

PL/pgSQL

Debugging

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Correctness checks

PL/pgSQL debugger

Debugging messages and their various implementations

Session tracing

3

Correctness Checks

Сompile-time and run-time checks
plpgsql.extra_warnings
plpgsql.extra_errors

additional checks provided by the plpgsql_check extension

Built-in checks
the ASSERT command

Testing

Debugging implies executing a program and analyzing the occurred issues,
typically by running a special debugger or by displaying debug messages.

But you can also avoid some particular error classes if you enable compile-
time and run-time verification of source code. It is controlled by
plpgsql.extra_warnings and plpgsql.extra_errors parameters, as explained
in the “PL/pgSQL. Executing Queries” lecture.

https://postgrespro.com/docs/postgrespro/12/plpgsql-development-tips#PLP
GSQL-EXTRA-CHECKS

That lecture also introduces the plpgsql_check extension, which offers a
wider range of checks.

Another way to make your code more secure is to check for conditions that
must always hold true (the so-called sanity checks). A convenient way to do
it is to use the ASSERT command.

https://postgrespro.com/docs/postgresql/12/plpgsql-errors-and-messages#P
LPGSQL-STATEMENTS-ASSERT

We must also mention the importance of testing the code. Apart from
making sure from the very beginning that the code works as expected,
testing also facilitates further maintenance: it ensures that the existing
functionality is not broken by the introduced changes. We will not expand
on this topic; but it’s worth noting that testing the code that accesses a
database can turn out to be quite tricky as you have to prepare test cases.

Correctness	Checks

Using	the	ASSERT	command,	you	can	specify	conditions	that,	if	broken,	indicate	an	unexpected	error.	Such	conditions	are
somewhat	similar	to	integrity	constraints	in	a	database.

For	example,	here	is	a	function	that	returns	the	number	of	the	entrance	given	an	apartment	number:

=>	CREATE	FUNCTION	entrance(
				floors	integer,
				flats_per_floor	integer,
				flat_no	integer
)
RETURNS	integer
AS	$$
BEGIN
				RETURN	floor((flat_no	-	1)::real	/	(floors	*	flats_per_floor))	+	1;
END;
$$	LANGUAGE	plpgsql	IMMUTABLE;

CREATE	FUNCTION

You	can	check	correctness	by	testing	some	corner	cases:

=>	SELECT	entrance(9,	4,	1),	entrance(9,	4,	36),	entrance(9,	4,	37);

	entrance	|	entrance	|	entrance	
----------+----------+----------
								1	|								1	|								2
(1	row)

But	if	the	input	values	are	invalid,	the	function	will	return	a	meaningless	result,	which,	if	passed	further	to	other	routines,
can	lead	to	their	incorrect	behavior	as	well.	You	won’t	catch	these	issues	if	you	test	a	single	function	only.

=>	SELECT	entrance(9,	4,	0);

	entrance	

								0
(1	row)

You	can	provide	protection	against	such	cases	by	adding	the	following	check:

=>	CREATE	OR	REPLACE	FUNCTION	entrance(
				floors	integer,
				flats_per_floor	integer,
				flat_no	integer
)
RETURNS	integer
AS	$$
BEGIN
				ASSERT	floors	>	0	AND	flats_per_floor	>	0	AND	flat_no	>	0,
								'Invalid	input	parameters';
				RETURN	floor((flat_no	-	1)::real	/	(floors	*	flats_per_floor))	+	1;
END;
$$	LANGUAGE	plpgsql	IMMUTABLE;

CREATE	FUNCTION

=>	SELECT	entrance(9,	4,	0);

ERROR:		Invalid	input	parameters
CONTEXT:		PL/pgSQL	function	entrance(integer,integer,integer)	line	3	at	ASSERT

Now	an	invalid	call	will	immediately	result	in	an	error.

5

PL/pgSQL Debugger

Interface
the API is provided as an extension (pldbgapi)
built-in support is available in some GUI IDEs

Features
setting breakpoints
step-by-step execution
checking and setting variable values
no need to modify the code
debugging applications at run time

As its name suggests, PL/pgSQL Debugger is a debugging utility for
PL/pgSQL. It is delivered as the pldbgapi extension, which is officially
supported by PostgreSQL developers.

The pldbgapi extension is a collection of interface functions for the
PostgreSQL server that enable you to set breakpoints, execute the
application code step-by-step, check and set variable values.

There is no need to modify the source code of the application to debug,
so debugging can be performed at run time. In other words, you do not
have to restart the process with an attached debugger, you can simply
connect to the current session and start debugging it.

It is inconvenient to use these functions directly; they are mainly targeted
for IDEs with graphical user interface. Some of these IDEs (including
pgAdmin) have a convenient built-in debugging user interface. But in order
to use it, you still have to install the pldbgapi extension into the
corresponding database first.

