

Architecture

Isolation and MVCC

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Multi-version concurrency control (MVCC)

Data snapshots

Isolation levels

Locks

Vacuum

3

MVCC

There can be multiple versions of one and the same row
different versions belong to different time frames
time = transaction ID (xid), assigned in the ascending order

row:

xid
x

1
x

2
x

3
x

4

DELETEINSERT

UPDATE

version 1 version 2 version 3

UPDATE

Running several concurrent sessions poses an interesting question: what
should be done if two transactions access one and the same row
simultaneously? The answer is obvious if both of them read data. Handling
two writing transactions is also easy (they are simply queued to update the
data sequentially). The most intricate case is managing reads and writes.

There are two straightforward ways to do it. Transactions can lock each
other, but then performance will suffer. Alternatively, a reading transaction
could immediately see the changes made by a writing transaction, even if
they are not committed yet (it is called “dirty read”); but it is a very bad
scenario because these changes can be rolled back.

PostgreSQL does it the hard way: it keeps several versions of one and the
same row using multi-version concurrency control (MVCC). Thus, while a
reading transaction sees one version, a writing transaction modifies another
version.

To tell one version from another, PostgreSQL marks them with two tags that
define the “lifetime” of each version. Instead of timestamps, these tags use
transaction IDs, which are always increasing (it’s a bit more complex than
that, but we won’t get into details.) When a row is inserted, it is tagged with
ID of the transaction that has performed the INSERT command. When it is
deleted, it is tagged with ID of the transaction that has run the DELETE
command (but is not physically deleted). UPDATE consists of two
operations: DELETE and INSERT.

https://postgrespro.com/docs/postgresql/12/mvcc-intro

4

Data Snapshot

A consistent slice of data at a particular moment
transaction ID (xid) defines the snapshot creation moment
all changes that are not yet committed at this moment are filtered out using
the list of active transactions

row 3:

xid
snapshot

row 2:

row 1:

PostgreSQL uses snapshot isolation.

When accessing a table, a transaction must see only one version of each
row (or no versions at all). To achieve this, transactions use data snapshots
taken at a particular moment. Each snapshot contains only the latest
versions of committed data; if the data was not committed at that moment, it
won’t be visible in the snapshot. In other words, each row is represented by
its version that was current at the time of snapshot creation.

A snapshot is not a physical copy of all data; it’s just several numbers:

- the ID of the last transaction committed by the moment of snapshot
creation (which defines that moment)

- the list of transactions that were active at that time

The list is required to ensure that the snapshot does not contain any
changes of those transactions that had started before the snapshot
creation, but had not been committed by that time.

Knowing these numbers, we can always say which row version is visible in
the snapshot. Sometimes it is the current (the most recent) version, like in
the case of row 1 on this slide. Sometimes it is an earlier version: row 2 is
deleted (and this change is already committed), but the transaction still sees
this row while using the snapshot. Such behavior is correct: it ensures that
the data is consistent at each point in time.

Some rows will not make it into the snapshot at all: row 3 had been deleted
before the snapshot was built, so it was not included into the snapshot.

5

Isolation Levels

Read Uncommitted
is not supported by PostgreSQL: works as Read Committed

Read Committed (default)
the snapshot is taken at the beginning of an operator
identical queries can return different data

Repeatable Read
the snapshot is taken at the beginning of the first operator in the transaction
transactions can end with a serialization error

Serializable
full isolation, but additional overhead
transactions can end with a serialization error

The SQL standard defines four isolation levels: the stricter the level, the
less the interference between concurrent transactions. At the time when the
standard was adopted, it was assumed that stricter levels are harder to
implement and have higher negative impact on performance (since then
these views have somewhat changed).

The most relaxed level is Read Uncommitted, which allows dirty reads.
This level is not supported by PostgreSQL since it is of no practical use and
provides no performance gains.

The Read Committed level is the default isolation level in PostgreSQL.
At this level, snapshots are built at the beginning of each SQL operator.
Thus, each operator works with constant and consistent data, but two
identical queries can return different results when run one after another.

At the Repeatable Read level, a snapshot is built at the beginning of each
transaction (while executing the first operator), so all queries within one
transaction see the same data. This level is convenient for cases like
creating reports using series of queries.

The Serializable level provides full isolation: you can write operators as if
there is only one transaction. The price you pay for convenience is that
some transactions complete with an error; your application should be able
to retry such transactions.

https://postgrespro.com/docs/postgresql/12/transaction-iso

Visibility	of	Row	Versions

How	can	we	check	that	one	and	the	same	row	can	have	several	versions	simultaneously?

