

PL/pgSQL

Error Handling

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Error handling in PL/pgSQL blocks

Error names and codes

Choosing an error handler

Error handling overhead

3

Handling Errors in a Block

Error handling is performed if there is an EXCEPTION section

Changes are rolled back to the savepoint at the beginning of the
block

an implicit savepoint is set if the block contains an EXCEPTION section

If there is a handler that matches the error
error handler commands are executed
the block completes successfully

If there is no suitable handler
the block completes with an error

If a run-time error occurs within a block, the program (block, function) is
usually aborted, and the current transaction enters the failure mode:
it cannot be committed and can only be rolled back.

But an error can be caught and processed. It can be done by extending the
block with an additional EXCEPTION section, which lists error conditions
and provides operators to handle each of them.

In general, EXCEPTION is similar to the try-catch construct available in
some programming languages (except for transaction specifics, or course).

Before an error is processed, all changes are rolled back to the savepoint
that is implicitly set at the beginning of each block containing the
EXCEPTION section. That’s why it is forbidden to use COMMIT and
ROLLBACK commands in such blocks.

But although SAVEPOINT and ROLLBACK TO SAVEPOINT commands are
not supported by PL/pgSQL, you can still implicitly use savepoints and
rollbacks to savepoints both in functions and procedures.

https://postgrespro.com/docs/postgresql/12/plpgsql-control-structures#PLP
GSQL-ERROR-TRAPPING

Handling	Errors	in	a	Block

Let’s	take	a	look	at	a	simple	example.

=>	CREATE	TABLE	t(id	integer);

CREATE	TABLE

=>	INSERT	INTO	t(id)	VALUES	(1);

INSERT	0	1

If	there	are	no	errors,	all	operators	in	a	block	are	executed	as	usual:

=>	DO	$$
DECLARE
				n	integer;
BEGIN
				SELECT	id	INTO	STRICT	n	FROM	t;
				RAISE	NOTICE	'The	SELECT	INTO	operator	has	completed';
END;
$$;

NOTICE:		The	SELECT	INTO	operator	has	completed
DO

Now	let’s	insert	a	“redundant”	row	to	trigger	an	error.

=>	INSERT	INTO	t(id)	VALUES	(2);

INSERT	0	1

If	there	is	no	EXCEPTION	section	in	a	block,	the	operator	execution	is	interrupted,	and	the	whole	block	is	considered	to	be
completed	with	an	error:

=>	DO	$$
DECLARE
				n	integer;
BEGIN
				SELECT	id	INTO	STRICT	n	FROM	t;
				RAISE	NOTICE	'The	SELECT	INTO	operator	has	completed';
END;
$$;

ERROR:		query	returned	more	than	one	row
HINT:		Make	sure	the	query	returns	a	single	row,	or	use	LIMIT	1.
CONTEXT:		PL/pgSQL	function	inline_code_block	line	5	at	SQL	statement

To	catch	an	error,	a	block	must	have	an	EXCEPTION	section,	which	defines	one	or	more	error	handlers.

This	construct	works	similar	to	CASE:	conditions	are	parsed	from	top	to	bottom,	the	first	suitable	code	path	is	selected,
and	its	operators	are	executed.

What	will	be	displayed?

=>	DO	$$
DECLARE
				n	integer;
BEGIN
				INSERT	INTO	t(id)	VALUES	(3);
				SELECT	id	INTO	STRICT	n	FROM	t;
				RAISE	NOTICE	'The	SELECT	INTO	operator	has	completed';
EXCEPTION
				WHEN	no_data_found	THEN
								RAISE	NOTICE	'No	data';
				WHEN	too_many_rows	THEN
								RAISE	NOTICE	'Too	much	data';
								RAISE	NOTICE	'Rows	in	a	table:	%',	(SELECT	count(*)	FROM	t);
END;
$$;

NOTICE:		Too	much	data
NOTICE:		Rows	in	a	table:	2
DO

The	executed	handler	corresponds	to	the	too_many_rows	error.	Note:	if	a	handler	is	executed,	the	table	contains	two	rows
because	of	a	rollback	to	an	implicit	savepoint	at	the	beginning	of	the	block.

Note	the	following	subtlety:	if	an	error	occurs	in	the	DECLARE	section	or	within	the	EXCEPTION	section	of	the	handler

itself,	it	will	be	impossible	to	catch	it	in	this	block.

=>	DO	$$
DECLARE
				n	integer	:=	1	/	0;	--	an	error	is	not	trapped	here
BEGIN
				RAISE	NOTICE	'Success';
EXCEPTION
				WHEN	division_by_zero	THEN
								RAISE	NOTICE	'Division	by	zero';
END;
$$;

ERROR:		division	by	zero
CONTEXT:		SQL	statement	"SELECT	1	/	0"
PL/pgSQL	function	inline_code_block	line	4	during	statement	block	local	variable	initialization

5

Error Names and Codes

Information about an error
error name
five-character error code
additional information: a short message, a detailed message, a hint,
names of objects related to this error

A two-level hierarchy

XX001 – data_corrupted

XX002 – index_corrupted

XX000 – internal_error

P0001 – raise_exception

P0003 – too_many_rows

P0002 – no_data_found

P0004 – assert_failure

P0000 – plpgsql_error

Each possible error has a name and a code (a five-character string). WHEN
clauses accept both error names and error codes.