The source code of pldbgapi is available at:

https://github.com/EnterpriseDB/pldebugger

6

Debug Messages

Not only debugging
monitoring long-running processes
writing an application log

Implementation strategies
directing debug output to the terminal or to the server log file
saving messages in a table or in a file
passing information to other processes

Another debugging approach consists in adding debug messages to the key
parts of the code to provide the current context. As you analyze these
messages, you can understand what exactly has gone wrong.

Apart from the debugging itself, debug messages can also perform other
functions. They can indicate the execution stage of a long-running process.
Similar to a database system, an application can write its own log. Having
such a log with important data (e.g., report-related data: the name of the
report, the user who has collected it, date, parameters, etc.) can greatly
facilitate technical support.

We can single out several strategies of implementing debug messages in
PL/pgSQL. Apart from using the already familiar RAISE command, which
can display messages in the terminal (or save them into the server log), it is
also possible to send messages to another process, as well as write them
into a table or into a file.

When choosing the approach to use, you have to take a lot of different
aspects into account. Are messages transactional (are they sent before the
end of the transaction or only after it has been committed)? Can you send
them from several sessions simultaneously? How can you set up access to
the log file and clean up old log entries? How does logging affect
performance? Do you have to modify the source code?

7

RAISE Command

 DEBUG

 LOG

 NOTICE

 INFO

 WARNING

RAISE

DEBUG INFO NOTICE WARNING ERROR LOG FATAL PANIC

 log_min_messages

Server log

DEBUG LOG NOTICE WARNING ERROR FATAL PANIC

client_min_messages

Client

We are already familiar with the RAISE command. It can be used both to
raise exceptions (which is discussed in detail in lecture “PL/pgSQL. Error
Handling”) and to emit messages. Such messages can be either sent to the
client or written to the server log.

In a simple debugging case, you have to add RAISE NOTICE calls to the
function code, start the function execution (for example, in a psql session),
and analyze the received messages as the execution progresses. RAISE
messages are non-transactional: they are emitted asynchronously and do
not depend on the transaction status.

Message delivery is controlled by message levels (DEBUG, LOG, NOTICE,
INFO, WARNING) and server parameters. Parameter values determine
whether a message will be sent to the client (client_min_messages) and/or
written to the server log (log_min_messages). A message will be sent if the
RAISE command level is not lower than the value of the corresponding
parameter (is shown to the right of the parameter value on this slide).

In the default configuration, NOTICE messages are only sent to the client,
LOG messages are only written to the log file, and WARNING messages are
both sent to the client and written to the log file.

INFO messages are always sent to the client; they cannot be trapped using
the client_min_messages parameter.

https://postgrespro.com/docs/postgresql/12/plpgsql-errors-and-messages

The	RAISE	Command

Let’s	create	a	function	that	takes	a	table	name	as	a	parameter	and	calculates	the	number	of	rows	in	this	table.

=>	CREATE	FUNCTION	get_count(tabname	text)	RETURNS	bigint
AS	$$
DECLARE
				cmd	text;
				retval	bigint;
BEGIN
				cmd	:=	'SELECT	COUNT(*)	FROM	'	||	quote_ident(tabname);
				RAISE	NOTICE	'cmd:	%',	cmd;
				EXECUTE	cmd	INTO	retval;
				RETURN	retval;
END;
$$	LANGUAGE	plpgsql	STABLE;

CREATE	FUNCTION

To	execute	a	command	dynamically,	it	is	better	to	save	its	text	in	a	variable	in	advance.	If	an	error	occurs,	you	can	check	the	contents	of	this
variable.

=>	SELECT	get_count('pg_class');

NOTICE:		cmd:	SELECT	COUNT(*)	FROM	pg_class
	get_count	

							395
(1	row)

The	line	that	starts	with	“NOTICE”	provides	debug	information.

RAISE	can	be	used	to	track	the	execution	of	a	long-running	query.

Suppose	there	are	three	explicitly	defined	execution	stages	in	the	code,	and	we	would	like	to	know	the	exact	stage	we	are	at	during	routine
execution.

=>	CREATE	PROCEDURE	long_running()
AS	$$
BEGIN
				RAISE	NOTICE	'long_running.	Stage	1/3...';
				PERFORM	pg_sleep(2);

				RAISE	NOTICE	'long_running.	Stage	2/3...';
				PERFORM	pg_sleep(3);

				RAISE	NOTICE	'long_running.	Stage	3/3...';
				PERFORM	pg_sleep(1);

				RAISE	NOTICE	'long_running.	Done.';
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

The	RAISE	command	displays	messages	at	once,	without	waiting	until	the	function	execution	is	complete:

=>	CALL	long_running();

NOTICE:		long_running.	Stage	1/3...
NOTICE:		long_running.	Stage	2/3...
NOTICE:		long_running.	Stage	3/3...
NOTICE:		long_running.	Done.
CALL

This	approach	is	convenient	if	the	function	can	be	called	in	a	separate	session.	But	if	it	is	called	from	the	application,	it	is	easier	to	take	a	look
at	the	server	log.

