

Architecture

A General Overview of PostgreSQL

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Client-server protocol

Transactions and their implementation mechanisms

Query processing workflow and execution paths

Processes and memory structures

Storing and accessing data on disk

Extensibility

3

Client and Server

connection authentication
generating queries executing queries

managing transactions supporting transactions

protocol

PostgreSQL
Python client

ps
yc

op
g2

 Java client

JD
B

C
SQL client

lib
p

q

A client application, such as psql or any other application written in any
programming language, connects to the server and communicates with it
somehow. To understand each other, both the client and the server must
use the same interfacing protocol. The client usually uses a driver that
implements the protocol and provides a set of features to be used in the
application. The driver can use the standard libpq library or provide a
custom implementation of the protocol.

The programming language of the application is not that important—different
syntactic structures implement the same features defined by the protocol. In
our examples, we are going to use the SQL language and the psql client. It’s
clear that no one writes the frontend in SQL, but it is convenient for training
purposes. We expect that it will not be hard for you to compare SQL
commands with the capabilities of your favorite language.

Speaking very roughly, the protocol enables the client to connect to one of
the databases of a database cluster. At this point, the server performs
authentication: it decides whether to allow this connection, for example, by
asking for password.

Then the client sends SQL queries to the server, and the server executes
these queries and returns the results. Having a powerful and user-friendly
query language is one of distinctive features of relational database systems.

Another one is ensuring data consistency.

https://postgrespro.com/docs/postgresql/12/protocol

4

Transactions

client
application

PostgreSQL

dr
iv

er

atomicity — all or nothing
consistency — integrity and user-defined constraints
isolation — handling concurrent processes
durability — data retention even after failures

operations

COMMIT /
ROLLBACK;

BEGIN;

PostgreSQL

A transaction is a logically indivisible part of work that ensures data
consistency in a database.

Transactions are expected to satisfy four criteria (ACID):

- Atomicity: a transaction is either executed completely, or is not executed at
all. To achieve this, the beginning of a transaction is labeled with the BEGIN
command, and the end is marked by either COMMIT (to keep the changes)
or ROLLBACK (to cancel the changes).

- Consistency: each transaction begins in a consistent state and leaves the
data consistent when it is complete.

- Isolation: concurrent transactions must not affect each other.

- Durability: once the data is committed, it must not be lost even in case of
a failure.

It is usually the client application that manages transactions in PostgreSQL
(i.e., defines the commands that constitute a transaction and commits or
rolls back the transaction). On the server side, transactions can be managed
by stored procedures (we will learn about them in the “SQL” and
“PL/pgSQL” modules).

https://postgrespro.com/docs/postgresql/12/sql-begin

https://postgrespro.com/docs/postgresql/12/sql-savepoint

Managing	Transactions

The	default	psql	mode	is	autocommit:

=>	\echo	:AUTOCOMMIT

on

It	means	that	if	you	enter	a	command	without	specifying	the	transaction	start	explicitly,	it	will	be	committed	right	away.

Is	a	similar	mode	enabled	in	the	PostgreSQL	driver	for	your	favorite	programming	language?

Let’s	create	a	table	with	a	single	row:

=>	CREATE	TABLE	t(
				id	integer,
				s	text
);

CREATE	TABLE

=>	INSERT	INTO	t(id,	s)	VALUES	(1,	'foo');

INSERT	0	1

Will	another	transaction	see	this	table	and	the	row?

=>	SELECT	*	FROM	t;

	id	|		s		
----+-----
		1	|	foo
(1	row)

Yes.	Let’s	compare	it	with	another	scenario:

=>	BEGIN;	--	explicitly	begins	a	transaction

BEGIN

=>	INSERT	INTO	t(id,	s)	VALUES	(2,	'bar');

INSERT	0	1

What	will	another	transaction	see	this	time?

=>	SELECT	*	FROM	t;

	id	|		s		
----+-----
		1	|	foo
(1	row)

The	changes	are	not	yet	committed,	so	they	are	not	visible	to	another	transaction.

=>	COMMIT;

COMMIT

And	now?

=>	SELECT	*	FROM	t;

	id	|		s		
----+-----
		1	|	foo
		2	|	bar
(2	rows)

If	autocommit	is	turned	off,	transactions	are	started	implicitly	when	the	first	command	is	entered,	but	all	changes	must	be
committed	explicitly.

=>	\set	AUTOCOMMIT	off

=>	INSERT	INTO	t(id,	s)	VALUES	(3,	'baz');

INSERT	0	1

And	what	about	now?

=>	SELECT	*	FROM	t;

	id	|		s		
----+-----
		1	|	foo
		2	|	bar
(2	rows)

The	changes	are	not	visible	yet;	the	transaction	has	been	started	implicitly.