All errors are classified into some sort of a two-level hierarchy. Each error
class has a code that ends with three zeros; it corresponds to any error with
the same first two characters in its code.

For example, the code 23000 defines the class that includes all errors
dealing with violations of integrity constraints (such as 23502, which stands
for not-null constraint violation, or 23505, which indicates unique constraint
violation).

Thus, apart from regular errors, you can specify the whole error class by its
name or code. Besides, you can use a special name others to trap any error
(except for the fatal ones).

Apart from the name and code, each error can provide additional
information to facilitate comprehension: a short error message, a detailed
message, and a hint.

All errors are described in documentation in Appendix A:

https://postgrespro.com/docs/postgresql/12/errcodes-appendix

Errors can be not only trapped, but also raised programmatically.

https://postgrespro.com/docs/postgresql/12/plpgsql-errors-and-messages

Error	Names	and	Codes

We	have	already	seen	error	names;	error	codes	are	specified	using	SQLSTATE.

An	error	handler	can	return	an	error	code	and	the	corresponding	message	using	the	predefined	variables	SQLSTATE	and
SQLERRM.

=>	DO	$$
DECLARE
				n	integer;
BEGIN
				SELECT	id	INTO	STRICT	n	FROM	t;
EXCEPTION
				WHEN	SQLSTATE	'P0003'	OR	no_data_found	THEN	--	there	can	be	several	conditions
								RAISE	NOTICE	'%:	%',	SQLSTATE,	SQLERRM;
END;
$$;

NOTICE:		P0003:	query	returned	more	than	one	row
DO

Which	error	handler	will	be	used?

=>	DO	$$
DECLARE
				n	integer;
BEGIN
				SELECT	id	INTO	STRICT	n	FROM	t;
EXCEPTION
				WHEN	no_data_found	THEN
								RAISE	NOTICE	'No	data.	%:	%',	SQLSTATE,	SQLERRM;
				WHEN	plpgsql_error	THEN
								RAISE	NOTICE	'Another	error.	%:	%',	SQLSTATE,	SQLERRM;
				WHEN	too_many_rows	THEN
								RAISE	NOTICE	'Too	much	data.	%:	%',	SQLSTATE,	SQLERRM;
END;
$$;

NOTICE:		Another	error.	P0003:	query	returned	more	than	one	row
DO

The	first	applicable	handler	is	selected,	plpgsql_error	in	this	case.	We	will	never	get	to	the	last	error	handler.

You	can	force	an	error	using	either	its	code	or	its	name.

Here	we	use	a	special	name	“others,”	which	corresponds	to	any	error	that	should	be	trapped	(except	for	assertion	failures
and	cases	when	the	execution	is	aborted	by	user).

=>	DO	$$
BEGIN
				RAISE	no_data_found;
EXCEPTION
				WHEN	others	THEN
								RAISE	NOTICE	'%:	%',	SQLSTATE,	SQLERRM;
END;
$$;

NOTICE:		P0002:	no_data_found
DO

If	required,	it	is	also	possible	to	incorporate	user-provided	error	codes	that	are	not	predefined,	as	well	as	pass	some
additional	information	(the	example	illustrates	only	some	of	the	supported	features):

=>	DO	$$
BEGIN
				RAISE	SQLSTATE	'ERR01'	USING
								message	=	'A	glitch	in	the	Matrix.',
								detail		=	'The	Matrix	failure	has	occurred	during	execution',
								hint	=	'Contact	your	system	administrator';
END;
$$;

ERROR:		A	glitch	in	the	Matrix.
DETAIL:		The	Matrix	failure	has	occurred	during	execution
HINT:		Contact	your	system	administrator
CONTEXT:		PL/pgSQL	function	inline_code_block	line	3	at	RAISE

Error	handlers	cannot	get	this	information	from	variables;	there	is	a	special	construct	for	analyzing	such	data	in	the	code:

=>	DO	$$
DECLARE
				message	text;
				detail	text;
				hint	text;
BEGIN
				RAISE	SQLSTATE	'ERR01'	USING
								message	=	'Matrix	failure',
								detail		=	'Irrecoverable	matrix	failure	has	occurred	during	execution',
								hint	=	'Contact	your	system	administrator';
EXCEPTION
				WHEN	others	THEN
								GET	STACKED	DIAGNOSTICS
												message	=	message_text,
												detail	=	pg_exception_detail,
												hint	=	pg_exception_hint;
								RAISE	NOTICE	E'\nmessage	=	%\ndetail	=	%\nhint	=	%',
												message,	detail,	hint;
END;
$$;

NOTICE:		
message	=	Matrix	failure
detail	=	Irrecoverable	matrix	failure	has	occurred	during	execution
hint	=	Contact	your	system	administrator
DO

7

Choosing a Handler

An unhandled error is sent one level up
into the outer PL/pgSQL block, if available
into the calling routine, if available

The search path of a handler is determined by the call stack
i.e., it is not defined statically, it depends on the program execution

An unhandled error is passed to the client
the transaction enters the failure mode and has to be rolled back by the client
the error is registered in the server log

If none of the conditions listed in the EXCEPTION section is triggered, the
error goes one level up.