Let’s	create	the	raise_msg	procedure	to	produce	a	message	of	the	level	set	in	the	user-defined	app.raise_level	parameter:

=>	CREATE	OR	REPLACE	PROCEDURE	raise_msg(msg	text)
AS	$$
BEGIN
				CASE	current_setting('app.raise_level',	true)
								WHEN	'NOTICE'		THEN	RAISE	NOTICE		'%,	%,	%',	user,	clock_timestamp(),	msg;
								WHEN	'DEBUG'			THEN	RAISE	DEBUG			'%,	%,	%',	user,	clock_timestamp(),	msg;
								WHEN	'LOG'					THEN	RAISE	LOG					'%,	%,	%',	user,	clock_timestamp(),	msg;
								WHEN	'INFO'				THEN	RAISE	INFO				'%,	%,	%',	user,	clock_timestamp(),	msg;
								WHEN	'WARNING'	THEN	RAISE	WARNING	'%,	%,	%',	user,	clock_timestamp(),	msg;
								ELSE	NULL;	--	all	other	values	disable	message	output
				END	CASE;
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

For	the	purposes	of	our	example,	let’s	set	this	parameter	at	the	session	level	and	make	the	long_running	procedure	use	raise_msg:

=>	SET	app.raise_level	TO	'NONE';

SET

=>	CREATE	OR	REPLACE	PROCEDURE	long_running()
AS	$$
BEGIN
				CALL	raise_msg('long_running.	Stage	1/3...');
				PERFORM	pg_sleep(2);

				CALL	raise_msg('long_running.	Stage	2/3...');
				PERFORM	pg_sleep(3);

				CALL	raise_msg('long_running.	Stage	3/3...');
				PERFORM	pg_sleep(1);

				CALL	raise_msg('long_running.	Done.');
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

Now	debug	messages	won’t	be	displayed	in	normal	circumstances	(if	app.raise_level	=	NONE):

=>	CALL	long_running();

CALL

When	running	the	function	in	a	separate	session,	we	can	get	debug	messages	by	setting	the	app.raise_level	parameter	to	NOTICE:

=>	SET	app.raise_level	TO	'NOTICE';

SET

=>	CALL	long_running();

NOTICE:		student,	2021-10-19	17:03:51.338091+03,	long_running.	Stage	1/3...
NOTICE:		student,	2021-10-19	17:03:53.34025+03,	long_running.	Stage	2/3...
NOTICE:		student,	2021-10-19	17:03:56.344236+03,	long_running.	Stage	3/3...
NOTICE:		student,	2021-10-19	17:03:57.346025+03,	long_running.	Done.
CALL

To	direct	the	application’s	debug	messages	into	the	server	log,	set	the	app.raise_level	to	LOG:

=>	SET	app.raise_level	TO	'LOG';

SET

=>	CALL	long_running();

CALL

Let’s	have	a	look	at	the	server	log:

student$	tail	-n	20	/var/log/postgresql/postgresql-12-main.log	|	grep	long_running

2021-10-19	17:03:57.401	MSK	[29165]	student@plpgsql_debug	LOG:		student,	2021-10-19	17:03:57.40142+03,	long_running.	Stage	1/3...
	 SQL	statement	"CALL	raise_msg('long_running.	Stage	1/3...')"
	 PL/pgSQL	function	long_running()	line	3	at	CALL
2021-10-19	17:03:57.401	MSK	[29165]	student@plpgsql_debug	STATEMENT:		CALL	long_running();
2021-10-19	17:03:59.404	MSK	[29165]	student@plpgsql_debug	LOG:		student,	2021-10-19	17:03:59.404887+03,	long_running.	Stage	2/3...
	 SQL	statement	"CALL	raise_msg('long_running.	Stage	2/3...')"
	 PL/pgSQL	function	long_running()	line	6	at	CALL
2021-10-19	17:03:59.404	MSK	[29165]	student@plpgsql_debug	STATEMENT:		CALL	long_running();
2021-10-19	17:04:02.406	MSK	[29165]	student@plpgsql_debug	LOG:		student,	2021-10-19	17:04:02.405975+03,	long_running.	Stage	3/3...
	 SQL	statement	"CALL	raise_msg('long_running.	Stage	3/3...')"
	 PL/pgSQL	function	long_running()	line	9	at	CALL
2021-10-19	17:04:02.406	MSK	[29165]	student@plpgsql_debug	STATEMENT:		CALL	long_running();
2021-10-19	17:04:03.408	MSK	[29165]	student@plpgsql_debug	LOG:		student,	2021-10-19	17:04:03.408104+03,	long_running.	Done.
	 SQL	statement	"CALL	raise_msg('long_running.	Done.')"
	 PL/pgSQL	function	long_running()	line	12	at	CALL
2021-10-19	17:04:03.408	MSK	[29165]	student@plpgsql_debug	STATEMENT:		CALL	long_running();

By	modifying	app.raise_level,	log_min_messages,	and	client_min_messages	parameters,	you	can	switch	between	different	modes	of	logging
debug	messages.

