

Bookstore Application

Application Schema and Interface

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Bookstore application overview

Designing the application schema; normalization

The final version of the application schema

Setting up the client-server interface

3

Demo

In this demo, we are going to show the Bookstore application as it should
appear after all practical assignments are complete. The application is
available in the VM browser at http://localhost/.

The application consists of several parts that are provided as separate tabs.

“Store” is a web user interface for buying books online.

Other tabs represent the backend interface, which is available only to the
bookstore employees (the admin panel).

“Catalog” is the storekeeper’s interface that is used for ordering books to the
store and viewing new arrivals and purchases.

“Books” and “Authors” are interfaces for librarians, where they can register
new arrivals.

For training purposes, all this functionality is exposed in a single web page.
If any feature is unavailable because the required object (such as a table or
a function) is missing, the application will report an error. It also displays the
text of all queries sent to the server.

We will start with an empty database and will gradually implement all the
required components as the course progresses.

The source code of the application frontend will not be discussed in this
course, but you can download it from the following git repository:
https://git.postgrespro.ru/pub/dev1app.git

4

Books

Book

title
authors
quantity
operations

entity

attributes

An ER-model for high-level design
entities are concepts of the subject domain
relationships are connections between entities
attributes are properties of entities and relationships

After taking a look at the application’s interface and functionality, we have to
deal with its schema. We will not go into details about the database design:
it is a separate branch of knowledge, which is beyond the scope of this
course. But we cannot ignore this topic entirely.

High-level database design often uses the ER-model (where ER stands for
“Entity–Relationship”). It deals with entities (concepts of the subject area),
their relationships, and attributes (the properties of entities and
relationships). The model allows us to remain at the logical level, without
getting down to data representation at the physical level (i.e., its table form).

The first approach to database design is creating a diagram as shown on
this slide: a book is represented as a single big entity, and everything else
becomes its attributes.

5

Application Schema (Ver. 1)

 id | title | author | qty | operation
----+-------------------+------------------------------+-----+-----------
 1 | The Tempest | William Shakespeare | 10 | +11
 1 | THE TEMPEST | William Shakespeare | 10 | -1

 2 | Romeo and Juliet | William Shakespeare | 4 | +4

 3 | Good Omens | Terry Pratchett | 7 | +7
 3 | Good Omens | Neil Gaiman | 7 | 0

The data is duplicated
it’s hard to maintain consistency
it’s hard to perform updates
it’s hard to write queries

10 = 11 – 1

7,0
or 0,7
or 7,7

?

Clearly, this approach cannot be correct. It may be not quite obvious in the
diagram itself, but let’s try to project this diagram onto database tables.
There are several ways to do it. One of them is shown on the slide: the table
corresponds to the entity, and table columns represent the attributes of this
entity.

This diagram is a good illustration that some data is duplicated (these
fragments are highlighted). Data duplication makes it hard to maintain
consistency, which is arguably the main objective of a database system.

For example, each of the two rows related to book 3 must list the total
quantity (7 items). What should be done to reflect a purchase? On the one
hand, we need to add some rows that reflect purchase operations. (But how
many rows are required? Should we add one or two?) On the other hand,
the quantity should be reduced from 7 to 6 in all rows. And what if an error
leads to data discrepancy between these rows? How can we define a
constraint that forbids such a situation?

Many queries will also become overcomplicated. How can we find the total
number of books? How can we find all the unique authors?

Thus, such a schema will not work well for relational databases.

6

Application Schema (Ver. 2)

 entity | attribute | value
--------+------------+-------
 1 | title | The Tempest
 1 | author | William Shakespeare
 1 | qty | 10
 1 | operation | +11
 1 | operation | -1
 2 | title | Romeo and Juliet
 2 | author | William Shakespeare
 2 | qty | 4
 2 | operation | +4
 ... | ... | ...

Data without a schema
consistency is maintained at the application side
it’s hard to write queries
performance is low (multiple joins)

Another way to represent an entity as a table is a so-called EAV schema
(“entity–attribute–value”). It allows storing anything at all in a single table.
Technically, we get a relational database, but it has virtually no schema, and
the database system cannot guarantee data consistency. Consistency has
to be maintained by the application alone, and sooner or later it is bound to
be compromised.

With such a schema, it is hard to write queries (although they are quite easy
to generate). As a result, handling more or less significant data volumes
becomes a problem because of multiple self-joins.

It is not an approach to follow.

7

Application Schema (Ver. 3)

 book_id | description
---------+---
 1 | {"title": "The Tempest",
 | "authors": ["William Shakespeare"],
 | "qty": 10,
 | "operations": [+11, -1]}
 3 | {"title": "Good Omens",
 | "authors": ["Terry Pratchett",
 | "Neil Gaiman"],
 | "qty": 7,
 | "operations": [+7]}
 ... | ...

