

Data Organization

Logical Structure

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Databases and templates

Schemas and search path

Special schemas

System catalog

3

a new DBtemplate1template0

postgres

Database Cluster

Cluster initialization creates three databases

A new database is always cloned from an existing one

таблицатаблицаobject

таблицатаблицаobject таблицатаблицаobject таблицатаблицаobject

no changes

default
connection

common
changes

CREATE DATABASE

A PostgreSQL instance manages several databases, which constitute a
database cluster. During cluster initialization (which is performed either
automatically during installation or manually using the initdb command),
three identical databases are created. All other databases created by user
are cloned from an already existing database.

By default, the template1 DB is used as the source for creating new
databases. You can extend it with additional objects and modules that will
be copied into each new database.

The template0 database must never be modified. This template is
required at least in two situations. First, it is used to restore the database
from a backup copy created by the pg_dump utility (as described in the
“Backups. Logical Backup” lecture). Second, it is required when creating a
new database with a non-default collation (we discuss it in more detail in the
DBA2 course).

The postgres database is used to establish a connection on behalf of the
postgres user by default. Keeping this database is not mandatory, but some
utilities rely on its existence, so it’s not recommended to delete this
database even if you do not need it.

https://postgrespro.com/docs/postgresql/12/manage-ag-templatedbs

Databases

You	can	view	the	list	of	all	databases	using	the	following	psql	command:

=>	\l

																																		List	of	databases
			Name				|		Owner			|	Encoding	|			Collate			|				Ctype				|			Access	privileges			
-----------+----------+----------+-------------+-------------+-----------------------
	postgres		|	postgres	|	UTF8					|	en_US.UTF-8	|	en_US.UTF-8	|	
	student			|	student		|	UTF8					|	en_US.UTF-8	|	en_US.UTF-8	|	
	template0	|	postgres	|	UTF8					|	en_US.UTF-8	|	en_US.UTF-8	|	=c/postgres										+
											|										|										|													|													|	postgres=CTc/postgres
	template1	|	postgres	|	UTF8					|	en_US.UTF-8	|	en_US.UTF-8	|	=c/postgres										+
											|										|										|													|													|	postgres=CTc/postgres
(4	rows)

It	displays	many	fields	that	do	not	interest	us	right	now.

When	we	create	a	new	database,	it	is	cloned	from	template1	by	default.

=>	CREATE	DATABASE	data_logical;

CREATE	DATABASE

=>	\c	data_logical

You	are	now	connected	to	database	"data_logical"	as	user	"student".

=>	\l

																																			List	of	databases
					Name					|		Owner			|	Encoding	|			Collate			|				Ctype				|			Access	privileges			
--------------+----------+----------+-------------+-------------+-----------------------
	data_logical	|	student		|	UTF8					|	en_US.UTF-8	|	en_US.UTF-8	|	
	postgres					|	postgres	|	UTF8					|	en_US.UTF-8	|	en_US.UTF-8	|	
	student						|	student		|	UTF8					|	en_US.UTF-8	|	en_US.UTF-8	|	
	template0				|	postgres	|	UTF8					|	en_US.UTF-8	|	en_US.UTF-8	|	=c/postgres										+
														|										|										|													|													|	postgres=CTc/postgres
	template1				|	postgres	|	UTF8					|	en_US.UTF-8	|	en_US.UTF-8	|	=c/postgres										+
														|										|										|													|													|	postgres=CTc/postgres
(5	rows)

5

Schemas

Namespaces for objects
classify objects into logical groups
prevent name conflicts between applications

Schemas and users are different entities

Special schemas
public — all objects are created here by default
pg_catalog — system catalog

information_schema — an alternative view of the system catalog

pg_temp — a storage for temporary tables

…

Schemas are virtually namespaces for database objects. They enable
classifying objects into logical groups for easier management as well as
prevent name conflicts when serving several users or applications.

In PostgreSQL, schemas and users are different entities (even though the
default settings are well-suited for using the schema with the same name as
the current user).

There are several special schemas that are usually present in each
database.

By default, database objects are kept in the public schema unless another
location is specified.

The pg_catalog schema stores objects of the system catalog. The system
catalog comprises metadata of cluster objects, which is stored in tables
within the cluster itself. An alternative view of the system catalog (defined in
the SQL standard) is provided by information_schema.