What	is	important,	the	application	code	remains	the	same.

9

Process→Process (IPC)

NOTIFY → LISTEN
SQL commands
transactional execution is inconvenient for debugging

Session status
the application_name parameter
is visible in the pg_stat_activity view and in the output of the ps
command
can be used in log messages

In PostgreSQL, server processes can communicate between each other.

Among the built-in solutions, the following are worth noting.
● Sending messages via the NOTIFY command in one process and getting

them via LISTEN in another. But since these commands are
transactional, it is inconvenient to use them for debugging:
1. Messages are sent only at commit time, not right after the NOTIFY
command execution. So it is impossible to track the execution progress.
2. If the transaction fails, messages won’t be sent at all.

● Using the application_name parameter.
A session with a long-running process can periodically write its execution
status into the application_name parameter. In a separate session, a
DBA can poll the pg_stat_activity view, which contains detailed
information about all active sessions. The application_name value is
usually also visible in the output of the ps command.
The application_name value can also be written to the server log (if you
set up the log_line_prefix parameter). As a result, relevant log entries will
be easier to find.

https://postgrespro.com/docs/postgrespro/12/runtime-config-logging#RUNTI
ME-CONFIG-LOGGING-WHAT

Session	Status

Let’s	see	how	we	can	use	the	application_name	parameter	for	debugging.	The	first	session	modifies	this	parameter,	while
the	second	one	periodically	polls	the	pg_stat_activity	view.

Here	is	a	new	version	of	the	procedure:

=>	CREATE	OR	REPLACE	PROCEDURE	long_running()
AS	$$
BEGIN
				SET	LOCAL	application_name	TO	"long_running.	Stage	1/3...";
				PERFORM	pg_sleep(2);

				SET	LOCAL	application_name	TO	"long_running.	Stage	2/3...";
				PERFORM	pg_sleep(3);

				SET	LOCAL	application_name	TO	"long_running.	Stage	3/3...";
				PERFORM	pg_sleep(1);

				SET	LOCAL	application_name	TO	"long_running.	Done.";
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

In	the	first	session,	run	the	following	commands:

=>	CALL	long_running();

In	the	second	session,	refresh	the	row	in	the	pg_stats_activity	view	every	two	seconds:

=>	SELECT	pid,	usename,	application_name
FROM	pg_stat_activity
WHERE	datname	=	'plpgsql_debug'	AND	pid	<>	pg_backend_pid();

		pid		|	usename	|						application_name						
-------+---------+----------------------------
	29165	|	student	|	long_running.	Stage	1/3...
(1	row)

=>	\g

		pid		|	usename	|						application_name						
-------+---------+----------------------------
	29165	|	student	|	long_running.	Stage	2/3...
(1	row)

=>	\g

		pid		|	usename	|						application_name						
-------+---------+----------------------------
	29165	|	student	|	long_running.	Stage	3/3...
(1	row)

=>	\g

		pid		|	usename	|	application_name	
-------+---------+------------------
	29165	|	student	|	psql
(1	row)

CALL

11

Process→Table

The dblink extension
is part of the server
incurs additional costs for opening a new connection

Autonomous transactions
commercial distributions (Postgres Pro Enterprise)

Another way to save debug messages is to write them into a database
table.

One of the advantages of this approach is that log access and concurrent
execution are managed by the database system itself.

But you have to make sure that insertion operations on this table are non-
transactional. It can be done using the dblink extension, which is provided
as part of the PostgreSQL server. This extension enables you to open
another connection to the same database, so insertion is performed in a
separate transaction.

As for the disadvantages, opening a new connection takes additional server
resources.

We cover dblink usage in more detail in the DEV2 course.

https://postgrespro.com/docs/postgrespro/12/dblink

Commercial distributions, such as Postgres Pro Enterprise, implement
autonomous transactions, which incur lower overhead than dblink usage.

Writing	Debug	Messages	into	a	Table:	the	dblink	Extension

Install	the	extension:

=>	CREATE	EXTENSION	dblink;

CREATE	EXTENSION

Create	a	table	for	logging	messages.

In	this	table,	it	is	useful	to	store	insertion	time	and	the	name	of	the	user	who	performed	the	operation.	The	id	column	is
required	to	sort	table	rows	in	the	order	of	their	insertion.

=>	CREATE	TABLE	log	(
				id							integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY,
				username	text,
				ts							timestamptz,
				message		text
);

CREATE	TABLE

Create	a	procedure	to	automatically	add	new	entries	into	the	table	log.	The	procedure	opens	a	new	session,	inserts	a	row
in	a	separate	transaction,	and	closes	the	session.