=>	COMMIT;

COMMIT

And	finally:

=>	SELECT	*	FROM	t;

	id	|		s		
----+-----
		1	|	foo
		2	|	bar
		3	|	baz
(3	rows)

Let’s	restore	the	default	psql	mode.

=>	\set	AUTOCOMMIT	on

It	is	possible	to	roll	back	the	changes	without	aborting	the	transaction	(even	though	it	is	required	quite	rarely).

=>	BEGIN;

BEGIN

=>	SAVEPOINT	sp;	--	a	savepoint

SAVEPOINT

=>	INSERT	INTO	t(id,	s)	VALUES	(4,	'qux');

INSERT	0	1

=>	SELECT	*	FROM	t;

	id	|		s		
----+-----
		1	|	foo
		2	|	bar
		3	|	baz
		4	|	qux
(4	rows)

Note:	the	transaction	sees	its	own	changes	even	if	they	are	not	committed	yet.

Now	let’s	roll	back	all	changes	to	the	savepoint.

Rollback	to	savepoint	does	not	imply	control	transfer	(i.e.,	it	does	not	work	like	GOTO);	it	simply	cancels	all	the	database
changes	made	between	the	savepoint	and	the	current	moment.

=>	ROLLBACK	TO	sp;

ROLLBACK

What	will	we	see?

=>	SELECT	*	FROM	t;

	id	|		s		
----+-----
		1	|	foo
		2	|	bar
		3	|	baz
(3	rows)

Now	the	changes	are	rolled	back,	but	the	transaction	is	still	running:

=>	INSERT	INTO	t(id,	s)	VALUES	(4,	'xyz');

INSERT	0	1

=>	COMMIT;

COMMIT

=>	SELECT	*	FROM	t;

	id	|		s		
----+-----
		1	|	foo
		2	|	bar
		3	|	baz
		4	|	xyz
(4	rows)

6

Query Execution

client
application dr

iv
er

parsing ← system catalog

transformation ← rules

planning ← statistics

execution ← data

query

result

PostgreSQL

Query execution is quite a complicated task. A query is transferred from
a client to the server as plain text. This text must be parsed, i.e., it must
undergo syntactic analysis (to check whether letters constitute words, and
words constitute commands) and semantic analysis (to check whether the
database contains tables and other objects that the query refers to by
name). To achieve this, it is required to know what is located in the
database. Such metadata is called a system catalog; it is stored in special
tables in the database itself.

A query can get transformed: for example, the name of the view is replaced
with the query text. You can configure your own transformations using the
provided rule system.

SQL is a declarative language: an SQL query specifies which data we need
to get, but says nothing about how to get it. That’s why the query (already
parsed and transformed into a tree) is passed to the planner that builds a
query plan. For example, the planner decides whether it is required to use
indexes. To produce a good plan, the planner needs to know the size of the
tables and data distribution, i.e., statistics.

Then the query is executed according to the plan, and the whole result is
returned to the client at once.

It is a simple and convenient way to perform small data selections, but it can
be less suitable for large data volumes.

7

Prepared Statements

client
application dr

iv
er

parsing
transformation

binding ← parameter values
planning
execution

binding

result

preparing

PostgreSQL

Each query has to go through the stages mentioned above: parsing,
transformation, planning, and execution. But if one and the same query
(down to the specified parameters) is executed multiple times, there is no
reason to parse it again and again.

That’s why apart from simple query execution, the PostgreSQL protocol also
provides an extended mode that allows managing query execution more
precisely.

Among other features, the extended mode enables you to prepare a
query—that is, to parse and transform the query in advance and keep the
parse tree.

Binding of actual parameter values takes place during query execution.
If required, planning is performed (in some cases, PostgreSQL keeps the
query plan and skips this step). Then the query is executed.

Another advantage of using prepared statements is protection against SQL
injection (we’ll discuss it in detail in the “PL/pgSQL. Dynamic Commands”
topic).

https://postgrespro.com/docs/postgresql/12/sql-prepare

https://postgrespro.com/docs/postgresql/12/sql-execute

Prepared	Statements

An	SQL	statement	can	be	prepared	using	the	PREPARE	command	(it’s	a	PostgreSQL	extension,	this	command	is	not
defined	in	the	SQL	standard):

=>	PREPARE	q(integer)	AS
				SELECT	*	FROM	t	WHERE	id	=	$1;

PREPARE

The	statement	is	parsed	and	transformed,	and	the	resulting	query	tree	is	kept	in	memory.