The pg_temp schema stores temporary tables. (In fact, temporary tables
are created in schemas called pg_temp_1, pg_temp_2, and so on: each
user has its own schema, but they are all referred to as pg_temp.)

There are also some other schemas, but their purpose is merely technical.

https://postgrespro.com/docs/postgresql/12/ddl-schemas

6

template1postgres

Databases and Schemas

pg_catalog

таблицатаблицаobject

public

таблицатаблицаobject

pg_catalog public

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject таблицатаблицаobject

таблицатаблицаobject таблицатаблицаobject

таблицатаблицаobject

system
catalog

cluster-wide
objects

a schema

таблицатаблицаobject

таблицатаблицаobject

Schemas belong to databases, and all DB objects belong to this or that
schema.

However, several system catalog tables store the objects that are common
to the whole cluster. They contain the list of databases, the list of users, and
some other information. These tables do not belong to any database, but
they are equally visible in all databases.

Thus, a client connected to a database can see the descriptions of the
objects that belong to this database as well as cluster-wide objects. Object
descriptions for other databases are only available if you connect to these
databases.

Schemas

There	is	a	special	psql	command	that	displays	the	list	of	schemas	(\dn	=	describe	namespace):

=>	\dn

		List	of	schemas
		Name		|		Owner			
--------+----------
	public	|	postgres
(1	row)

This	command	does	not	show	service	schemas.	To	display	them,	you	have	to	add	the	S	modifier	(it	works	in	a	similar	way
for	many	other	commands):

=>	\dnS

								List	of	schemas
								Name								|		Owner			
--------------------+----------
	information_schema	|	postgres
	pg_catalog									|	postgres
	pg_temp_1										|	postgres
	pg_toast											|	postgres
	pg_toast_temp_1				|	postgres
	public													|	postgres
(6	rows)

We	have	already	touched	upon	some	of	these	schemas	(public,	pg_catalog,	information_schema);	the	rest	will	be	covered
in	the	subsequent	lectures.

Another	useful	modifier	is	the	“plus”	sign,	which	displays	additional	information:

=>	\dn+

																										List	of	schemas
		Name		|		Owner			|		Access	privileges			|						Description							
--------+----------+----------------------+------------------------
	public	|	postgres	|	postgres=UC/postgres+|	standard	public	schema
								|										|	=UC/postgres									|	
(1	row)

Let’s	create	a	new	schema:

=>	CREATE	SCHEMA	special;

CREATE	SCHEMA

=>	\dn

		List	of	schemas
		Name			|		Owner			
---------+----------
	public		|	postgres
	special	|	student
(2	rows)

Create	a	table:

=>	CREATE	TABLE	t(n	integer);

CREATE	TABLE

By	default,	the	table	will	be	created	in	the	public	schema.	To	view	the	list	of	tables	for	this	schema,	you	can	specify	a
template	for	schema	and	table	names	when	running	the	\dt	command:

=>	\dt	public.*

								List	of	relations
	Schema	|	Name	|	Type		|		Owner		
--------+------+-------+---------
	public	|	t				|	table	|	student
(1	row)

Tables	(and	other	objects)	can	be	moved	between	schemas.	Since	we	are	talking	about	the	logical	structure,	only	the
system	catalog	is	changed;	the	physical	location	of	the	data	remains	the	same.

=>	ALTER	TABLE	t	SET	SCHEMA	special;

ALTER	TABLE

What	will	remain	in	the	public	schema?

=>	\dt	public.*

Did	not	find	any	relation	named	"public.*".

Nothing.	And	what	about	the	special	schema?

=>	\dt	special.*

								List	of	relations
	Schema		|	Name	|	Type		|		Owner		
---------+------+-------+---------
	special	|	t				|	table	|	student
(1	row)

The	table	was	moved.	You	can	now	access	it	by	explicitly	specifying	its	schema:

=>	SELECT	*	FROM	special.t;

	n	

(0	rows)

But	if	you	omit	the	schema	name,	this	table	won’t	be	found:

=>	SELECT	*	FROM	t;

ERROR:		relation	"t"	does	not	exist
LINE	1:	SELECT	*	FROM	t;
																						^

8

Search Path

Determining the object’s schema
a qualified name (schema.name) explicitly defines the schema
an unqualified name is looked up in schemas listed in search path

Search path
is defined by the search_path parameter,
the actual path is displayed by the current_schemas function

excludes non-existent and inaccessible schemas

pg_temp and pg_catalog schemas are implicitly included first
unless they are already specified in the search_path parameter

the first explicitly specified schema is used for object creation

Different schemas can contain objects with the same name, so when
specifying an object, it’s necessary to identify its schema.