=>	CREATE	PROCEDURE	write_log(message	text)
AS	$$
DECLARE
				cmd	text;
BEGIN
				cmd	:=	format(
								'INSERT	INTO	log	(username,	ts,	message)
									VALUES	(%L,	%L::timestamptz,	%L)',
								user,	clock_timestamp()::text,	write_log.message
);
				PERFORM	dblink('dbname='	||	current_database(),	cmd);
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

Now	create	another	version	of	the	long_running	procedure.

=>	CREATE	OR	REPLACE	PROCEDURE	long_running()
AS	$$
BEGIN
				CALL	write_log('long_running.	Stage	1/3...');
				PERFORM	pg_sleep(2);

				CALL	write_log('long_running.	Stage	2/3...');
				PERFORM	pg_sleep(3);

				CALL	write_log('long_running.	Stage	3/3...');
				PERFORM	pg_sleep(1);

				CALL	write_log('long_running.	Done.');
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

To	check	our	implementation,	let’s	start	the	long_running	procedure	in	a	separate	transaction	that	will	be	aborted	at	the
very	last	moment.

=>	BEGIN;

BEGIN

=>	CALL	long_running();

CALL

=>	ROLLBACK;

ROLLBACK

Let’s	make	sure	that	all	the	calls	of	write_log	are	saved	in	the	table.	Using	ts	values,	you	can	determine	time	intervals
between	the	calls.

=>	SELECT	username,	to_char(ts,	'HH24:MI:SS')	as	ts,	message

FROM	log
ORDER	BY	id;

	username	|				ts				|										message											
----------+----------+----------------------------
	student		|	17:04:10	|	long_running.	Stage	1/3...
	student		|	17:04:12	|	long_running.	Stage	2/3...
	student		|	17:04:16	|	long_running.	Stage	3/3...
	student		|	17:04:17	|	long_running.	Done.
(4	rows)

13

Process→File

The adminpack extension
is part of the server
among other things, allows writing text files

Untrusted languages
for example, PL/Perl

You can also write debug messages into an OS file.

It can be done using the adminpack extension, which allows writing data to
any file that can be accessed by the postgres OS user.

Another option is to create a function in an untrusted language (such as
PL/Perl—plperlu) that will perform the same task. Various server-side
programming languages are covered in the DEV2 course.

https://postgrespro.com/docs/postgrespro/12/adminpack

Writing	into	a	File:	pg_file_write

Let’s	install	the	extension:

=>	CREATE	EXTENSION	adminpack;

CREATE	EXTENSION

Now	let’s	create	the	write_file	procedure	that	will	be	writing	debug	information	into	a	file.	The	postgres	user	that	has
started	the	database	instance	must	have	the	write	access	to	this	file,	so	let’s	save	it	in	this	user’s	home	directory.

=>	CREATE	PROCEDURE	write_file(message	text)
AS	$$
DECLARE
				filename	CONSTANT	text	:=	'/var/lib/postgresql/log.txt';
				message	text;
BEGIN
				message	:=	format(E'%s,	%s,	%s\n',
								session_user,	clock_timestamp()::text,	write_file.message
);
				PERFORM	pg_file_write(filename,	message,	/*	append	*/	true);
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

The	function	writes	the	message	onto	a	separate	line	of	the	log	file,	together	with	the	information	about	who	and	when	has
written	this	line.

Let’s	create	another	version	of	the	long_running	procedure.

=>	CREATE	OR	REPLACE	PROCEDURE	long_running()
AS	$$
BEGIN
				CALL	write_file('long_running.	Stage	1/3...');
				PERFORM	pg_sleep(2);

				CALL	write_file('long_running.	Stage	2/3...');
				PERFORM	pg_sleep(3);

				CALL	write_file('long_running.	Stage	3/3...');
				PERFORM	pg_sleep(1);

				CALL	write_file('long_running.	Done.');
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

To	check	our	implementation,	let’s	start	long_running	in	a	separate	transaction	that	will	be	aborted	at	the	very	last
moment.

=>	BEGIN;

BEGIN

=>	CALL	long_running();

CALL

=>	ROLLBACK;

ROLLBACK

Let’s	check	that	the	messages	have	appeared	in	the	log	(on	behalf	of	the	postgres	OS	user):

postgres$	cat	/var/lib/postgresql/log.txt

student,	2021-10-19	17:04:17.259374+03,	long_running.	Stage	1/3...
student,	2021-10-19	17:04:19.261617+03,	long_running.	Stage	2/3...
student,	2021-10-19	17:04:22.264959+03,	long_running.	Stage	3/3...
student,	2021-10-19	17:04:23.26653+03,	long_running.	Done.

To	access	this	file	on	behalf	of	the	student	user,	you	have	to	use	the	sudo	command.

15

Tracing SQL

Standard tracing into the log file
logging overhead
a big size of the log file
profiling tools are required
access to the log file is required (security)

Settings
long-running statements log_min_duration_statement
the statements to log log_statement
message context log_line_prefix
…

In some cases, it may be useful to trace everything that happens in the
code. Using the built-in functionality, you can save the executed SQL
queries into the server log file. Make sure to take into account the following
specifics:
● A high-load application can execute a huge number of queries. Writing

them into a file can affect performance of the I/O subsystem.
● In most cases, you have to use special tools to analyze such data sets.