If an error has occurred in the inner block of a nested structure, the server
will search for a handler in the outer block. If there is no suitable handler
either, the whole outer block will be treated as failed, while the error will be
passed to the next nesting level, and so on.

If we have gone through the whole nested structure and have not found an
appropriate error handler, the error goes further up to the level of the routine
that has called this block. So you have to analyze the call stack to
determine the order in which different error handlers will be tried.

If none of the available error handlers is triggered:

- the error message usually gets into the server log (the exact behavior
depends on the server settings; see lecture “PL/pgSQL. Debugging”);

- the error is reported to the client that has initiated this operation in the
database. The client has to face the fact: the transaction enters the failure
mode, and it can only be rolled back.

It is up to the client to choose how to handle the error. For example, psql will
display the error message and all the debugging information available. An
end-user client may display a classic message like “contact your system
administrator”.

Choosing	a	Handler

Let’s	take	a	look	at	several	examples	of	choosing	a	handler	in	nested	blocks.	What	will	be	displayed?

=>	DO	$$
BEGIN
				BEGIN
								SELECT	1/0;
								RAISE	NOTICE	'The	inner	block	has	completed';
				EXCEPTION
								WHEN	division_by_zero	THEN
												RAISE	NOTICE	'Error	in	the	inner	block';
				END;
				RAISE	NOTICE	'The	outer	block	has	completed';
EXCEPTION
				WHEN	division_by_zero	THEN
								RAISE	NOTICE	'Error	in	the	outer	block';
END;
$$;

NOTICE:		Error	in	the	inner	block
NOTICE:		The	outer	block	has	completed
DO

An	error	is	handled	in	the	same	block	where	it	has	occurred.	The	outer	block	is	executed	as	if	there	has	been	no	error	at
all.

And	now?

=>	DO	$$
BEGIN
				BEGIN
								SELECT	1/0;
								RAISE	NOTICE	'The	inner	block	has	completed';
				EXCEPTION
								WHEN	no_data_found	THEN
												RAISE	NOTICE	'Error	in	the	inner	block';
				END;
				RAISE	NOTICE	'The	outer	block	has	completed';
EXCEPTION
				WHEN	division_by_zero	THEN
								RAISE	NOTICE	'Error	in	the	outer	block';
END;
$$;

NOTICE:		Error	in	the	outer	block
DO

The	handler	in	the	inner	block	is	not	applicable;	the	block	completes	with	an	error	that	is	handled	in	the	outer	block.

Remember	that	the	block	containing	an	EXCEPTION	section	is	rolled	back	to	the	implicit	savepoint	at	the	beginning	of	this
block.	In	this	case,	all	changes	made	in	both	blocks	will	be	rolled	back.

And	now?

=>	DO	$$
BEGIN
				BEGIN
								SELECT	1/0;
								RAISE	NOTICE	'The	inner	block	has	completed';
				EXCEPTION
								WHEN	no_data_found	THEN
												RAISE	NOTICE	'Error	in	the	inner	block';
				END;
				RAISE	NOTICE	'The	outer	block	has	completed';
EXCEPTION
				WHEN	no_data_found	THEN
								RAISE	NOTICE	'Error	in	the	outer	block';
END;
$$;

ERROR:		division	by	zero
CONTEXT:		SQL	statement	"SELECT	1/0"
PL/pgSQL	function	inline_code_block	line	4	at	SQL	statement

None	of	the	handlers	is	triggered,	and	the	whole	transaction	is	aborted.

There	is	usually	no	need	to	handle	all	possible	errors	in	the	server	code.	There	is	nothing	wrong	in	passing	an	error	to	the
client.	In	general,	an	error	should	be	handled	at	the	level	where	something	meaningful	can	be	done	about	it.	So	it	makes
sense	to	process	an	error	within	the	database	if	it	can	be	addressed	on	the	server	side	(e.g.,	the	operation	can	be	repeated
in	case	of	a	serialization	failure).	We’ll	talk	about	logging	error	messages	in	lecture	“PL/pgSQL.	Debugging.”

Now	let’s	take	a	look	at	an	example	that	uses	routines.

=>	CREATE	PROCEDURE	foo()
AS	$$
BEGIN
					CALL	bar();
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

=>	CREATE	PROCEDURE	bar()
AS	$$
BEGIN
				CALL	baz();
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

=>	CREATE	PROCEDURE	baz()
AS	$$
BEGIN
				PERFORM	1	/	0;
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

What	will	happen	if	we	call	this	procedure?

=>	CALL	foo();

ERROR:		division	by	zero
CONTEXT:		SQL	statement	"SELECT	1	/	0"
PL/pgSQL	function	baz()	line	3	at	PERFORM
SQL	statement	"CALL	baz()"
PL/pgSQL	function	bar()	line	3	at	CALL
SQL	statement	"CALL	bar()"
PL/pgSQL	function	foo()	line	3	at	CALL

The	error	message	displays	the	call	stack:	top	to	bottom	means	inside	out.