Data without a schema
consistency is maintained at the application side
it’s hard to write queries (a special language is needed)
there is index support

Another similar approach consists in representing data in the JSON format,
NoSQL-style. All the previous considerations still apply here.

Besides, it will be impossible to query such a structure using SQL: you will
have to use a special language (previously, jsQuery would be the most
probable choice, but starting from PostgreSQL 12, it is convenient to use the
SQL/JSONPath features defined in the SQL:2016 standard).

https://github.com/postgrespro/jsquery

https://postgrespro.com/docs/postgresql/12/functions-json#FUNCTIONS-SQ
LJSON-PATH

Although PostgreSQL provides index support for JSON, performance is still
a concern.

It is convenient to use such a schema if the database only needs to get
JSON data by ID, and no serious data processing within the JSON structure
is expected. But it is not our case.

(Naturally, nothing is set in stone here. See the last practical assignment for
further discussion.)

8

Books and Operations

Normalization reduces data redundancy

Large entities are split into smaller ones

Book

title
authors

Operation

quantity change
date

one-to-many
relationship

Thus, we need to eliminate redundancy, so that it is convenient to work with
the data in a relational database system. This process is called
normalization.

You might be familiar with various normal form concepts (first, second, third,
Boyce–Codd, etc.). We are not going to discuss them here; speaking
informally, it is enough to understand that all this math pursues one and the
same goal: eliminating redundancy.

You can reduce redundancy by splitting a big entity into several smaller
ones. The exact way to do it should be prompted by common sense (which
cannot be replaced by the knowledge of normal forms alone anyway).

In our case, everything is quite straightforward. Let’s start by separating
books and operations. These two entities are connected by the one-to-many
relationship: there can be several operations on each book, but each
operation relates to a single book only.

9

Application Schema

books

 book_id | title | author
---------+-------------------+------------------------------
 1 | The Tempest | William Shakespeare
 2 | Romeo and Juliet | William Shakespeare

 3 | Good Omens | Terry Pratchett
 3 | Good Omens | Neil Gaiman

operations

 operation_id | book_id | qty_change | date_created
--------------+---------+------------+--------------
 1 | 1 | +10 | 2020-07-13
 2 | 1 | -1 | 2020-08-25
 3 | 3 | +7 | 2020-07-13
 4 | 2 | +4 | 2020-07-13

At the physical level, the identified can be represented by two tables: books
and operations.

An operation changes the quantity of books. This change can be either
positive or negative (the order operation adds some books, while the
purchase operation subtracts them). Note that the book has no “quantity”
attribute anymore. Instead, it is enough to sum up all quantity changes
made by operations related to this book. Having an additional “quantity”
attribute would lead to data redundancy again.

This solution might seem strange to you at first. Is it really convenient to
calculate the sum instead of simply querying a separate field? But we can
create a view to display the quantity of each book. It won’t result in
redundancy: a view is just a query.

Another point to consider is performance. If summing up all changes brings
too much overhead, we can perform the opposite process called
denormalization: physically add the “quantity” field to the books table and
ensure that it is consistent with the operations table. We are not going to
discuss here whether it makes sense or not (this question is considered in
the QPT course that covers query performance tuning). Common sense
suggests that it’s not required for our “sandbox.” But we will get back to
denormalization in the “Triggers” lecture.

Thus, as you can see on this slide, moving all operations into a separate
entity resolves most of the duplication issues, but not all of them.

10

Books, Authors, Operations

Book

title

Author

last name
first name
middle name

Operation

quantity change
date

many-to-many
relationship

That’s why we have to take one step further: separate books from authors
and connect them with each other by a many-to-many relationship: each
book can be written by several authors, and each author can have more
than one book. At the table level, such relationship can be implemented
using an additional intermediate table.

The first, last, and middle names can be the author’s attributes. It makes
sense because we may need to work with each of these attributes
separately, e.g., to display the author’s last name and initials.

Application	Schema

student$	psql	

=>	\c	bookstore

You	are	now	connected	to	database	"bookstore"	as	user	"student".

