

SQL

Procedures

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Procedures and their differences from functions

Input and output parameters

Overloading and polymorphism

3

Routines

Functions
are called in the context of an expression
cannot manage transactions
return a result

Procedures
are called using the CALL operator

can manage transactions
can return a result

Procedures were first introduced in PostgreSQL 11. The main reason for
their appearance is that functions cannot manage transactions. Functions
are called in the context of some expression that is computed as part of an
already started operator (such as SELECT) in an already started
transaction. It is impossible to complete a transaction and then start a new
one while the operator is being executed.

Procedures are always called by the special CALL operator. If this operator
starts a new transaction (instead of being called from an already started
one), then it is possible to use transaction management commands in the
called procedure.

Unfortunately, procedures written in SQL cannot use COMMIT and
ROLLBACK commands. So we won’t be able to see an example of a
procedure that manages transactions until we get to the “PL/pgSQL.
Executing Queries” lecture.

Sometimes you can hear that unlike functions, procedures do not return
a result. But it is not true: procedures can also return a result, if required.

A generic term for functions and procedures is routine.

https://postgrespro.com/docs/postgresql/12/sql-createprocedure

https://postgrespro.com/docs/postgresql/12/sql-call

Procedures	without	Parameters

Let’s	start	with	an	example	of	a	simple	procedure	with	no	parameters.

=>	CREATE	TABLE	t(a	float);

CREATE	TABLE

=>	CREATE	PROCEDURE	fill()
AS	$$
				TRUNCATE	t;
				INSERT	INTO	t	SELECT	random()	FROM	generate_series(1,3);
$$	LANGUAGE	sql;

CREATE	PROCEDURE

To	call	a	procedure,	you	have	to	use	the	CALL	operator:

=>	CALL	fill();

CALL

Take	a	look	at	the	result	in	the	table:

=>	SELECT	*	FROM	t;

										a										

		0.9469425380377281
		0.5414317307802392
	0.23874303478227787
(3	rows)

You	can	get	the	same	outcome	using	a	function.	Similarly,	an	SQL	function	can	include	several	operators	(not	necessarily
SELECT);	the	return	value	is	determined	by	the	last	operator.	You	can	declare	the	result	value	void	if	the	function	does	not
have	to	return	anything,	or	specify	the	actual	result	value	type:

=>	CREATE	FUNCTION	fill_avg()	RETURNS	float
AS	$$
				TRUNCATE	t;
				INSERT	INTO	t	SELECT	random()	FROM	generate_series(1,3);
				SELECT	avg(a)	FROM	t;
$$	LANGUAGE	sql;

CREATE	FUNCTION

In	any	case,	a	function	is	always	called	in	the	context	of	some	expression:

=>	SELECT	fill_avg();

						fill_avg						

	0.8195886659782742
(1	row)

=>	SELECT	*	FROM	t;

									a										

	0.8881256130637638
	0.6295244127517456
		0.941115972119313
(3	rows)

Functions	cannot	manage	transactions.	But	SQL	procedures	do	not	support	it	either	(although	procedures	written	in	other
languages	do	provide	such	support).

Procedures	with	Parameters

Let’s	add	an	input	parameter	that	defines	the	number	of	rows:

=>	DROP	PROCEDURE	fill();

DROP	PROCEDURE

=>	CREATE	PROCEDURE	fill(nrows	integer)
AS	$$
				TRUNCATE	t;
				INSERT	INTO	t	SELECT	random()	FROM	generate_series(1,nrows);
$$	LANGUAGE	sql;

CREATE	PROCEDURE

Just	like	functions,	procedures	allow	passing	arguments	by	position	or	by	name:

=>	CALL	fill(nrows	=>	5);

CALL

=>	SELECT	*	FROM	t;

										a											

			0.7425274299857598
			0.8278786326837348
	0.057710084054502175
			0.4762661433963231
			0.6584314240895317
(5	rows)

Procedures	can	also	have	INOUT	parameters	that	can	be	used	to	return	a	value.	OUT	parameters	are	not	supported	yet
(but	are	likely	to	appear	in	PostgreSQL	14).