Note	that	this	message	(like	many	others)	uses	the	term	“function”	instead	of	“procedure”.

An	error	handler	can	also	provide	access	to	the	call	stack,	but	it	will	be	presented	as	a	single	string:

=>	CREATE	OR	REPLACE	PROCEDURE	bar()
AS	$$
DECLARE
				msg	text;
				ctx	text;
BEGIN
				CALL	baz();
EXCEPTION
				WHEN	others	THEN
								GET	STACKED	DIAGNOSTICS
													msg	=	message_text,
													ctx	=	pg_exception_context;
								RAISE	NOTICE	E'\nError:	%\nError	stack:\n%\n',	msg,	ctx;
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

Let’s	check	the	result:

=>	CALL	foo();

NOTICE:		
Error:	division	by	zero
Error	stack:
SQL	statement	"SELECT	1	/	0"
PL/pgSQL	function	baz()	line	3	at	PERFORM
SQL	statement	"CALL	baz()"
PL/pgSQL	function	bar()	line	6	at	CALL
SQL	statement	"CALL	bar()"
PL/pgSQL	function	foo()	line	3	at	CALL

CALL

Since	a	block	with	an	EXCEPTION	section	creates	an	implicit	savepoint,	procedures	cannot	use	COMMIT	and	ROLLBACK
commands	both	in	this	block	and	in	all	the	blocks	up	the	call	stack.

=>	CREATE	OR	REPLACE	PROCEDURE	baz()
AS	$$
BEGIN
				COMMIT;
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

=>	CALL	foo();

NOTICE:		
Error:	invalid	transaction	termination
Error	stack:
PL/pgSQL	function	baz()	line	3	at	COMMIT
SQL	statement	"CALL	baz()"
PL/pgSQL	function	bar()	line	6	at	CALL
SQL	statement	"CALL	bar()"
PL/pgSQL	function	foo()	line	3	at	CALL

CALL

9

Overhead

Any block with the EXCEPTION section is executed slower
because of setting an implicit savepoint

Additional costs are incurred in case of an error
because of a rollback to the savepoint

Error handling can and should be used, but not overused
anyway, PL/pgSQL is an interpreted language that uses SQL to compute
expressions
for most tasks, its speed is more than enough
performance issues are usually related to queries, not to PL/pgSQL code

The mere inclusion of an EXCEPTION section already incurs overhead
because it requires setting an implicit savepoint at the beginning of the
block. If an error really occurs, the rollback to a savepoint increases the
overhead even more.

So if there is a simple way to avoid exception handling, it’s better to do
without it. For example, you should not base your application logic on
“exception juggling.”

However, if error handing is really required, you should use it without doubt:
errors can and must be handled regardless of the overhead. First, the
PL/pgSQL language itself is quite slow because of interpreting instructions
and constantly calling SQL to compute expressions. Second, its speed is
usually still quite adequate. Yes, you can create a faster implementation in
C, but what’s the point? And third, the main performance issues are usually
caused by bad query plans that affect query speed, not by the execution
speed of procedural code (for details, see the QPT course that deals with
query performance tuning).

But if there is an alternative that is both simpler and faster, it should
certainly be preferred.

Overhead

To	estimate	the	overhead,	let’s	take	a	look	at	the	following	simple	example.

Suppose	we	have	a	table	with	a	text	field	that	stores	arbitrary	data	inserted	by	users	(although	usually	a	sign	of	bad
design,	it	may	sometimes	be	required).	We	need	to	extract	all	numbers	into	a	separate	column	of	a	numeric	type.

=>	CREATE	TABLE	data(comment	text,	n	integer);

CREATE	TABLE

=>	INSERT	INTO	data(comment)
SELECT	CASE
								WHEN	random()	<	0.01	THEN	'not	a	number'	--		1%
								ELSE	(random()*1000)::integer::text		--	99%
				END
FROM	generate_series(1,1000000);

INSERT	0	1000000

Let’s	solve	this	problem	using	error	handling:

=>	CREATE	FUNCTION	safe_to_integer_ex(s	text)	RETURNS	integer
AS	$$
BEGIN
				RETURN	s::integer;
EXCEPTION
				WHEN	invalid_text_representation	THEN
								RETURN	NULL;
END
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	check	the	result:

=>	\timing	on

Timing	is	on.

=>	UPDATE	data	SET	n	=	safe_to_integer_ex(comment);

UPDATE	1000000
Time:	5733.175	ms	(00:05.733)

=>	\timing	off

Timing	is	off.

=>	SELECT	count(*)	FROM	data	WHERE	n	IS	NOT	NULL;

	count		

	989992
(1	row)

The	following	implementation	of	our	function	will	check	the	format	using	a	(slightly	simplified)	regular	expression,	without
error	handling:

=>	CREATE	FUNCTION	safe_to_integer_re(s	text)	RETURNS	integer
AS	$$
BEGIN
				RETURN	CASE
								WHEN	s	~	'^\d+$'	THEN	s::integer
								ELSE	NULL
				END;
END
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	check	this	implementation:

=>	\timing	on

Timing	is	on.