Our	application	schema	consists	of	four	tables:

=>	\dt

												List	of	relations
		Schema			|				Name				|	Type		|		Owner		
-----------+------------+-------+---------
	bookstore	|	authors				|	table	|	student
	bookstore	|	authorship	|	table	|	student
	bookstore	|	books						|	table	|	student
	bookstore	|	operations	|	table	|	student
(4	rows)

Books

=>	\d	books

																										Table	"bookstore.books"
			Column			|		Type			|	Collation	|	Nullable	|											Default												
------------+---------+-----------+----------+------------------------------
	book_id				|	integer	|											|	not	null	|	generated	always	as	identity
	title						|	text				|											|	not	null	|	
	onhand_qty	|	integer	|											|	not	null	|	0
Indexes:
				"books_pkey"	PRIMARY	KEY,	btree	(book_id)
Check	constraints:
				"books_onhand_qty_check"	CHECK	(onhand_qty	>=	0)
Referenced	by:
				TABLE	"authorship"	CONSTRAINT	"authorship_book_id_fkey"	FOREIGN	KEY	(book_id)	REFERENCES	books(book_id)
				TABLE	"operations"	CONSTRAINT	"operations_book_id_fkey"	FOREIGN	KEY	(book_id)	REFERENCES	books(book_id)

We	use	the	following	data	types	here:

integer;
text,	which	is	a	text	string	of	arbitrary	length.

We	also	use	the	PRIMARY	KEY	constraint.

The	GENERATED	AS	IDENTITY	clause	is	used	to	automatically	generate	unique	values	(prior	to	version	10,	the	serial	pseudotype	was	used	for	this	purpose).

The	values	in	the	GENERATED	AS	IDENTITY	columns	take	their	values	from	special	database	objects	called	sequences.	We	can	learn	the	name	of	the	used	sequence	as
follows:

=>	SELECT	pg_get_serial_sequence('books','book_id');

			pg_get_serial_sequence				

	bookstore.books_book_id_seq
(1	row)

If	required,	you	can	also	create	sequences	manually	and	query	them	directly:

=>	SELECT	nextval('books_book_id_seq');

	nextval	

							8
(1	row)

A	sequence	is	the	most	efficient	way	of	generating	unique	IDs.	But	you	should	keep	in	mind	that:

there	may	be	gaps	in	numbering	(since	the	changes	are	not	transactional);
the	numbers	may	not	increase	monotonically	(if	sessions	cache	values).

Here	is	the	data	stored	in	the	books	table:

=>	SELECT	*	FROM	books	\gx

-[RECORD	1]---
book_id				|	2
title						|	Romeo	and	Juliet
onhand_qty	|	0
-[RECORD	2]---
book_id				|	3
title						|	Good	Omens
onhand_qty	|	0
-[RECORD	3]---
book_id				|	4
title						|	Dark	Avenues
onhand_qty	|	0
-[RECORD	4]---
book_id				|	5
title						|	Travels	into	Several	Remote	Nations	of	the	World.	In	Four	Parts.	By	Lemuel	Gulliver,	First	a	Surgeon,	and	then	a	Captain	of	Several	Ships
onhand_qty	|	0
-[RECORD	5]---
book_id				|	6
title						|	Three	Men	in	a	Boat	(To	Say	Nothing	of	the	Dog)
onhand_qty	|	0
-[RECORD	6]---
book_id				|	7
title						|	101	Famous	Poems
onhand_qty	|	0
-[RECORD	7]---
book_id				|	1
title						|	The	Tale	of	Tsar	Saltan
onhand_qty	|	29

Note	that	book	titles	can	be	quite	long.

Authors

=>	\d	authors

																										Table	"bookstore.authors"
			Column				|		Type			|	Collation	|	Nullable	|											Default												
-------------+---------+-----------+----------+------------------------------
	author_id			|	integer	|											|	not	null	|	generated	always	as	identity
	last_name			|	text				|											|	not	null	|	
	first_name		|	text				|											|	not	null	|	
	middle_name	|	text				|											|										|	
Indexes:
				"authors_pkey"	PRIMARY	KEY,	btree	(author_id)
Referenced	by:
				TABLE	"authorship"	CONSTRAINT	"authorship_author_id_fkey"	FOREIGN	KEY	(author_id)	REFERENCES	authors(author_id)

In	this	table,	we	also	use	the	NOT	NULL	constraint,	which	means	that	undefined	values	are	not	allowed.

=>	SELECT	*	FROM	authors;

	author_id	|		last_name		|	first_name	|	middle_name		
-----------+-------------+------------+--------------
									1	|	Pushkin					|	Alexander		|	Sergeyevich
									2	|	Shakespeare	|	William				|	
									3	|	Pratchett			|	Terry						|	
									4	|	Gaiman						|	Neil							|	
									5	|	Bunin							|	Ivan							|	Alekseyevich
									6	|	Swift							|	Jonathan			|	
									7	|	Jerome						|	Jerome					|	Klapka
(7	rows)

Note	that	the	middle	name	might	be	missing	(or	defined	by	an	empty	string).

The	PRIMARY	KEY	constraint	was	mentioned	in	the	\d	output	together	with	the	terms	“index”	and	“btree”.

Btree	is	the	main	index	type	used	in	databases	to	speed	up	search	and	provide	support	for	constraints	(primary	key	and	unique).