If the object has a qualified name, it’s easy: the explicitly specified schema
is used. Otherwise, PostgreSQL tries to find the object name in one of the
schemas listed in the search path, which is defined in the search_path
configuration parameter.

The actual search path can differ from the search_path parameter value.
It excludes non-existent schemas listed in search_path as well as those
schemas that the current user cannot access (we will cover access control
in one of the next lectures of this course). Besides, the following schemas
are implicitly added to the beginning of the search path:
● the pg_catalog schema to ensure that the system catalog is always

accessible
● the pg_temp schema if the user has created temporary objects

You can view the actual search path, including the implicitly added schemas,
by calling the current_schemas(true) function. Schemas are looked up
as they follow in the search path, from left to right. If the object with the
specified name is not found in the schema, the search continues in the next
one.

If you create an object with an unqualified name, it will get into the first
schema that is explicitly specified in the search path.

We can say that search_path is somewhat analogous to the PATH variable
in operating systems.

https://postgrespro.com/docs/postgresql/12/runtime-config-client#GUC-SEA
RCH-PATH

Search	Path

By	default,	the	search	path	looks	as	follows:

=>	SHOW	search_path;

			search_path			

	"$user",	public
(1	row)

The	“$user”	placeholder	represents	the	schema	with	the	same	name	as	the	current	user	(student	in	our	case).	Since	there
is	no	such	schema,	it	is	simply	ignored.

To	take	the	guesswork	out	of	learning	whether	a	schema	exists	or	not,	and	if	any	schemas	are	used	implicitly,	you	can	use
the	following	function:

=>	SELECT	current_schemas(true);

			current_schemas			

	{pg_catalog,public}
(1	row)

We	can	see	that	a	non-existent	schema	has	been	removed,	while	the	system	catalog	schema	has	been	implicitly	added.

Let’s	set	the	search	path	like	this:

=>	SET	search_path	=	public,	special;

SET

Now	the	table	will	be	found.

=>	SELECT	*	FROM	t;

	n	

(0	rows)

Here	we	have	modified	the	parameter	at	the	session	level	(its	value	won’t	be	saved	for	the	next	connections).	Setting	this
parameter	at	the	cluster	level	is	not	a	good	idea	either:	this	path	is	probably	required	only	by	some	of	the	clients,	and	not
at	all	times.

You	can	also	modify	configuration	for	a	particular	database	only:

=>	ALTER	DATABASE	data_logical	SET	search_path	=	public,	special;

ALTER	DATABASE

Now	this	parameter	will	be	set	for	all	new	connections	to	the	data_logical	database.	Let’s	check:

=>	\c	data_logical

You	are	now	connected	to	database	"data_logical"	as	user	"student".

=>	SHOW	search_path;

			search_path			

	public,	special
(1	row)

10

System Catalog

Description of all cluster objects
the list of tables in each database (the pg_catalog schema)
and several cluster-wide objects
several views provided for convenience

Access
SQL queries, special psql commands

Conventions
table names start with pg_

column names contain a three-letter prefix
the oid column of type oid is used as the primary key

object names are lowercase

The system catalog stores metadata of cluster objects. In each database,
you can find a separate set of tables that describe the objects of this
particular database, as well as several tables common to the whole cluster.
There are also a number of views provided for convenience.

https://postgrespro.com/docs/postgresql/12/catalogs

You can access the system catalog using regular SQL queries. The psql
client also offers a whole range of commands that provide convenient ways
to view it. Catalog tables should not be modified directly; they get updated
automatically as you run DDL commands.

https://postgrespro.com/docs/postgresql/12/app-psql

The names of all system catalog tables start with pg_, for example,
pg_database. Column names usually start with a prefix that corresponds
to the table name, for example, datname. Object names are lowercase, for
example, 'postgres'.

System catalog tables have no explicitly defined primary keys: in most
cases, the oid column serves this purpose. This column is of a special oid
type, which means object identifier (a 32-bit integer). Prior to PostgreSQL
12, this field was hidden (to display it, you had to explicitly specify its name
in the SELECT command).

https://postgrespro.com/docs/postgresql/12/datatype-oid

System	Catalog

To	display	information	about	any	objects,	psql	(just	like	any	graphical	environment)	accesses	the	system	catalog	tables.