=>	UPDATE	data	SET	n	=	safe_to_integer_re(comment);

UPDATE	1000000
Time:	3233.919	ms	(00:03.234)

=>	\timing	off

Timing	is	off.

=>	SELECT	count(*)	FROM	data	WHERE	n	IS	NOT	NULL;

	count		

	989992
(1	row)

This	implementation	is	almost	two	times	faster.	In	this	example,	an	exception	has	occurred	in	1%	of	cases	only.	The	more
often	it	occurs,	the	more	overhead	will	be	incurred	by	rollbacks	to	the	savepoint.

=>	UPDATE	data	SET	comment	=	'not	a	number';	--	100%

UPDATE	1000000

=>	\timing	on

Timing	is	on.

=>	UPDATE	data	SET	n	=	safe_to_integer_ex(comment);

UPDATE	1000000
Time:	9795.197	ms	(00:09.795)

=>	\timing	off

Timing	is	off.

In	some	cases	(which	are	not	infrequent),	you	can	do	without	error	handling	if	you	choose	other	suitable	means.

Problem:	return	a	row	from	a	table	or	NULL,	if	there	is	no	such	row.

=>	CREATE	TABLE	categories(code	text	UNIQUE,	description	text);

CREATE	TABLE

=>	INSERT	INTO	categories	VALUES	('books','Books'),	('discs','CDs');

INSERT	0	2

A	function	with	error	handling:

=>	CREATE	FUNCTION	get_cat_desc(code	text)	RETURNS	text
AS	$$
DECLARE
				desc	text;
BEGIN
				SELECT	c.description	INTO	STRICT	desc
				FROM	categories	c
				WHERE	c.code	=	get_cat_desc.code;

				RETURN	desc;
EXCEPTION
				WHEN	no_data_found	THEN
								RETURN	NULL;
END;
$$	STABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	check	that	the	function	works	as	expected:

=>	SELECT	get_cat_desc('books');

	get_cat_desc	

	Books
(1	row)

=>	SELECT	get_cat_desc('movies');

	get_cat_desc	

(1	row)

Can	we	make	it	simpler?

Yes,	we	just	need	to	remove	STRICT	or	use	a	subquery:

=>	CREATE	OR	REPLACE	FUNCTION	get_cat_desc(code	text)	RETURNS	text
AS	$$
BEGIN
				RETURN	(SELECT	c.description
												FROM	categories	c
												WHERE	c.code	=	get_cat_desc.code);
END;
$$	STABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

It’s	a	good	illustration	that	we	do	not	need	PL/pgSQL	here	at	all:	we	can	simply	use	SQL.

Let’s	check	the	result:

=>	SELECT	get_cat_desc('books');

	get_cat_desc	

	Books
(1	row)

=>	SELECT	get_cat_desc('movies');

	get_cat_desc	

(1	row)

Problem:	update	a	table	row	with	the	specified	ID;	if	there	is	no	such	row,	insert	it.

Here	is	the	first	approach.	What	is	wrong	with	it?

=>	CREATE	OR	REPLACE	FUNCTION	change(code	text,	description	text)
RETURNS	void
AS	$$
DECLARE
				cnt	integer;
BEGIN
				SELECT	count(*)	INTO	cnt
				FROM	categories	c	WHERE	c.code	=	change.code;

				IF	cnt	=	0	THEN
								INSERT	INTO	categories	VALUES	(code,	description);
				ELSE
								UPDATE	categories	c
								SET	description	=	change.description
								WHERE	c.code	=	change.code;
				END	IF;
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Almost	everything	is	bad	here,	starting	from	the	fact	that	such	a	function	will	not	work	correctly	at	the	Read	Committed
isolation	level	if	there	are	several	concurrent	sessions.	That’s	because	the	data	in	the	database	can	change	between	the
executed	SELECT	statement	and	the	next	operation.

It	can	be	easily	demonstrated	by	executing	commands	with	a	delay.	For	a	change,	let’s	see	another	implementation	(also	a
bad	one):

=>	CREATE	OR	REPLACE	FUNCTION	change(code	text,	description	text)
RETURNS	void
AS	$$
BEGIN
				UPDATE	categories	c
				SET	description	=	change.description
				WHERE	c.code	=	change.code;

				IF	NOT	FOUND	THEN
								PERFORM	pg_sleep(1);	--	anything	can	happen	here
								INSERT	INTO	categories	VALUES	(code,	description);
				END	IF;
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Now	let’s	run	this	function	in	two	different	sessions,	almost	simultaneously:

=>	SELECT	change('games',	'Games');

=>	SELECT	change('games',	'Games');

ERROR:		duplicate	key	value	violates	unique	constraint	"categories_code_key"
DETAIL:		Key	(code)=(games)	already	exists.
CONTEXT:		SQL	statement	"INSERT	INTO	categories	VALUES	(code,	description)"
PL/pgSQL	function	change(text,text)	line	9	at	SQL	statement

	change	

(1	row)

A	correct	solution	can	be	implemented	using	error	handling:

=>	CREATE	OR	REPLACE	FUNCTION	change(code	text,	description	text)
RETURNS	void
AS	$$
BEGIN
				LOOP
								UPDATE	categories	c
								SET	description	=	change.description
								WHERE	c.code	=	change.code;

								EXIT	WHEN	FOUND;
								PERFORM	pg_sleep(1);	--	for	the	demo

								BEGIN
												INSERT	INTO	categories	VALUES	(code,	description);
												EXIT;
								EXCEPTION
												WHEN	unique_violation	THEN	NULL;
								END;
				END	LOOP;
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	check	the	result.