Suppose	that	our	bookstore	sells	books	written	by	a	million	of	different	authors	with	the	same	last	name:

=>	BEGIN;	--	let’s	explicitly	start	a	transaction	to	roll	back	the	changes	later

BEGIN

=>	INSERT	INTO	authors(first_name,	last_name)
				SELECT	'John',	'Wordsmith'	FROM	generate_series(1,1000000);

INSERT	0	1000000

How	long	will	it	take	to	find	an	author	in	such	a	table?

=>	\timing	on

Timing	is	on.

=>	SELECT	*	FROM	authors	WHERE	last_name	=	'Pushkin';

	author_id	|	last_name	|	first_name	|	middle_name	
-----------+-----------+------------+-------------
									1	|	Pushkin			|	Alexander		|	Sergeyevich
(1	row)

Time:	102.994	ms

=>	\timing	off

Timing	is	off.

If	we	ask	the	optimizer	to	display	the	query	plan,	we	will	see	that	Seq	Scan	is	used;	it	means	that	the	whole	table	is	scanned	sequentially	using	a	Filter	to	find	the
required	value:

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	authors	WHERE	last_name	=	'Pushkin';

															QUERY	PLAN																

	Seq	Scan	on	authors
			Filter:	(last_name	=	'Pushkin'::text)
(2	rows)

And	what	if	we	perform	the	search	by	an	indexed	field?

=>	\timing	on

Timing	is	on.

=>	SELECT	*	FROM	authors	WHERE	author_id	=	1;

	author_id	|	last_name	|	first_name	|	middle_name	
-----------+-----------+------------+-------------
									1	|	Pushkin			|	Alexander		|	Sergeyevich
(1	row)

Time:	0.375	ms

=>	\timing	off

Timing	is	off.

The	query	time	has	been	reduced	by	an	order	of	magnitude.

And	the	query	plan	now	contains	an	index:

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	authors	WHERE	author_id	=	1;

																QUERY	PLAN																
--
	Index	Scan	using	authors_pkey	on	authors
			Index	Cond:	(author_id	=	1)
(2	rows)

We	can	also	create	an	index	by	the	last	name	(and	analyze	the	table	to	gather	up-to-date	statistics):

=>	ANALYZE	authors;

ANALYZE

=>	CREATE	INDEX	ON	authors(last_name);

CREATE	INDEX

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	authors	WHERE	last_name	=	'Pushkin';

																				QUERY	PLAN																					

	Index	Scan	using	authors_last_name_idx	on	authors
			Index	Cond:	(last_name	=	'Pushkin'::text)
(2	rows)

However,	the	index	is	not	a	universal	performance	tuning	tool.	Having	an	index	is	usually	very	useful	if	the	query	needs	to	select	only	a	small	portion	of	all	table	rows.
But	if	it	is	required	to	read	a	lot	of	data,	the	index	will	only	add	overhead,	and	the	optimizer	is	smart	enough	to	understand	it:

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	authors	WHERE	last_name	=	'Wordsmith';

																QUERY	PLAN																	

	Seq	Scan	on	authors
			Filter:	(last_name	=	'Wordsmith'::text)
(2	rows)

Besides,	you	have	to	keep	in	mind	that	indexes	take	extra	disk	space,	and	index	updates	caused	by	table	modifications	bring	extra	overhead.

Let’s	cancel	all	our	changes	(including	index	creation):

=>	ROLLBACK;

ROLLBACK

=>	ANALYZE	authors;

ANALYZE

Authorship

This	table	implements	many-to-many	relationship.

=>	\d	authorship

													Table	"bookstore.authorship"
		Column			|		Type			|	Collation	|	Nullable	|	Default	
-----------+---------+-----------+----------+---------
	book_id			|	integer	|											|	not	null	|	
	author_id	|	integer	|											|	not	null	|	
	seq_num			|	integer	|											|	not	null	|	
Indexes:
				"authorship_pkey"	PRIMARY	KEY,	btree	(book_id,	author_id)
Foreign-key	constraints:
				"authorship_author_id_fkey"	FOREIGN	KEY	(author_id)	REFERENCES	authors(author_id)
				"authorship_book_id_fkey"	FOREIGN	KEY	(book_id)	REFERENCES	books(book_id)

In	addition	to	all	the	previously	used	constraints,	this	table	also	uses	FOREIGN	KEY,	which	is	a	referential	integrity	constraint.

In	fact,	this	table	contains	two	foreign	keys:	one	of	them	refers	to	the	books	table,	and	the	other	refers	to	the	authors	table.

The	seq_num	column	defines	the	order	in	which	multiple	authors	of	the	same	book	should	be	listed.