A de facto standard is pgBadger.
https://github.com/darold/pgbadger

● Application developers may have no access to the log file on the server.
Besides, in production systems, log files can contain commands with
confidential information.

PostgreSQL provides several parameters to configure tracing; the main
ones are listed on the slide. The full list is available here:

https://postgrespro.com/docs/postgresql/12/runtime-config-logging

You do not have to set configuration parameters for the whole cluster. Their
scope can be limited to particular sessions using SET, ALTER DATABASE,
and ALTER ROLE commands (as we have explained in lectures “Basic
Tools. Installation and Management, psql” and “Data Organization. Logical
Structure”).

16

Tracing SQL

The auto_explain extension
logging execution plans
tracing nested statements

Settings
plans of long-running commands auto_explain.log_min_duration
nested statements auto_explain.log_nested_statements
…

When tracing is enabled, SQL commands make it into the log in their exact
form that has been sent to the server. If a PL/pgSQL routine was called, the
log will contain only this top-level call (for example, SELECT or CALL
operators), but not the commands executed within the routine.

To log nested queries in addition to top-level commands, you have to use
the auto_explain extension.

As suggested by its name, the main objective of this extension is to log both
the text of the command and its execution plan. It can turn out to be useful,
although it is not exactly tracing, but rather query optimization (which is
covered in the QPT course).

https://postgrespro.com/docs/postgresql/12/auto-explain

17

Tracing PL/pgSQL

The plpgsql_check extension
overhead incurred by logging
loads of returned data

The main settings
enabling tracing plpgsql_check.enable_tracer

plpgsql_check.tracer
message levels plpgsql_check.tracer_errlevel

To figure out which code has been executed as you are looking at the log,
you have to match SQL queries with PL/pgSQL routines, and it can be not
that easy. There are no built-in features for tracing PL/pgSQL code, but you
can do it with the help of the plpgsql_check extension developed by Pavel
Stehule (we have already mentioned this extension in lecture “PL/pgSQL.
Executing Queries”).

Such tracing causes significant overhead and should only be used for
debugging, not in production operations.

https://github.com/okbob/plpgsql_check

Tracing	Sessions

A	simple	example	of	tracing	is	setting	the	log_statement	parameter	to	all	(log	all	commands,	including	DDL	commands,
data	modification	operations,	and	queries).

=>	SET	log_statement	=	'all';

SET

Let’s	run	an	arbitrary	query...

=>	SELECT	get_count('pg_views');

NOTICE:		cmd:	SELECT	COUNT(*)	FROM	pg_views
	get_count	

							124
(1	row)

...and	disable	tracing:

=>	RESET	log_statement;

RESET

The	information	about	the	executed	commands	appears	in	the	server	log:

student$	tail	-n	2	/var/log/postgresql/postgresql-12-main.log

2021-10-19	17:04:23.405	MSK	[29165]	student@plpgsql_debug	LOG:		statement:	SELECT	get_count('pg_views');
2021-10-19	17:04:23.458	MSK	[29165]	student@plpgsql_debug	LOG:		statement:	RESET	log_statement;

However,	the	log	contains	only	the	top-level	command;	the	query	run	within	the	get_count	function	is	not	there.

Let’s	use	the	auto_explain	extension.	You	do	not	have	to	install	this	extension	into	the	database,	but	you	need	to	load	it
into	memory.	It	can	be	done	for	the	whole	instance	using	the	shared_preload_libraries	parameter,	or	for	the	current
process	only:

=>	LOAD	'auto_explain';

LOAD

Enable	tracing	for	all	commands,	regardless	of	their	execution	time:

=>	SET	auto_explain.log_min_duration	=	0;

SET

Enable	tracing	of	nested	statements:

=>	SET	auto_explain.log_nested_statements	=	on;

SET

The	messages	are	displayed	using	the	same	mechanism	that	is	employed	by	RAISE.	By	default,	the	LOG	level	is	used,
which	usually	directs	the	output	to	the	log	file.	You	can	modify	this	parameter	to	display	tracing	information	right	in	the
terminal:

=>	SET	auto_explain.log_level	=	'NOTICE';

SET

Repeat	the	query:

=>	SELECT	get_count('pg_views');

NOTICE:		cmd:	SELECT	COUNT(*)	FROM	pg_views
NOTICE:		duration:	0.093	ms		plan:
Query	Text:	SELECT	COUNT(*)	FROM	pg_views
Aggregate		(cost=18.25..18.26	rows=1	width=8)
		->		Seq	Scan	on	pg_class	c		(cost=0.00..17.94	rows=124	width=0)
								Filter:	(relkind	=	'v'::"char")
NOTICE:		duration:	0.439	ms		plan:
Query	Text:	SELECT	get_count('pg_views');
Result		(cost=0.00..0.26	rows=1	width=8)
	get_count	

							124
(1	row)

We	see	both	the	function	call	and	the	nested	query,	together	with	the	execution	plans.