=>	DROP	PROCEDURE	fill(integer);

DROP	PROCEDURE

=>	CREATE	PROCEDURE	fill(IN	nrows	integer,	INOUT	average	float)
AS	$$
				TRUNCATE	t;
				INSERT	INTO	t	SELECT	random()	FROM	generate_series(1,nrows);
				SELECT	avg(a)	FROM	t;	--	like	in	a	function
$$	LANGUAGE	sql;

CREATE	PROCEDURE

Let’s	try	it	out:

=>	CALL	fill(5,	NULL	/*	the	input	parameter	is	not	used	*/);

						average							

	0.4654580989594777
(1	row)

5

Overloading

Several routines with the same name
routines differ in input parameter types;
types of the return value and output parameters are ignored

an appropriate routine is selected during execution based on the actual
argument types

CREATE OR REPLACE command

for new combinations of input parameter types, creates a new overloaded
routine

for existing combinations of input parameter types, changes the
corresponding routine, but not the type of the return value

Overloading is the ability to use one and the same name for several
routines (functions or procedures), which differ in types of IN and INOUT
parameters. In other words, a routine signature consists of its name and
types of its input parameters.

When calling a routine, PostgreSQL finds its version that corresponds to the
passed arguments. There might be situations when an appropriate routine
cannot be determined unambiguously; in this case, a run-time error occurs.

You have to take overloading into account when executing CREATE OR
REPLACE (FUNCTION or PROCEDURE). If input parameter types differ from
those used by already existing routines, a new overloaded routine will be
created. Besides, when applied to functions, this command does not allow
changing types of the output parameters and the return value type.

So you should delete and recreate the routine if required, but it won’t be the
same routine anymore. When deleting an old function, you also have to
delete all views, triggers, and other objects that depend on it
(DROP FUNCTION ... CASCADE).

https://postgrespro.com/docs/postgresql/12/xfunc-overload

6

Polymorphism

A routine that takes parameters of various types
formal parameters use polymorphic pseudotypes
(such as anyelement)

the actual data type is selected during execution based on the type of the
passed arguments

Instead of having several overloaded routines for different types, it is
sometimes more convenient to create a single routine that takes
parameters of any (or almost any) type.

For this purpose, a special polymorphic pseudotype is specified as the type
of the formal parameter. For now, we’ll only work with the anyelement
type, which corresponds to any base type; but later we’ll come across some
other pseudotypes.

The exact type to be used by the routine is selected at run time based on
the type of the passed argument.

If a routine has several polymorphic parameters, the types of the passed
arguments must be the same. In other words, in each routine call,
anyelement stands for some particular data type.

If a function is declared with a polymorphic return value, it must have at
least one polymorphic input parameter. The exact type of the return value is
also defined by the actual type of the passed input argument.

https://postgrespro.com/docs/postgresql/12/extend-type-system#EXTEND-
TYPES-POLYMORPHIC

https://postgrespro.com/docs/postgresql/12/xfunc-sql#id-1.8.3.8.18

Overloaded	Routines

Overloading	mechanism	is	the	same	for	both	functions	and	procedures.	They	have	a	common	namespace.

As	an	example,	let’s	create	a	function	that	compares	two	integer	numbers	and	returns	the	largest	value.	(There	is	a	similar
SQL	expression	called	greatest,	but	we’ll	write	our	own	function	here.)

=>	CREATE	FUNCTION	maximum(a	integer,	b	integer)	RETURNS	integer
AS	$$
				SELECT	CASE	WHEN	a	>	b	THEN	a	ELSE	b	END;
$$	LANGUAGE	sql;

CREATE	FUNCTION

Let’s	check	the	result:

=>	SELECT	maximum(10,	20);

	maximum	

						20
(1	row)

Suppose	we	decided	to	create	a	similar	function	for	three	numbers.	Thanks	to	overloading,	we	do	not	need	to	invent	a	new
name:

=>	CREATE	FUNCTION	maximum(a	integer,	b	integer,	c	integer)
RETURNS	integer
AS	$$
SELECT	CASE
								WHEN	a	>	b	THEN	maximum(a,c)
								ELSE	maximum(b,c)
				END;
$$	LANGUAGE	sql;

CREATE	FUNCTION

Now	we	have	two	functions	with	the	same	name,	but	a	different	number	of	parameters:

=>	\df	maximum

																														List	of	functions
	Schema	|		Name			|	Result	data	type	|							Argument	data	types							|	Type	
--------+---------+------------------+---------------------------------+------
	public	|	maximum	|	integer										|	a	integer,	b	integer												|	func
	public	|	maximum	|	integer										|	a	integer,	b	integer,	c	integer	|	func
(2	rows)

And	both	of	them	work:

=>	SELECT	maximum(10,	20),	maximum(10,	20,	30);

	maximum	|	maximum	
---------+---------
						20	|						30
(1	row)

The	CREATE	OR	REPLACE	command	enables	you	to	create	a	routine	or	replace	an	existing	one	without	deleting	it.	Since	a
function	with	such	a	signature	already	exists,	it	will	be	replaced:

=>	CREATE	OR	REPLACE	FUNCTION	maximum(a	integer,	b	integer,	c	integer)
RETURNS	integer
AS	$$
SELECT	CASE
								WHEN	a	>	b	THEN
												CASE	WHEN	a	>	c	THEN	a	ELSE	c	END
								ELSE
												CASE	WHEN	b	>	c	THEN	b	ELSE	c	END
				END;
$$	LANGUAGE	sql;

CREATE	FUNCTION

Let	our	function	support	not	only	integers,	but	also	real	numbers.

How	can	we	implement	it?	We	could	define	one	more	function,	as	follows:

=>	CREATE	FUNCTION	maximum(a	real,	b	real)	RETURNS	real
AS	$$
				SELECT	CASE	WHEN	a	>	b	THEN	a	ELSE	b	END;
$$	LANGUAGE	sql;

CREATE	FUNCTION

Now	we	have	three	functions	with	the	same	name:

=>	\df	maximum

																														List	of	functions
	Schema	|		Name			|	Result	data	type	|							Argument	data	types							|	Type	
--------+---------+------------------+---------------------------------+------
	public	|	maximum	|	integer										|	a	integer,	b	integer												|	func
	public	|	maximum	|	integer										|	a	integer,	b	integer,	c	integer	|	func
	public	|	maximum	|	real													|	a	real,	b	real																		|	func
(3	rows)

Two	of	them	have	the	same	number	of	parameters	that	differ	in	types:

=>	SELECT	maximum(10,	20),	maximum(1.1,	2.2);

	maximum	|	maximum	
---------+---------
						20	|					2.2
(1	row)

But	then	we	would	have	to	define	separate	functions	with	exactly	the	same	body	for	all	other	data	types,	and	repeat	it	for
the	other	function	with	three	parameters.

Polymorphic	Functions

We	can	use	the	polymorphic	anyelement	type.

Let’s	delete	all	the	three	functions	that	we	have	created...

=>	DROP	FUNCTION	maximum(integer,	integer);

DROP	FUNCTION

=>	DROP	FUNCTION	maximum(integer,	integer,	integer);

DROP	FUNCTION

=>	DROP	FUNCTION	maximum(real,	real);

DROP	FUNCTION

...and	then	create	a	new	one:

=>	CREATE	FUNCTION	maximum(a	anyelement,	b	anyelement)
RETURNS	anyelement
AS	$$
				SELECT	CASE	WHEN	a	>	b	THEN	a	ELSE	b	END;
$$	LANGUAGE	sql;

CREATE	FUNCTION

This	function	should	accept	any	data	type	(but	will	work	only	with	those	types	for	which	the	“greater	than”	operator	is
defined).

Will	it	work?

=>	SELECT	maximum('A',	'B');

ERROR:		could	not	determine	polymorphic	type	because	input	has	type	unknown

Unfortunately	not.	In	this	case,	string	literals	can	be	of	the	char,	varchar,	or	text	type;	the	exact	type	is	unknown.	But	we
can	use	explicit	type	casting:

=>	SELECT	maximum('A'::text,	'B'::text);

	maximum	

	B
(1	row)

Here	is	another	example	with	a	different	type:

=>	SELECT	maximum(now(),	now()	+	interval	'1	day');

												maximum												

	2021-10-20	17:01:45.550182+03
(1	row)

The	type	of	the	result	value	will	always	be	the	same	as	the	parameter	type.