Note	that	we	have	a	composite	primary	key	here.

=>	SELECT	*	FROM	authorship;

	book_id	|	author_id	|	seq_num	
---------+-----------+---------
							1	|									1	|							1
							2	|									2	|							1
							3	|									3	|							2
							3	|									4	|							1
							4	|									5	|							1
							5	|									6	|							1
							6	|									7	|							1
							7	|									1	|							1
							7	|									5	|							2
							7	|									2	|							3
(10	rows)

Operations

=>	\d	operations

																									Table	"bookstore.operations"
				Column				|		Type			|	Collation	|	Nullable	|											Default												
--------------+---------+-----------+----------+------------------------------
	operation_id	|	integer	|											|	not	null	|	generated	always	as	identity
	book_id						|	integer	|											|	not	null	|	
	qty_change			|	integer	|											|	not	null	|	
	date_created	|	date				|											|	not	null	|	CURRENT_DATE
Indexes:
				"operations_pkey"	PRIMARY	KEY,	btree	(operation_id)
Foreign-key	constraints:
				"operations_book_id_fkey"	FOREIGN	KEY	(book_id)	REFERENCES	books(book_id)
Triggers:
				update_onhand_qty_trigger	AFTER	INSERT	ON	operations	FOR	EACH	ROW	EXECUTE	FUNCTION	update_onhand_qty()

This	table	uses	one	more	data	type:	date,	which	defines	the	date	without	timestamp.

For	the	date_created	column,	the	current	date	is	specified	as	the	default	value	(using	the	DEFAULT	clause).

=>	SELECT	*	FROM	operations;

	operation_id	|	book_id	|	qty_change	|	date_created	
--------------+---------+------------+--------------
												1	|							1	|									10	|	2021-10-19
												2	|							1	|									10	|	2021-10-19
												3	|							1	|									-1	|	2021-10-19
												4	|							1	|									10	|	2021-10-19
(4	rows)

Apart	from	the	data	types	used	in	application	tables,	we	are	going	to	come	across	the	boolean	type	all	the	time.	For	example,	the	expressions	in	WHERE	clauses	are	of
the	boolean	type.

It's	important	to	remember	that,	unlike	traditional	programming	languages,	SQL	uses	three-valued	logic:	in	addition	to	true	and	false,	there	is	also	the	NULL	value
(which	can	be	interpreted	as	“the	value	is	unknown”).

We	will	also	cover	some	other	types	that	are	more	complex:

the	composite	type,	which	represents	a	record	similar	to	a	table	row	(in	“SQL.	Composite	Types”);
arrays	(in	“PL/pgSQL.	Arrays”).

See	also	the	“Basic	Data	Types	and	Functions”	handout.

12

Designing the Interface

Tables and triggers
reading data directly from tables (views);
writing data directly to tables (views),
using triggers for changing related tables

the application must be aware of the data model;
this approach provides maximum flexibility

consistency is hard to maintain

Functions
reading data via table functions;
writing data by calling functions

the application is separated from the data model and is limited by API

you have to write a lot of wrapper-functions,
potential performance issues

There are several ways to set up an application’s client-server interface.

The first option is to allow the application to access and modify database
tables directly. In this case, the application must have the precise
“knowledge” of the data model. This requirement can be relaxed to some
extent by using views.

Another limitation of this approach is that the application has to follow
certain rules; otherwise, it is very hard to maintain data consistency if you
have to address all possible inappropriate operations at the database level.
But this approach is the most flexible one.

Another option is to forbid direct table access from the application and allow
only function calls. Reading can be performed by table functions (which
return a set of rows). Writing can be performed by calling other functions
and passing the required data to them. In this case, all the necessary
consistency checks can be implemented within functions: the database will
be protected, but the application will be able to use only a limited set of
features that we provide. It requires writing many wrapper functions and can
lead to performance degradation.

You can also combine these two approaches. For example, you can allow
the application to read data from tables directly, but perform modifications
only by calling special functions.

13

Bookstore Interface

buy_book

books

book_id
title

authorship

book_id
author_id
seq_num

authors

author_id
last_name
first_name
middle_name

operations

operation_id
book_id
qty_change
date_created book purchase

get_catalog list of
books

In this application, we will try different ways of setting up the interface
(although it’s usually better to stick to one approach when developing real
applications).