Once	the	statement	is	prepared,	you	can	call	it	by	name,	passing	the	actual	parameters:

=>	EXECUTE	q(1);

	id	|		s		
----+-----
		1	|	foo
(1	row)

If	the	statement	has	no	parameters,	the	query	plan	built	during	preparation	is	also	kept	in	memory.	If	there	are	some
parameters,	like	in	this	example,	their	actual	values	are	taken	into	account	at	the	planning	stage.	But	the	planner	can
consider	a	plan	that	ignores	parameters	to	be	just	as	good;	then	it	will	stop	repeating	the	planning	stage.

How	can	you	prepare	and	execute	a	statement	in	your	favorite	programming	language?
Is	it	possible	to	execute	a	statement	without	preparing	it	first?

All	prepared	statements	are	displayed	in	the	following	view:

=>	SELECT	*	FROM	pg_prepared_statements	\gx

-[RECORD	1]---+-----------------------------------
name												|	q
statement							|	PREPARE	q(integer)	AS													+
																|					SELECT	*	FROM	t	WHERE	id	=	$1;
prepare_time				|	2021-10-19	17:00:28.044289+03
parameter_types	|	{integer}
from_sql								|	t

9

Cursors

client
application

PostgreSQL

dr
iv

er

parsing
transformation

binding ← parameter values
planning
execution

fetching the result

preparation

result

result

binding

PostgreSQL

It is not always convenient to receive the whole query result in a single
batch. There can be a lot of data, but the client may need only a small part
of it.

To address such cases, the extended mode provides cursors. The protocol
allows you to open a cursor for some operator and then fetch query results
row by row, as required.

We can compare a cursor to a window that shows only some data that
satisfies the query. Once a row is retrieved, the window moves on. In other
words, cursors allow iterating through relational data (sets), row by row.

An open cursor is represented on the server by a so-called portal. This word
appears in documentation; in simplistic terms, “cursor” and “portal” can be
called synonyms.

The query used in a cursor is implicitly prepared (that is, the server keeps
the query’s parse tree and sometimes also the query plan).

https://postgrespro.com/docs/postgresql/12/sql-declare

https://postgrespro.com/docs/postgresql/12/sql-fetch

Cursors

A	regular	SELECT	command	returns	all	rows	at	once:

=>	SELECT	*	FROM	t	ORDER	BY	id;

	id	|		s		
----+-----
		1	|	foo
		2	|	bar
		3	|	baz
		4	|	xyz
(4	rows)

A	cursor	allows	fetching	data	row	by	row.

=>	BEGIN;

BEGIN

=>	DECLARE	c	CURSOR	FOR
				SELECT	*	FROM	t	ORDER	BY	id;

DECLARE	CURSOR

=>	FETCH	c;

	id	|		s		
----+-----
		1	|	foo
(1	row)

You	can	specify	the	number	of	rows	to	fetch	at	a	time:

=>	FETCH	2	c;

	id	|		s		
----+-----
		2	|	bar
		3	|	baz
(2	rows)

Fetch	size	plays	an	important	role	if	there	are	a	lot	of	rows:	processing	a	large	volume	of	data	row	by	row	is	very
inefficient.

What	if	we	reach	the	end	of	the	table	while	reading	data?

=>	FETCH	2	c;

	id	|		s		
----+-----
		4	|	xyz
(1	row)

=>	FETCH	2	c;

	id	|	s	
----+---
(0	rows)

FETCH	will	simply	stop	returning	rows.	In	common	programming	languages	it	is	always	possible	to	check	this	condition.

How	can	you	retrieve	data	row	by	row	using	a	cursor	in	your	programming	language?
Is	it	possible	NOT	to	use	a	cursor	and	get	all	the	rows	at	once?
How	can	you	configure	the	cursor’s	fetch	size?

Once	data	retrieval	is	complete,	you	can	close	the	cursor,	releasing	the	resources:

=>	CLOSE	c;

CLOSE	CURSOR

Note	that	cursors	are	usually	closed	automatically	at	the	end	of	transactions,	so	there	is	no	need	to	do	it	explicitly	(except
for	the	cursors	open	with	the	WITH	HOLD	clause).

=>	COMMIT;

COMMIT

11

backend

Processes and Memory

client
application

PostgreSQL

postmaster

backend

background processes

shared memory

local
memory

parsed queries,
cursor states,

system catalog cache,
space for sorts
and joins, etc.

While the client is connected, the server must keep all the related
information, such as parsed queries and their plans or open cursor states
(portals). Where and how is it done?

The PostgreSQL server consists of several interacting processes.

The first process launched at the server start is traditionally called
postmaster. It spawns all other processes (using the fork system call on
Unix) and “supervises” them: if any process fails, postmaster restarts this
process (or the whole server if there is a chance that the shared data has
been damaged).

Server operation is maintained by a number of background processes.
We are going to discuss the main ones in the next topics of this module.