For	example,	to	get	the	list	of	databases	in	the	cluster,	the	\l	command	reads	the	following	table:

=>	SELECT	datname	FROM	pg_database;

			datname				

	postgres
	student
	template1
	template0
	data_logical
(5	rows)

We	can	always	view	the	queries	executed	by	a	command:

=>	\set	ECHO_HIDDEN	on

=>	\l

*********	QUERY	**********
SELECT	d.datname	as	"Name",
							pg_catalog.pg_get_userbyid(d.datdba)	as	"Owner",
							pg_catalog.pg_encoding_to_char(d.encoding)	as	"Encoding",
							d.datcollate	as	"Collate",
							d.datctype	as	"Ctype",
							pg_catalog.array_to_string(d.datacl,	E'\n')	AS	"Access	privileges"
FROM	pg_catalog.pg_database	d
ORDER	BY	1;

																																			List	of	databases
					Name					|		Owner			|	Encoding	|			Collate			|				Ctype				|			Access	privileges			
--------------+----------+----------+-------------+-------------+-----------------------
	data_logical	|	student		|	UTF8					|	en_US.UTF-8	|	en_US.UTF-8	|	
	postgres					|	postgres	|	UTF8					|	en_US.UTF-8	|	en_US.UTF-8	|	
	student						|	student		|	UTF8					|	en_US.UTF-8	|	en_US.UTF-8	|	
	template0				|	postgres	|	UTF8					|	en_US.UTF-8	|	en_US.UTF-8	|	=c/postgres										+
														|										|										|													|													|	postgres=CTc/postgres
	template1				|	postgres	|	UTF8					|	en_US.UTF-8	|	en_US.UTF-8	|	=c/postgres										+
														|										|										|													|													|	postgres=CTc/postgres
(5	rows)

This	is	how	you	can	explore	the	system	catalog.

Let’s	turn	off	the	command	display.

=>	\set	ECHO_HIDDEN	off

The	list	of	schemas	is	stored	in	the	following	table:

=>	SELECT	nspname	FROM	pg_namespace;

						nspname							

	pg_toast
	pg_temp_1
	pg_toast_temp_1
	pg_catalog
	public
	information_schema
	special
(7	rows)

Other	objects	like	tables	and	indexes	can	be	viewed	as	follows:

=>	SELECT	relname,	relkind,	relnamespace
FROM	pg_class	WHERE	relname	=	't';

	relname	|	relkind	|	relnamespace	
---------+---------+--------------
	t							|	r							|								16407
(1	row)

All	column	names	start	with	rel	(relation)	here.

relkind	—	object	type	(r	—	table,	i	—	index,	etc.);
relnamespace	—	schema.

The	relnamespace	field	is	of	the	oid	type;	and	here	is	the	corresponding	row	of	the	pg_namespace	table:

=>	SELECT	oid,	nspname	FROM	pg_namespace	WHERE	nspname	=	'special';

		oid		|	nspname	
-------+---------
	16407	|	special
(1	row)

To	simplify	the	transformation	between	the	text	and	oid	types,	you	can	cast	these	fields	to	the	regnamespace	type:

=>	SELECT	relname,	relkind,	relnamespace::regnamespace::text
FROM	pg_class	WHERE	relname	=	't';

	relname	|	relkind	|	relnamespace	
---------+---------+--------------
	t							|	r							|	special
(1	row)

And	here	is	how	you	can	get	the	list	of	objects	that	belong	to	a	schema,	e.g.,	to	the	pg_catalog	schema:

=>	SELECT	relname,	relkind	FROM	pg_class
WHERE	relnamespace	=	'pg_catalog'::regnamespace	LIMIT	5;

									relname										|	relkind	
--------------------------+---------
	pg_statistic													|	r
	pg_type																		|	r
	pg_foreign_server								|	r
	pg_aggregate_fnoid_index	|	i
	pg_am_name_index									|	i
(5	rows)

Similar	reg-types	are	defined	for	some	other	system	catalog	tables	as	well.	It	helps	to	shorten	queries	and	do	without	explicit
table	joins.

Deleting	Objects

Is	it	possible	to	drop	the	special	schema?

=>	DROP	SCHEMA	special;

ERROR:		cannot	drop	schema	special	because	other	objects	depend	on	it
DETAIL:		table	t	depends	on	schema	special
HINT:		Use	DROP	...	CASCADE	to	drop	the	dependent	objects	too.

