO	animals(name)	VALUES	(name)
								RETURNING	id	INTO	new_animal_id;
				INSERT	INTO	animals(name)	VALUES	(question)
								RETURNING	id	INTO	new_question_id;
				UPDATE	animals	SET	yes_id	=	new_question_id
				WHERE	yes_id	=	context;
				UPDATE	animals	SET		no_id	=	new_question_id
				WHERE		no_id	=	context;
				UPDATE	animals	SET	yes_id	=	new_animal_id,	no_id	=	context
				WHERE	id	=	new_question_id;
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

Task	3.	An	Example	of	a	Gaming	Session

Let’s	choose	the	word	“whale”.

=>	SELECT	*	FROM	start_game();

	context	|	question	
---------+----------
							1	|	mammal?
(1	row)

=>	SELECT	*	FROM	continue_game(1,true);

	context	|	you_win	|	question		
---------+---------+-----------
							2	|									|	elephant?
(1	row)

=>	SELECT	*	FROM	continue_game(2,false);

	context	|	you_win	|	question		
---------+---------+-----------
							2	|	t							|	I	give	up
(1	row)

=>	SELECT	*	FROM	end_game(2,'whale','lives	in	the	ocean');

	end_game	

(1	row)

Now	let’s	use	the	table:

=>	SELECT	*	FROM	animals	ORDER	BY	id;

	id	|	yes_id	|	no_id	|								name								
----+--------+-------+--------------------
		1	|						5	|					3	|	mammal
		2	|								|							|	elephant
		3	|								|							|	tortoise
		4	|								|							|	whale
		5	|						4	|					2	|	lives	in	the	ocean
(5	rows)

We	have	chosen	“whale”	again.

=>	SELECT	*	FROM	start_game();

	context	|	question	
---------+----------
							1	|	mammal?
(1	row)

=>	SELECT	*	FROM	continue_game(1,true);

	context	|	you_win	|						question							
---------+---------+---------------------
							5	|									|	lives	in	the	ocean?
(1	row)

=>	SELECT	*	FROM	continue_game(5,true);

	context	|	you_win	|	question	
---------+---------+----------
							4	|									|	whale?
(1	row)

=>	SELECT	*	FROM	continue_game(4,true);

	context	|	you_win	|	question	
---------+---------+----------
							4	|	f							|	You	lost
(1	row)