=>	SELECT	change('vynil',	'Vynil	records');

=>	SELECT	change('vynil',	'Vynil	records');

	change	

(1	row)

	change	

(1	row)

Yes,	now	everything	is	correct.

But	there	is	an	easier	way:	you	can	use	a	special	flavor	of	the	INSERT	command	that	attempts	to	insert	a	row	and
performs	an	update	if	a	conflict	occurs.	Again,	all	you	need	is	pure	SQL.

=>	CREATE	OR	REPLACE	FUNCTION	change(code	text,	description	text)
RETURNS	void
AS	$$
				INSERT	INTO	categories	VALUES	(code,	description)
				ON	CONFLICT(code)
								DO	UPDATE	SET	description	=	change.description;
$$	VOLATILE	LANGUAGE	sql;

CREATE	FUNCTION

Problem:	make	sure	that	the	data	is	processed	by	one	transaction	at	a	time	(at	the	Read	Committed	isolation	level).

Using	the	same	table,	let’s	assume	that	the	category	sometimes	requires	a	special	single-threaded	processing.	The
function	can	be	declared	as	follows:

=>	CREATE	OR	REPLACE	FUNCTION	process_cat(code	text)	RETURNS	text
AS	$$
BEGIN
				PERFORM	c.code	FROM	categories	c	WHERE	c.code	=	process_cat.code
								FOR	UPDATE	NOWAIT;
				PERFORM	pg_sleep(1);	--	the	processing	itself
				RETURN	'The	category	has	been	processed';
EXCEPTION
				WHEN	lock_not_available	THEN
								RETURN	'Another	process	is	already	processing	this	category';
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	check	that	everything	is	correct:

=>	SELECT	process_cat('books');

=>	SELECT	process_cat('books');

																					process_cat																					

	Another	process	is	already	processing	this	category
(1	row)

											process_cat											

	The	category	has	been	processed
(1	row)

But	this	problem	can	also	be	solved	without	error	handling	if	we	use	advisory	locks:

=>	CREATE	OR	REPLACE	FUNCTION	process_cat(code	text)	RETURNS	text
AS	$$
BEGIN
				IF	pg_try_advisory_lock(hashtext(code))	THEN
								PERFORM	pg_sleep(1);	--	the	processing	itself
								RETURN	'The	category	has	been	processed';
				ELSE
								RETURN	'Another	transaction	is	already	processing	this	category';
				END	IF;
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	check	the	result:

=>	SELECT	process_cat('books');

=>	SELECT	process_cat('books');

																							process_cat																							

	Another	transaction	is	already	processing	this	category
(1	row)

											process_cat											

	The	category	has	been	processed
(1	row)

Let’s	see	an	example	where	we	cannot	do	without	error	handling.

Problem:	process	a	set	of	documents;	a	processing	error	of	a	particular	document	should	not	result	in	a	general	failure.

=>	CREATE	TYPE	doc_status	AS	ENUM	--	enumeration	type
				('READY',	'ERROR',	'PROCESSED');

CREATE	TYPE

=>	CREATE	TABLE	documents(
				id	integer,
				version	integer,
				status	doc_status,
				message	text
);

CREATE	TABLE

=>	INSERT	INTO	documents(id,	version,	status)
SELECT	id,	1,	'READY'	FROM	generate_series(1,100)	id;

INSERT	0	100

A	procedure	that	processes	a	single	document	can	sometimes	result	in	an	error:

=>	CREATE	PROCEDURE	process_one_doc(id	integer)
AS	$$
BEGIN
				UPDATE	documents	d
				SET	version	=	version	+	1
				WHERE	d.id	=	process_one_doc.id;
				--	processing	can	take	a	while
				IF	random()	<	0.05	THEN
								RAISE	EXCEPTION	'Catastrophic	failure';
				END	IF;
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

Now	let’s	create	a	procedure	that	processes	all	documents.	It	loops	through	the	documents	to	process	them	one	by	one
and	catches	an	error	if	required.

Note	that	transactions	are	committed	outside	of	the	block	that	contains	the	EXCEPTION	section.