The store will use interface functions:

- get_catalog for searching books (see “SQL. Composite Types”)

- buy_books for making a purchase (see “PL/pgSQL. Executing Queries”)

14

o
p

er
at

io
n

s_
v

ca
ta

lo
g

_v

au
th

o
rs

_v

Admin Panel Interface

add_book

books

book_id
title

authorship

book_id
author_id
seq_num

authors

author_id
last_name
first_name
middle_name

operations

operation_id
book_id
qty_change
date_created

add_author

UPDATE

adding a book adding an author

book order

update_catalog_trigger

The admin panel is going to retrieve data by accessing the following views
(which we have to create as part of the practice for this lecture):

- catalog_v for the list of books

- authors_v for the list of authors

- operations_v for the list of operations

Authors will be added using the add_author function (we will create it once
we get to the “PL/pgSQL. Executing Queries” lecture). For adding books, we
will implement the add_book function (“PL/pgSQL. Arrays”).

To enable book purchase, we will make the catalog_v view updatable
(“PL/pgSQL. Triggers”).

Views

A	view	is	a	named	query.	For	example,	you	can	create	a	view	that	displays	only	those	authors	who	do	not	have	a	middle	name,	as	follows:

=>	CREATE	VIEW	authors_no_middle_name	AS
				SELECT	author_id,	first_name,	last_name
				FROM	authors
				WHERE	nullif(middle_name,'')	IS	NULL;

CREATE	VIEW

Now	this	view	can	be	used	in	queries	almost	like	a	regular	table:

=>	SELECT	*	FROM	authors_no_middle_name;

	author_id	|	first_name	|		last_name		
-----------+------------+-------------
									2	|	William				|	Shakespeare
									3	|	Terry						|	Pratchett
									4	|	Neil							|	Gaiman
									6	|	Jonathan			|	Swift
(4	rows)

In	a	simple	case,	other	operations	can	also	be	applied	to	a	view,	for	example:

=>	UPDATE	authors_no_middle_name	SET	last_name	=	initcap(last_name);

UPDATE	4

In	complex	cases,	you	can	use	triggers	to	enable	insert,	update,	and	delete	operations.	We	will	explain	it	in	the	“PL/pgSQL.	Triggers”	lecture.

At	the	planning	stage,	the	view	“unfolds,”	revealing	the	base	tables:

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	authors_no_middle_name;

																				QUERY	PLAN																					

	Seq	Scan	on	authors
			Filter:	(NULLIF(middle_name,	''::text)	IS	NULL)
(2	rows)

The	application	uses	three	views.	They	will	be	very	simple	at	first,	but	later	we’ll	move	some	application	logic	into	them.

The	authors	view	displays	a	concatenation	of	the	first,	last,	and	middle	names	of	each	author	(if	available):

=>	SELECT	*	FROM	authors_v;

	author_id	|					display_name					
-----------+----------------------
									1	|	Alexander	S.	Pushkin
									5	|	Ivan	A.	Bunin
									7	|	Jerome	K.	Jerome
									6	|	Jonathan	Swift
									4	|	Neil	Gaiman
									3	|	Terry	Pratchett
									2	|	William	Shakespeare
(7	rows)

The	catalog	view	displays	only	the	book	title	for	now:

=>	SELECT	*	FROM	catalog_v;

	book_id	|																																																																			title																																																																			|	onhand_qty	|																										display_name																											|																																			authors																																			
---------+---+------------+---+---
							7	|	101	Famous	Poems																																																																																																																										|										0	|	101	Famous	Poems.	Alexander	S.	Pushkin,	Ivan	A.	Bunin,	et	al.			|	Alexander	Sergeyevich	Pushkin,	Ivan	Alekseyevich	Bunin,	William	Shakespeare
							4	|	Dark	Avenues																																																																																																																														|										0	|	Dark	Avenues.	Ivan	A.	Bunin																																					|	Ivan	Alekseyevich	Bunin
							3	|	Good	Omens																																																																																																																																|										0	|	Good	Omens.	Neil	Gaiman,	Terry	Pratchett																								|	Neil	Gaiman,	Terry	Pratchett
							2	|	Romeo	and	Juliet																																																																																																																										|										0	|	Romeo	and	Juliet.	William	Shakespeare																											|	William	Shakespeare
							1	|	The	Tale	of	Tsar	Saltan																																																																																																																			|									29	|	The	Tale	of	Tsar	Saltan.	Alexander	S.	Pushkin																			|	Alexander	Sergeyevich	Pushkin
							6	|	Three	Men	in	a	Boat	(To	Say	Nothing	of	the	Dog)																																																																																											|										0	|	Three	Men	in	a	Boat	(To	Say	Nothing	of	the....	Jerome	K.	Jerome	|	Jerome	Klapka	Jerome
							5	|	Travels	into	Several	Remote	Nations	of	the	World.	In	Four	Parts.	By	Lemuel	Gulliver,	First	a	Surgeon,	and	then	a	Captain	of	Several	Ships	|										0	|	Travels	into	Several	Remote	Nations	of	the....	Jonathan	Swift			|	Jonathan	Swift
(7	rows)