19

Summary

PL/pgSQL Debugger is a debugger API used in GUI IDEs

Debugging output can be displayed in the terminal, written into
the server log, a table, or a file; it can also be sent to other
processes

It is possible to trace a session

20

Practice

1. Modify the get_catalog function, so that the dynamically
constructed text of the query is written into the server log.

In the application, perform search several times by filling out
different fields; make sure that SQL commands are constructed
correctly.

2. Enable tracing of SQL statements at the server level.

Perform some actions in the application and check which
commands are logged.

Disable tracing.

Task 2. To enable tracing, set the log_min_duration_statement parameter to
0 and reload the configuration. All commands will be logged, together with
their execution time.

The easiest way to do it is to use the ALTER SYSTEM SET command. Other
ways of setting parameters are covered in lecture “Basic Tools. Installation
and Management, psql.” Remember to reload the server configuration file.

After having a look at the log file, you should reset
log_min_duration_statement to the default value (-1) to disable tracing. It is
convenient to use ALTER SYSTEM RESET for this purpose.

Task	1.	get_catalog	Function

Let’s	construct	the	text	of	the	dynamic	query	in	a	separate	variable,	and	write	this	variable	into	the	server	log	before	execution.	To	provide	more
detailed	information,	let’s	extend	the	debug	output	with	parameter	values	passed	to	the	function.

Debug	messages	can	be	found	in	the	log	by	searching	for	the	“DEBUG	get_catalog”	string.

You	can	delete	or	comment	out	the	RAISE	LOG	command	after	debugging.

=>	CREATE	OR	REPLACE	FUNCTION	get_catalog(
				author_name	text,
				book_title	text,
				in_stock	boolean
)
RETURNS	TABLE(book_id	integer,	display_name	text,	onhand_qty	integer)
AS	$$
DECLARE
				title_cond	text	:=	'';
				author_cond	text	:=	'';
				qty_cond	text	:=	'';
				cmd	text	:=	'';
BEGIN
				IF	book_title	!=	''	THEN
								title_cond	:=	format(
												'	AND	cv.title	ILIKE	%L',	'%'||book_title||'%'
);
				END	IF;
				IF	author_name	!=	''	THEN
								author_cond	:=	format(
												'	AND	cv.authors	ILIKE	%L',	'%'||author_name||'%'
);
				END	IF;
				IF	in_stock	THEN
								qty_cond	:=	'	AND	cv.onhand_qty	>	0';
				END	IF;
				cmd	:=	'
								SELECT	cv.book_id,
															cv.display_name,
															cv.onhand_qty
								FROM			catalog_v	cv
								WHERE		true'
								||	title_cond	||	author_cond	||	qty_cond	||	'
								ORDER	BY	display_name';

				RAISE	LOG	'DEBUG	get_catalog	(%,	%,	%):	%',
								author_name,	book_title,	in_stock,	cmd;
				RETURN	QUERY	EXECUTE	cmd;
END;
$$	STABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Task	2.	Enabling	and	Disabling	Tracing	of	SQL	Queries

To	enable	tracing	of	all	queries	at	the	server	level,	you	can	run	the	following	commands:

=>	ALTER	SYSTEM	SET	log_min_duration_statement	=	0;

ALTER	SYSTEM

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

To	disable	tracing,	run:

=>	ALTER	SYSTEM	RESET	log_min_duration_statement;

ALTER	SYSTEM

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

The	last	two	commands	can	be	found	in	the	server	log:

student$	tail	-n	6	/var/log/postgresql/postgresql-12-main.log

2021-10-19	17:06:17.658	MSK	[35602]	LOG:		received	SIGHUP,	reloading	configuration	files
2021-10-19	17:06:17.658	MSK	[35602]	LOG:		parameter	"log_min_duration_statement"	changed	to	"0"
2021-10-19	17:06:17.716	MSK	[45424]	student@bookstore	LOG:		duration:	6.186	ms		statement:	ALTER	SYSTEM	RESET	log_min_duration_statement;
2021-10-19	17:06:17.737	MSK	[45424]	student@bookstore	LOG:		duration:	0.106	ms		statement:	SELECT	pg_reload_conf();
2021-10-19	17:06:17.737	MSK	[35602]	LOG:		received	SIGHUP,	reloading	configuration	files
2021-10-19	17:06:17.737	MSK	[35602]	LOG:		parameter	"log_min_duration_statement"	removed	from	configuration	file,	reset	to	default

21

Practice

1. Enable tracing of the PL/pgSQL code using the
plpgsql_check extension; check how it works on the
example of several routines that call each other.