=>	CREATE	PROCEDURE	process_docs()
AS	$$
DECLARE
				doc	record;
BEGIN
				FOR	doc	IN	(SELECT	id	FROM	documents	WHERE	status	=	'READY')
				LOOP
								BEGIN
												CALL	process_one_doc(doc.id);

												UPDATE	documents	d
												SET	status	=	'PROCESSED'
												WHERE	d.id	=	doc.id;
								EXCEPTION
												WHEN	others	THEN
																UPDATE	documents	d
																SET	status	=	'ERROR',	message	=	sqlerrm
																WHERE	d.id	=	doc.id;
								END;
								COMMIT;	--	there	is	a	separate	transaction	for	each	document
				END	LOOP;
END;
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

You	can	set	up	a	similar	processing	using	a	function,	but	then	all	documents	will	be	handled	within	a	single	common
transaction,	which	can	be	a	problem	if	processing	takes	a	long	time.	This	question	is	discussed	at	length	in	the	DEV2
course.

Let’s	check	the	result:

=>	CALL	process_docs();

CALL

=>	SELECT	d.status,	d.version,	count(*)::integer
FROM	documents	d
GROUP	BY	d.status,	d.version;

		status			|	version	|	count	
-----------+---------+-------
	ERROR					|							1	|					5
	PROCESSED	|							2	|				95
(2	rows)

As	you	can	see,	some	of	the	documents	have	not	been	processed,	but	it	has	not	affected	the	rest.

It	is	convenient	that	the	information	about	the	occurred	errors	is	stored	in	the	table	itself:

=>	SELECT	*	FROM	documents	d	WHERE	d.status	=	'ERROR';

	id	|	version	|	status	|							message								
----+---------+--------+----------------------
	18	|							1	|	ERROR		|	Catastrophic	failure
	77	|							1	|	ERROR		|	Catastrophic	failure
	80	|							1	|	ERROR		|	Catastrophic	failure
	65	|							1	|	ERROR		|	Catastrophic	failure
	85	|							1	|	ERROR		|	Catastrophic	failure
(5	rows)

Please	note	once	again	that	if	an	error	occurs,	the	changes	are	rolled	back	to	the	savepoint	at	the	beginning	of	the	block;
that’s	why	documents	with	the	ERROR	status	have	not	changed	and	still	have	version	1.

11

Summary

The search for an error handler is performed “inside out,” i.e.,
starting from the most inner block in the nested structure and
going up the call stack

An implicit savepoint is set at the beginning of the block that
contains EXCEPTION; if an error occurs, a rollback to this
savepoint is performed

An unhandled error aborts the transaction; the error message
is passed to the client and registered in the server log

Error handling incurs overhead

12

Practice

1. Specifying one and the same author several times when adding
a book causes an error.
Change the add_book function: trap the unique constraint
violation error and force an error with a meaningful message
instead.

Test these changes in the application.

Task 1. To determine the name of the error that has to be trapped, catch all
errors (WHEN OTHERS) and display the required information (by raising
another error with the corresponding text).

Then remember to replace WITH OTHERS with a specific error: let all other
error types be handled at a higher level if there is no opportunity to do
anything useful in this particular place of the code.

(In real life, unique constraint violations should not be handled either: it is
better to forbid entering the same author twice at the application level.)

Task	1.	Processing	Duplicated	Author	Names	when	Adding	Books

=>	CREATE	OR	REPLACE	FUNCTION	add_book(title	text,	authors	integer[])
RETURNS	integer
AS	$$
DECLARE
				book_id	integer;
				id	integer;
				seq_num	integer	:=	1;
BEGIN
				INSERT	INTO	books(title)
								VALUES(title)
								RETURNING	books.book_id	INTO	book_id;
				FOREACH	id	IN	ARRAY	authors	LOOP
								INSERT	INTO	authorship(book_id,	author_id,	seq_num)
												VALUES	(book_id,	id,	seq_num);
								seq_num	:=	seq_num	+	1;
				END	LOOP;
				RETURN	book_id;
EXCEPTION
				WHEN	unique_violation	THEN
								RAISE	EXCEPTION	'One	and	the	same	author	cannot	be	specified	twice';
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

13

Practice

1. Some languages use the construct try … catch … finally …,
where try corresponds to BEGIN, catch corresponds to
EXCEPTION, and the operators located in the finally block are
always triggered regardless of whether an exception has occurred
and whether it has been processed by the catch block. Find
a way to achieve a similar effect in PL/pgSQL.

2. Compare the call stacks returned by GET STACKED DIAGNOSTICS
with pg_exception_context
and GET [CURRENT] DIAGNOSTICS with pg_context.

3. Create the getstack function that returns the current call stack
as a string array. The getstack function itself must not be a part
of the stack.

Task 1. The easiest way to do it is to simply repeat finally operators in
several places. But you should try to come up with a solution that avoids
code duplication.

Task 2. Take a look at documentation first:

https://postgrespro.com/docs/postgresql/12/plpgsql-statements#PLPGSQL-
STATEMENTS-DIAGNOSTICS

https://postgrespro.com/docs/postgresql/12/plpgsql-control-structures#PLP
GSQL-EXCEPTION-DIAGNOSTICS

Task	1.	Try-catch-finally

=>	CREATE	DATABASE	plpgsql_exceptions;

CREATE	DATABASE

=>	\c	plpgsql_exceptions

You	are	now	connected	to	database	"plpgsql_exceptions"	as	user	"student".