The	operations	view	specifies	the	operation	type	(new	arrival	or	purchase):

=>	SELECT	*	FROM	operations_v;

	book_id	|	op_type		|	qty_change	|	date_created	
---------+----------+------------+--------------
							1	|	Arrival		|									10	|	19.10.2021
							1	|	Arrival		|									10	|	19.10.2021
							1	|	Purchase	|										1	|	19.10.2021
							1	|	Arrival		|									10	|	19.10.2021
(4	rows)

16

Summary

Database design is a separate complex topic
theory is important, but it should not replace common sense

Normalized data makes your life easier and facilitates
consistency support

The client-server interface can use tables, views, functions,
and triggers

17

Practice

1. Create the bookstore schema in the bookstore database.
Set up the search path to this schema at the database level.

2. In the bookstore schema, create books, authors, authorship,
and operations tables with all the necessary constraints,
exactly as shown in the demo.

3. Insert the data about several books into the tables.
Check the result by running some queries.

4. In the bookstore schema, create authors_v, catalog_v,
and operations_v views, so that they look exactly like shown
in the demo.
Check that the application now shows some data in “Books”,
“Authors”, and “Catalog” tabs.

Task 1. Recall the contents of the topic “Data Organization. Logical
Structure.”

Task 2. Use the demonstrated output of psql’s \d commands as a reference.

Task 3. You can use the data shown in the demo, or come up with your own
data.

Task 4. Try writing queries to the base tables that return the same results as
the queries to views shown in the demo. Then save these queries as views.

After completing the assignments, make sure to compare your queries with
those in the provided keys. Make corrections if required.

Task	1.	Schema	and	Search	Path

student$	psql	bookstore

=>	CREATE	SCHEMA	bookstore;

CREATE	SCHEMA

=>	ALTER	DATABASE	bookstore	SET	search_path	=	bookstore,	public;

ALTER	DATABASE

=>	\c	bookstore

You	are	now	connected	to	database	"bookstore"	as	user	"student".

=>	SHOW	search_path;

				search_path				

	bookstore,	public
(1	row)

Task	2.	Tables

Authors:

=>	CREATE	TABLE	authors(
				author_id	integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY,
				last_name	text	NOT	NULL,
				first_name	text	NOT	NULL,
				middle_name	text
);

CREATE	TABLE

Books:

=>	CREATE	TABLE	books(
				book_id	integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY,
				title	text	NOT	NULL
);

CREATE	TABLE

Authorship:

=>	CREATE	TABLE	authorship(
				book_id	integer	REFERENCES	books,
				author_id	integer	REFERENCES	authors,
				seq_num	integer	NOT	NULL,
				PRIMARY	KEY	(book_id,author_id)
);

CREATE	TABLE

Operations:

=>	CREATE	TABLE	operations(
				operation_id	integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY,
				book_id	integer	NOT	NULL	REFERENCES	books,
				qty_change	integer	NOT	NULL,
				date_created	date	NOT	NULL	DEFAULT	current_date
);

CREATE	TABLE

Task	3.	Data

Authors:

=>	INSERT	INTO	authors(last_name,	first_name,	middle_name)
VALUES
				('Pushkin',	'Alexander',	'Sergeyevich'),
				('Shakespeare',	'William',	NULL),
				('Pratchett',	'Terry',	NULL),
				('Gaiman',	'Neil',	NULL),
				('Bunin',	'Ivan',	'Alekseyevich'),
				('Swift',	'Jonathan',	NULL),
				('Jerome',	'Jerome',	'Klapka');

INSERT	0	7

Books:

=>	INSERT	INTO	books(title)
VALUES
				('The	Tale	of	Tsar	Saltan'),
				('Romeo	and	Juliet'),
				('Good	Omens'),
				('Dark	Avenues'),
				('Travels	into	Several	Remote	Nations	of	the	World.	In	Four	Parts.	By	Lemuel	Gulliver,	First	a	Surgeon,	and	then	a	Captain	of	Several	Ships'),
				('Three	Men	in	a	Boat	(To	Say	Nothing	of	the	Dog)'),
				('101	Famous	Poems');

INSERT	0	7

Authorship:

=>	INSERT	INTO	authorship(book_id,	author_id,	seq_num)
VALUES
				(1,	1,	1),
				(2,	2,	1),
				(3,	3,	2),
				(3,	4,	1),
				(4,	5,	1),
				(5,	6,	1),
				(6,	7,	1),
				(7,	1,	1),
				(7,	5,	2),
				(7,	2,	3);

INSERT	0	10

The	operations	table	will	be	filled	in	by	the	COPY	command.	It	is	an	alternative	way	of	inserting	data	into	a	table,	which	is	commonly	used	for	loading	large
batches	of	data.	In	this	case,	you	have	to	remember	to	increment	the	sequence	value:

=>	COPY	operations	(operation_id,	book_id,	qty_change)	FROM	stdin;
1	 1	 10
2	 1	 10
3	 1	 -1
\.