You	cannot	drop	a	schema	if	it	contains	any	objects.	They	have	to	be	either	moved	or	deleted.

But	you	can	drop	the	schema	together	with	all	its	objects	at	once:

=>	DROP	SCHEMA	special	CASCADE;

NOTICE:		drop	cascades	to	table	t
DROP	SCHEMA

A	database	can	be	dropped	if	it	has	no	active	connections.

=>	\conninfo

You	are	connected	to	database	"data_logical"	as	user	"student"	via	socket	in	"/var/run/postgresql"	at	port	"5432".

=>	\c	postgres

You	are	now	connected	to	database	"postgres"	as	user	"student".

=>	DROP	DATABASE	data_logical;

DROP	DATABASE

12

Summary

At the logical level
a cluster contains databases
databases contain schemas
schemas contain actual objects (tables, indexes, etc.)

New databases are created by cloning existing ones

Object schemas are determined by the search path

The full description of the database cluster contents is stored
in the system catalog

13

Practice

1. In an empty database, create a schema that has the same name
as the current user. Create the app schema.
Create several tables in both schemas.

2. In psql, display the description of the created schemas and the
list of tables that belong to them.

3. Set the search path to enable access to the tables in both schemas
by an unqualified name; the “user” schema must have the
priority.
Check the result.

Task	1.	Databases,	Schemas,	Tables

Create	a	database:

=>	CREATE	DATABASE	data_logical;

CREATE	DATABASE

=>	\c	data_logical

You	are	now	connected	to	database	"data_logical"	as	user	"student".

Create	schemas:

=>	CREATE	SCHEMA	student;

CREATE	SCHEMA

=>	CREATE	SCHEMA	app;

CREATE	SCHEMA

Create	some	tables	in	the	student	schema:

=>	CREATE	TABLE	a(s	text);

CREATE	TABLE

=>	INSERT	INTO	a	VALUES	('student');

INSERT	0	1

=>	CREATE	TABLE	b(s	text);

CREATE	TABLE

=>	INSERT	INTO	b	VALUES	('student');

INSERT	0	1

Create	some	tables	in	the	app	schema:

=>	CREATE	TABLE	app.a(s	text);

CREATE	TABLE

=>	INSERT	INTO	app.a	VALUES	('app');

INSERT	0	1

=>	CREATE	TABLE	app.c(s	text);

CREATE	TABLE

=>	INSERT	INTO	app.c	VALUES	('app');

INSERT	0	1

Task	2.	Schemas	and	Tables

View	the	list	of	schemas:

=>	\dn

		List	of	schemas
		Name			|		Owner			
---------+----------
	app					|	student
	public		|	postgres
	student	|	student
(3	rows)

View	the	list	of	tables:

=>	\dt	student.*

								List	of	relations
	Schema		|	Name	|	Type		|		Owner		
---------+------+-------+---------
	student	|	a				|	table	|	student
	student	|	b				|	table	|	student
(2	rows)

=>	\dt	app.*

								List	of	relations
	Schema	|	Name	|	Type		|		Owner		
--------+------+-------+---------
	app				|	a				|	table	|	student
	app				|	c				|	table	|	student
(2	rows)

3.	Search	Path

With	the	current	search	path	settings,	we	can	see	only	those	tables	that	belong	to	the	student	schema:

=>	SELECT	*	FROM	a;

				s				

	student
(1	row)

=>	SELECT	*	FROM	b;

				s				

	student
(1	row)

=>	SELECT	*	FROM	c;

ERROR:		relation	"c"	does	not	exist
LINE	1:	SELECT	*	FROM	c;
																						^

Let’s	change	the	search	path:

=>	ALTER	DATABASE	data_logical	SET	search_path	=	"$user",app,public;

ALTER	DATABASE

=>	\c

You	are	now	connected	to	database	"data_logical"	as	user	"student".

=>	SHOW	search_path;

					search_path						

	"$user",	app,	public
(1	row)

Now	we	can	see	the	tables	of	both	schemas,	but	the	student	schema	has	the	priority:

=>	SELECT	*	FROM	a;

				s				

	student
(1	row)

=>	SELECT	*	FROM	b;

				s				

	student
(1	row)

=>	SELECT	*	FROM	c;

		s		

	app
(1	row)