Let’s	create	a	table:

=>	CREATE	TABLE	t(s	text);

CREATE	TABLE

Insert	a	row.	As	we	know,	if	the	BEGIN	command	is	not	explicitly	specified	at	the	beginning	of	a	transaction,	psql	executes
the	command	and	commits	the	result	immediately:

=>	INSERT	INTO	t	VALUES	('Version	one');

INSERT	0	1

Start	a	transaction	and	display	its	ID:

=>	BEGIN;

BEGIN

=>	SELECT	txid_current();

	txid_current	

										502
(1	row)

This	transaction	sees	the	first	version	of	the	row	(which	is	currently	the	only	one	available):

=>	SELECT	*,	xmin,	xmax	FROM	t;

						s						|	xmin	|	xmax	
-------------+------+------
	Version	one	|		501	|				0
(1	row)

Here	we	also	display	IDs	of	transactions	that	define	the	visibility	limits	of	this	row	version.	The	row	is	inserted	by	the
previous	transaction,	and	xmax=0	means	that	it	is	the	current	version	of	the	row.

Now	let’s	start	another	transaction	in	another	session:

=>	BEGIN;

BEGIN

=>	SELECT	txid_current();

	txid_current	

										503
(1	row)

The	transaction	sees	the	first	version	of	the	row:

=>	SELECT	*,	xmin,	xmax	FROM	t;

						s						|	xmin	|	xmax	
-------------+------+------
	Version	one	|		501	|				0
(1	row)

Now	let’s	update	the	row	in	the	second	transaction.

=>	UPDATE	t	SET	s	=	'Version	two';

UPDATE	1

Here	is	what	we’ve	got:

=>	SELECT	*,	xmin,	xmax	FROM	t;

						s						|	xmin	|	xmax	
-------------+------+------
	Version	two	|		503	|				0
(1	row)

What	will	the	first	transaction	see?

=>	SELECT	*,	xmin,	xmax	FROM	t;

						s						|	xmin	|	xmax	
-------------+------+------
	Version	one	|		501	|		503
(1	row)

Since	this	update	is	not	committed,	the	first	transaction	still	sees	the	first	version	of	the	row.

Note	the	xmax	value:	it	shows	that	another	transaction	is	changing	this	row	at	the	moment.	In	fact,	such	“peeking”	violates
isolation,	so	xmin	and	xmax	fields	are	hidden	and	should	not	be	used	in	actual	work.

Now	let’s	commit	the	changes.

=>	COMMIT;

COMMIT

What	will	the	first	transaction	see	this	time?

=>	SELECT	*,	xmin,	xmax	FROM	t;

						s						|	xmin	|	xmax	
-------------+------+------
	Version	two	|		503	|				0
(1	row)

Now	the	first	transaction	sees	the	second	version	of	the	row.

Once	the	update	is	committed,	the	first	version	of	the	row	is	not	visible	to	any	transaction	anymore.

=>	COMMIT;

COMMIT

7

Locks

Row-level locks
reading never blocks writing
an update locks the affected rows for other updates, but not for reading

Table-level locks
forbid changing and deleting the table while it is worked with
forbid reading the table while it is being rebuilt or moved
address other similar needs

Lifetime of locks
locks are acquired either automatically as needed or manually
locks are released automatically at the end of transactions

What does MVCC give us? It minimizes the number of required locks, thus
increasing system performance.

Most of the locks are set at the row level. That being said, reading never
blocks neither reading, nor writing transactions. A row update does not
block reading of this row. The only case when a transaction has to wait for
the lock release is when it tries to modify the row that is already updated by
another transaction, but this change is not committed yet.

Locks can also be acquired at a higher level, e.g., on tables. They are
needed to ensure that no one can delete the table while other transactions
are reading data from it, or to forbid access to the table that is being rebuilt.
As a rule, such locks cause no issues because deleting and rebuilding
tables are very rare operations.

All the required locks are acquired automatically and are released
automatically once the transaction completes. It is also possible to set
custom locks; such need arises not too often.

https://postgrespro.com/docs/postgresql/12/explicit-locking

Locks

Let’s	retry	our	experiment,	but	have	both	transactions	try	to	change	one	and	the	same	row.

=>	BEGIN;

BEGIN

=>	UPDATE	t	SET	s	=	'Version	three';

UPDATE	1

Run	the	second	transaction:

=>	BEGIN;

BEGIN

=>	UPDATE	t	SET	s	=	'Version	four';

The	second	transaction	hangs:	it	cannot	update	the	row	until	the	first	transaction	releases	the	lock.