COPY	3

=>	SELECT	pg_catalog.setval('operations_operation_id_seq',	3,	true);

	setval	

						3
(1	row)

Task	4.	Views

Authors	View:

=>	CREATE	VIEW	authors_v	AS
SELECT	a.author_id,
							a.first_name	||
							coalesce('	'	||	nullif(a.middle_name,	''),	'')	||	'	'	||
							a.last_name	AS	display_name
FROM			authors	a;

CREATE	VIEW

Catalog	View:

=>	CREATE	VIEW	catalog_v	AS
SELECT	b.book_id,
							b.title	AS	display_name
FROM			books	b;

CREATE	VIEW

Operations	View:

=>	CREATE	VIEW	operations_v	AS
SELECT	book_id,
							CASE
											WHEN	qty_change	>	0	THEN	'Arrival'
											ELSE	'Purchase'
							END	op_type,
							abs(qty_change)	qty_change,
							to_char(date_created,	'DD.MM.YYYY')	date_created
FROM			operations
ORDER	BY	operation_id;

CREATE	VIEW

18

Practice

1. What additional attributes can appear for these entities as the
application evolves?

2. Suppose you have to store the information about the publisher.
Extend the ER-diagram accordingly and create the corresponding
tables.

3. Some books can belong to a series (such as “The Adventure
Collection”). How will it affect the schema?

4. Suppose our store started selling hardware equipment
(motherboards, CPUs, memory, storage devices, monitors, etc.).
What entities and attributes would you single out?
Keep in mind that new types of equipment constantly appear in
the market, and they can have their own specific characteristics.

Task 3. Different publishers can easily have different book series with the
same title.

Task	1.	Additional	Attributes

Some	examples:

Authors:	role	(author,	editor,	translator,	etc.)
Books:	abstract
Operations:	current	status	(paid,	out	for	delivery,	etc.)

Task	2.	Publishers

We	need	to	add	the	“Publisher”	entity,	which	will	have	(at	least)	the	“Name”	attribute.

Books	are	connected	with	publishers	by	the	many-to-many	relationship:	a	book	can	be	printed	by	different	publishers.
That’s	why	an	intermediate	table	at	the	physical	level	is	required:	we	have	to	create	the	“Publications”	table	with	the
“Publication	Year”	attribute.

(Sure	enough,	this	model	is	simplified;	it	can	be	further	elaborated	on	if	required.)

Task	3.	Series

Let’s	add	the	“Series”	entity.	It’s	not	a	book	itself,	but	a	particular	publication	of	the	book	that	belongs	to	a	series,	so	it	is	a
good	idea	to	make	“Publication”	a	full-fledged	entity	of	the	ER-model	and	connect	it	with	the	series	by	the	one-to-many
relationship	(each	publication	belongs	to	one	series,	and	each	series	can	contain	several	publications).

The	one-to-many	relationship	also	connects	the	series	with	a	publisher	(a	publisher	can	print	several	series,	but	each
series	belongs	to	a	particular	publisher).

But	what	if	a	book	is	not	a	part	of	any	series?	We	can	either	introduce	a	fake	series	like	“No	series,”	or	allow	omitting	the
series	foreign	key	for	publications.

Task	4.	Hardware	Equipment

Looking	at	each	type	of	hardware	equipment,	it’s	not	hard	to	single	out	the	required	attributes.	Some	attributes	(like	the
model	or	the	manufacturer)	will	be	common,	while	others	will	make	sense	only	for	a	particular	type.	For	example:

CPU:	frequency
Monitor:	size,	resolution
Storage	Device:	type,	capacity

The	problem	is	that	the	hardware	market	is	highly	dynamic.	Not	so	long	ago	we	cared	about	hard	drives’	spin	rate	and
capacity,	and	now	we	are	more	interested	in	the	type	of	the	storage	device	(SSD,	HDD,	or	SSHD).	In	the	CRT	times,	the
monitor’	refresh	rate	was	important,	and	now	we	would	like	to	know	the	matrix	type.	Nobody	needs	CD-ROM	drives
anymore	as	USB	flash	drives	have	appeared	instead.	And	so	on.

Thus,	we	either	have	to	change	the	schema	all	the	time	(which	means	changing	the	application	that	works	with	the	data),
or	look	for	a	more	flexible	model	without	a	rigid	structure	and	consistency	control.	We	have	touched	upon	such	models	in
the	presentation	(for	example,	storing	some	part	of	the	data	in	the	JSON	format).