To enable information exchange between processes, postmaster allocates
shared memory, which is accessible to all processes. Apart from the shared
memory, each process has its own local memory, available exclusively to
this process.

Postmaster listens for incoming connections. When a client appears,
postmaster forks a separate backend for it, and from this point on the client
communicates with its own backend.

The space required for query execution (to store parsed queries and their
plans, cursor states, system catalog cache, space for data sorting, etc.) is
allocated in local memory of each backend.

12

Multiple Clients

client
application

PostgreSQL

postmaster

backend

background processes

shared memory

MVCC

locks

When multiple clients connect to the server, a separate backend is spawned
for each client. It is not a problem while there are not too many clients, there
is enough RAM for everyone, and connections are established not too often.

Nevertheless, when some objects are processed concurrently, certain
precautions have to be taken not to change the data that is already in use.

For objects in shared memory, short-lived locks are used. PostgreSQL does
it quite smart, so that the system could scale well if the number of cores is
increased.

Handling tables is a bit harder as locks should be held till the end of
transactions (that is, potentially for quite a long time), which could negatively
affect scalability. That’s why PostgreSQL uses multi-version concurrency
control (MVCC) and snapshot isolation: different versions of the same data
can exist simultaneously, and each process sees its own (but always
consistent) data snapshot. It allows the server to lock only those processes
that attempt to change the data that is already modified, but not yet
committed by another process.

It is MVCC that guarantees the first three properties of transactions
(atomicity, consistency, isolation). We’ll discuss it separately in the “Isolation
and MVCC” topic.

13

Connection Pooling

client
application

PostgreSQL

postmaster

background processes

shared memory

backendpool

If there are too many clients, or connections are established and terminated
too often, it makes sense to employ connection pooling. This functionality is
usually provided by the application server; alternatively, you can use third-
party pool managers (the most common one is PgBouncer).

Instead of connecting to the PostgreSQL server, clients get connected to the
pool manager. The manager holds several open connections with the
database server and uses one of them to execute queries of a particular
client. Thus, the number of clients remains constant from the server’s point
of view, regardless of how many clients actually access the pool manager.

In this mode, several clients share a single backend, which, as we have
already mentioned, stores a particular state in its local memory (for
example, parsed queries for prepared statements). It has to be taken into
account in application development.

Connection pooling is discussed in more detail in the DEV2 course.

14

Data Storage

client
application

PostgreSQL

postmaster

background processes

backend

OS

shared memory

cache

WAL

PostgreSQL has no direct access to disks that store data: it uses operating
system mechanisms to reach them. Data is stored in regular files; it is read
and written by the corresponding system calls.

Since disks operate much slower than RAM (especially HDDs, but it is still
true for SSDs as well), caching is used: some RAM is allocated for recently
used pages in hope that they will be accessed more than once, so we could
save some time on disk access. For the same reason, the server waits for a
while to flush data changes; they are not written to disk immediately.

It’s important to note that both the operating system and PostgreSQL have
their own cache. PostgreSQL data cache (buffer cache) is located in shared
memory, for all processes to have access to it.

In case of a failure (for example, power loss) the contents of RAM is
cleared, and some data can get lost, which is unacceptable (as required by
the durability property). That’s why PostgreSQL writes all the executed
commands into the write-ahead log (WAL); it ensures that any lost
operations can be repeated to restore data consistency. We’ll talk about
buffer cache and WAL separately in the corresponding topic.

15

OS

Extensibility

client
application

PostgreSQL

postmaster

background processes

backend

shared memory

background
workers

programming
languages

cache

index
types

data
types

functions,
operators,

triggers

FDW

PostgreSQL was designed to be extensible.

An application developer can create custom data types based on the
already available ones (composite types, ranges, sets, enumerations), write
stored procedures for data processing (including triggers that get activated
by a particular event).

If you know C, you can develop an extension to implement the features that
you need. Most extensions can be installed “on the fly,” without a server
restart. Thanks to such architecture, there is a large number of extensions
that

- provide support for programming languages (in addition to SQL,
PL/pgSQL, PL/Perl, PL/Python, and PL/Tcl, which are available out of the
box);

- implement new data types and the corresponding operators;

- create new index types for efficient work with various data types
(in addition to the built-in ones: B-tree, GiST, SP-GiST, GIN, BRIN, Bloom);

- plug in external systems using foreign data wrappers (FDW);

- start background processes to handle recurrent tasks.

Extensibility is discussed at length in the DEV2 course.

16

Summary

A database cluster is managed by the server

The protocol enables clients to connect to the server, execute
queries, and manage transactions

Each client is served by a separate process

Data is stored in files, which are accessed via OS calls

Caching is done both in local memory (catalog, parsed queries)
and shared memory (buffer cache)