=>	COMMIT;

COMMIT

Now	the	execution	of	the	second	transaction	can	continue:

UPDATE	1

=>	COMMIT;

COMMIT

9

Transaction Status

Transaction status (xact)
service information; two bits per transaction
special files on disk
buffers in shared memory

Commit
sets the bit “transaction is committed”

Abort
sets the bit “transaction is aborted”
completes as fast as a commit (no data rollback is required)

To maintain MVCC, it is required to know the status of transactions.
A transaction can be either active or completed. A completed transaction is
either committed or aborted. Thus, keeping the state of each transaction
requires two bits. Status information is stored in special service files; for
recent transactions, this data is usually kept in shared memory to avoid
frequent disk access.

By any transaction outcome (both successful and unsuccessful), it’s enough
to simply set the corresponding status bits. Both commits and aborts
happen equally fast.

If an aborted transaction has already created new row versions, these
versions are not deleted (there is no “physical” data rollback). Thanks to the
status information, other transactions will see that the transaction that has
created or deleted row versions is actually aborted, and will ignore these
changes.

10

Vacuum

Both previous and current row versions are stored together
the size of tables and indexes grows over time

Vacuum

deletes row versions that are no longer required (i.e., they are not visible
in any data snapshot anymore)

works in parallel with other processes

when deleting row versions, leaves “holes” in data files,
to be later filled with new row versions

Vacuum full
fully rebuilds data files, making them compacted
locks the table while running

In PostgreSQL, all row versions (both current and outdated) are stored
together, in the same data files. It’s clear that outdated versions pile up over
time, which leads to table (and index) bloating and causes performance
degradation.

However, there is no need to store outdated row versions that are not
visible in any data snapshot anymore. Such versions are cleaned up by the
vacuum process. It physically removes deprecated row versions from data
files, leaving “holes” that will be later filled with new row versions.

Vacuum does not lock other processes and can be run concurrently.

You can fully rebuild the table and its indexes by running the VACUUM FULL
command. This process makes files more compacted, but the table is fully
locked while it is running.

https://postgrespro.com/docs/postgresql/12/routine-vacuuming

11

Autovacuum

Autovacuum launcher
a background process
launches background
workers from time to time

Autovacuum worker
performs cleanup
of a particular database,
for those tables that
actually need it

PostgreSQL

backend

postmaster

background workers

autovacuum

shared memoryxact

OS

transaction
status

cache

Autovacuum is set up by DBA to perform timely data cleanup, so that
considerable file bloating is avoided. Instead of cleaning up all tables on
schedule, it is triggered automatically by update activity in tables.

However, abnormally long transactions can interfere with timely vacuuming.
The DEV2 course provides more information on how to avoid impeding
system operation.

Autovacuum is performed as follows. The background process called
autovacuum launcher regularly starts autovacuum workers in various
databases. These workers, in their turn, create the list of tables that require
vacuuming, and then perform the cleanup.

12

Summary

Files can store several versions of each row

Each transaction accesses its own data snapshot, which is
a consistent slice of data at a particular point in time

Writes do not block reads, reads do not block any operations

Isolation levels differ in snapshot creation times

Row versions pile up, so they require periodic cleanup

13

Practice

1. Create a table with a single row.

Start the first transaction at the Read Committed isolation level
and run a query on the table.
In another session, delete the row and commit this change.
How many rows will the first transaction see if it re-runs the
query? Check the result.

Commit the first transaction.

2. Repeat the experiment at the Repeatable Read isolation level:

BEGIN ISOLATION LEVEL REPEATABLE READ;

Explain the difference.

Task	1.	Read	Committed	Isolation	Level

Let’s	create	a	table:

=>	CREATE	TABLE	t(n	integer);

CREATE	TABLE

=>	INSERT	INTO	t	VALUES	(42);

INSERT	0	1

Run	a	query	in	the	first	transaction:

=>	BEGIN;

BEGIN

=>	SELECT	*	FROM	t;

	n		

	42
(1	row)

Delete	the	row	in	the	second	transaction	and	commit	the	result:

=>	DELETE	FROM	t;

DELETE	1

Repeat	the	query:

=>	SELECT	*	FROM	t;

	n	

(0	rows)

The	first	transaction	sees	the	applied	changes.

=>	COMMIT;

COMMIT

Task	2.	Repeatable	Read	Isolation	Level

Let’s	insert	a	row	again:

=>	INSERT	INTO	t	VALUES	(42);

INSERT	0	1

Run	a	query	in	the	first	transaction:

=>	BEGIN	ISOLATION	LEVEL	REPEATABLE	READ;

BEGIN

=>	SELECT	*	FROM	t;

	n		

	42
(1	row)

Delete	the	row	in	the	second	transaction	and	commit	the	result:

=>	DELETE	FROM	t;

DELETE	1

Repeat	the	query:

=>	SELECT	*	FROM	t;

	n		

	42
(1	row)

At	this	isolation	level,	the	first	transaction	does	not	see	the	changes.

=>	COMMIT;

COMMIT