2. When getting debug messages from the PL/pgSQL code, it
is convenient to know the exact routine they are related to.
In the demo, the function name was entered manually.
Implement the functionality that automatically adds the
name of the current function or procedure to the message.

Task 1. To enable tracing, load the plpgsql_check extension into the session
memory using the LOAD command, and then set both the
plpgsql_check.enable_tracer and plpgsql_check.tracers parameters to “on”
at the session level.

Task 2. You can get the routine name by parsing the call stack. Use the
results of Task 3 that you have completed as part of the practice for the
“Error Handling” lecture.

Task	1.	Tracing	with	plpgsql_check

=>	CREATE	DATABASE	plpgsql_debug;

CREATE	DATABASE

=>	\c	plpgsql_debug

You	are	now	connected	to	database	"plpgsql_debug"	as	user	"student".

Load	the	extension	(in	this	particular	case,	you	do	not	have	to	install	it	into	the	database	using	the	CREATE	EXTENSION
command):

=>	LOAD	'plpgsql_check';

LOAD

Enable	tracing:

=>	SET	plpgsql_check.enable_tracer	=	on;

SET

=>	SET	plpgsql_check.tracer	=	on;

SET

Create	several	functions	that	call	each	other:

=>	CREATE	FUNCTION	foo(n	integer)	RETURNS	integer
AS	$$
BEGIN
				RETURN	bar(n-1);
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	CREATE	FUNCTION	bar(n	integer)	RETURNS	integer
AS	$$
BEGIN
				RETURN	baz(n-1);
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	CREATE	FUNCTION	baz(n	integer)	RETURNS	integer
AS	$$
BEGIN
				RETURN	n;
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

A	tracing	example:

=>	SELECT	foo(3);

NOTICE:		#0			->>	start	of	function	foo(integer)	(oid=24840)
NOTICE:		#0							"n"	=>	'3'
NOTICE:		#1					->>	start	of	function	bar(integer)	(oid=24841)
NOTICE:		#1										call	by	foo(integer)	line	3	at	RETURN
NOTICE:		#1									"n"	=>	'2'
NOTICE:		#2							->>	start	of	function	baz(integer)	(oid=24842)
NOTICE:		#2												call	by	bar(integer)	line	3	at	RETURN
NOTICE:		#2											"n"	=>	'1'
NOTICE:		#2							<<-	end	of	function	baz	(elapsed	time=0.018	ms)
NOTICE:		#1					<<-	end	of	function	bar	(elapsed	time=0.106	ms)
NOTICE:		#0			<<-	end	of	function	foo	(elapsed	time=0.437	ms)
	foo	

			1
(1	row)

In	addition	to	function	start	and	end	events,	parameter	values	and	elapsed	time	are	displayed	(the	extension	also	provides
profiling	features,	but	we	won’t	cover	them	here).

Disable	tracing:

=>	SET	plpgsql_check.tracer	=	off;

SET

Task	2.	Including	a	Function	Name	into	Debug	Messages

Let’s	create	a	procedure	that	displays	the	upper	part	of	the	call	stack	(excluding	the	tracing	procedure	itself).	The
message	is	displayed	with	an	indent	that	indicates	the	stack	depth.

=>	CREATE	PROCEDURE	raise_msg(msg	text)
AS	$$
DECLARE
				ctx	text;
				stack	text[];
BEGIN
				GET	DIAGNOSTICS	ctx	=	pg_context;
				stack	:=	regexp_split_to_array(ctx,	E'\n');
				RAISE	NOTICE	'%:	%',
								repeat('.	',	array_length(stack,1)-2)	||	stack[3],	msg;
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

A	tracing	example:

=>	CREATE	TABLE	t(n	integer);

CREATE	TABLE

=>	CREATE	FUNCTION	on_insert()	RETURNS	trigger
AS	$$
BEGIN
				CALL	raise_msg('NEW	=	'||NEW::text);
				RETURN	NEW;
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	CREATE	TRIGGER	t_before_row
BEFORE	INSERT	ON	t
FOR	EACH	ROW
EXECUTE	FUNCTION	on_insert();

CREATE	TRIGGER

=>	CREATE	PROCEDURE	insert_into_t()
AS	$$
BEGIN
				CALL	raise_msg('start');
				INSERT	INTO	t	SELECT	id	FROM	generate_series(1,3)	id;
				CALL	raise_msg('end');
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

=>	CALL	insert_into_t();

NOTICE:		.	PL/pgSQL	function	insert_into_t()	line	3	at	CALL:	start
NOTICE:		.	.	.	PL/pgSQL	function	on_insert()	line	3	at	CALL:	NEW	=	(1)
NOTICE:		.	.	.	PL/pgSQL	function	on_insert()	line	3	at	CALL:	NEW	=	(2)
NOTICE:		.	.	.	PL/pgSQL	function	on_insert()	line	3	at	CALL:	NEW	=	(3)
NOTICE:		.	PL/pgSQL	function	insert_into_t()	line	5	at	CALL:	end
CALL