The	problem	is	that	“finally”	operators	must	always	be	executed,	even	if	there	is	an	error	in	a	“catch”	operator	(in	the	EXCEPTION	block).

A	possible	solution	is	to	use	two	nested	blocks	and	a	dummy	exception	that	is	called	if	the	inner	block	has	completed	successfully.	It	allows	grouping	all
“finally”	operators	in	a	single	location,	namely	in	the	exception	handler	of	the	outer	block.

=>	DO	$$
BEGIN
				BEGIN
								RAISE	NOTICE	'try	operators';
								--
								RAISE	NOTICE	'...no	exception';
				EXCEPTION
								WHEN	no_data_found	THEN
												RAISE	NOTICE	'catch	operators';
				END;
				RAISE	SQLSTATE	'ALLOK';
EXCEPTION
				WHEN	others	THEN
								RAISE	NOTICE	'finally	operators';
								IF	SQLSTATE	!=	'ALLOK'	THEN
												RAISE;
								END	IF;
END;
$$;

NOTICE:		try	operators
NOTICE:		...no	exception
NOTICE:		finally	operators
DO

=>	DO	$$
BEGIN
				BEGIN
								RAISE	NOTICE	'try	operators';
								--
								RAISE	NOTICE	'...a	handled	exception';
								RAISE	no_data_found;
				EXCEPTION
								WHEN	no_data_found	THEN
												RAISE	NOTICE	'catch	operators';
				END;
				RAISE	SQLSTATE	'ALLOK';
EXCEPTION
				WHEN	others	THEN
								RAISE	NOTICE	'finally	operators';
								IF	SQLSTATE	!=	'ALLOK'	THEN
												RAISE;
								END	IF;
END;
$$;

NOTICE:		try	operators
NOTICE:		...a	handled	exception
NOTICE:		catch	operators
NOTICE:		finally	operators
DO

=>	DO	$$
BEGIN
				BEGIN
								RAISE	NOTICE	'try	operators';
								--
								RAISE	NOTICE	'...an	unhandled	exception';
								RAISE	division_by_zero;
				EXCEPTION
								WHEN	no_data_found	THEN
												RAISE	NOTICE	'catch	operators';
				END;
				RAISE	SQLSTATE	'ALLOK';
EXCEPTION
				WHEN	others	THEN
								RAISE	NOTICE	'finally	operators';
								IF	SQLSTATE	!=	'ALLOK'	THEN
												RAISE;
								END	IF;
END;
$$;

NOTICE:		try	operators
NOTICE:		...an	unhandled	exception
NOTICE:		finally	operators
ERROR:		division_by_zero
CONTEXT:		PL/pgSQL	function	inline_code_block	line	7	at	RAISE

In	the	proposed	solution,	all	changes	performed	in	the	block	are	always	rolled	back,	so	it	cannot	be	used	for	commands	that	change	the	database	state.
You	should	also	keep	in	mind	the	overhead	incurred	by	exception	handling:	this	implementation	is	provided	for	training	purposes	only.

Task	2.	GET	DIAGNOSTICS

=>	DO	$$
DECLARE
				ctx	text;
BEGIN
				RAISE	division_by_zero;																							--	line	5
EXCEPTION
				WHEN	others	THEN
								GET	STACKED	DIAGNOSTICS	ctx	=	pg_exception_context;
								RAISE	NOTICE	E'stacked	=\n%',	ctx;
								GET	CURRENT	DIAGNOSTICS	ctx	=	pg_context;	--	line	10
								RAISE	NOTICE	E'current	=\n%',	ctx;
END;
$$;

NOTICE:		stacked	=
PL/pgSQL	function	inline_code_block	line	5	at	RAISE
NOTICE:		current	=
PL/pgSQL	function	inline_code_block	line	10	at	GET	DIAGNOSTICS
DO

GET	STACKED	DIAGNOSTICS	shows	the	call	stack	that	has	led	to	an	error.

GET	[CURRENT]	DIAGNOSTICS	shows	the	current	call	stack.

Task	3.	A	Call	Stack	as	an	Array

The	function	to	use:

=>	CREATE	FUNCTION	getstack()	RETURNS	text[]
AS	$$
DECLARE
				ctx	text;
BEGIN
				GET	DIAGNOSTICS	ctx	=	pg_context;
				RETURN	(regexp_split_to_array(ctx,	E'\n'))[2:];
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

To	check	how	it	works,	let’s	create	several	functions	that	call	each	other:

=>	CREATE	FUNCTION	foo()	RETURNS	integer
AS	$$
BEGIN
				RETURN	bar();
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	CREATE	FUNCTION	bar()	RETURNS	integer
AS	$$
BEGIN
				RETURN	baz();
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	CREATE	FUNCTION	baz()	RETURNS	integer
AS	$$
BEGIN
				RAISE	NOTICE	'%',	getstack();
				RETURN	0;
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	SELECT	foo();

NOTICE:		{"PL/pgSQL	function	baz()	line	3	at	RAISE","PL/pgSQL	function	bar()	line	3	at	RETURN","PL/pgSQL	function	foo()	line	3	at	RETURN"}
	foo	

			0
(1	row)