It’s	important	that	both	parameters	have	the	same	type;	otherwise,	an	error	occurs:

=>	SELECT	maximum(1,	'A');

ERROR:		invalid	input	syntax	for	type	integer:	"A"
LINE	1:	SELECT	maximum(1,	'A');
																										^

In	this	example,	such	a	requirement	looks	quite	natural,	but	it	may	turn	out	to	be	inconvenient	in	some	other	cases.

Now	let’s	create	a	function	with	three	parameters,	so	that	the	third	parameter	is	optional.

=>	CREATE	FUNCTION	maximum(
				a	anyelement,
				b	anyelement,
				c	anyelement	DEFAULT	NULL
)	RETURNS	anyelement
AS	$$
SELECT	CASE
								WHEN	c	IS	NULL	THEN
												x
								ELSE
												CASE	WHEN	x	>	c	THEN	x	ELSE	c	END
				END
FROM	(
				SELECT	CASE	WHEN	a	>	b	THEN	a	ELSE	b	END
)	max2(x);
$$	LANGUAGE	sql;

CREATE	FUNCTION

Let’s	try	it	out:

=>	SELECT	maximum(10,	20,	30);

	maximum	

						30
(1	row)

It	works	fine	this	way.	And	what	about	the	following	query?

=>	SELECT	maximum(10,	20);

ERROR:		function	maximum(integer,	integer)	is	not	unique
LINE	1:	SELECT	maximum(10,	20);
															^
HINT:		Could	not	choose	a	best	candidate	function.	You	might	need	to	add	explicit	type	casts.

A	conflict	occurs	between	two	overloaded	functions:

=>	\df	maximum

																																														List	of	functions
	Schema	|		Name			|	Result	data	type	|																						Argument	data	types																							|	Type	
--------+---------+------------------+--+------
	public	|	maximum	|	anyelement							|	a	anyelement,	b	anyelement																																					|	func
	public	|	maximum	|	anyelement							|	a	anyelement,	b	anyelement,	c	anyelement	DEFAULT	NULL::unknown	|	func
(2	rows)

It’s	impossible	to	understand	whether	we	meant	to	run	the	function	with	two	parameters,	or	simply	omitted	the	third	one.

This	conflict	can	be	easily	resolved:	let’s	delete	the	first	function	as	it	is	no	longer	required.

=>	DROP	FUNCTION	maximum(anyelement,	anyelement);

DROP	FUNCTION

=>	SELECT	maximum(10,	20),	maximum(10,	20,	30);

	maximum	|	maximum	
---------+---------
						20	|						30
(1	row)

Now	everything	works	fine.	Once	we	get	to	the	“PL/pgSQL.	Arrays”	lecture,	we	will	also	learn	how	to	define	routines	with
an	arbitrary	number	of	parameters.

8

Summary

You can create and use your own procedures

Unlike functions, procedures are called using the CALL operator
and can manage transactions

Both procedures and functions support overloading and
polymorphism

9

Practice

1. In the authors table, authors’ full names must be unique,
but this condition is not checked.
Create a procedure that deletes possible duplicates.

2. To eliminate the need for such a procedure, create a constraint
that will not allow entering duplicates in the future.

Task 1. The feature for adding new authors won’t appear in the application
until we get to the “PL/pgSQL. Executing Queries” lecture. For now, you can
insert duplicates manually to check your solution.

Task	1.	Eliminating	Duplicates

To	check	the	solution,	let’s	add	another	Pushkin:

=>	INSERT	INTO	authors(last_name,	first_name,	middle_name)
				VALUES	('Pushkin',	'Alexander',	'Sergeyevich');

INSERT	0	1

=>	SELECT	last_name,	first_name,	middle_name,	count(*)
FROM	authors
GROUP	BY	last_name,	first_name,	middle_name;

		last_name		|	first_name	|	middle_name		|	count	
-------------+------------+--------------+-------
	Jerome						|	Jerome					|	Klapka							|					1
	Pushkin					|	Alexander		|	Sergeyevich		|					2
	Gaiman						|	Neil							|														|					1
	Swift							|	Jonathan			|														|					1
	Bunin							|	Ivan							|	Alekseyevich	|					1
	Shakespeare	|	William				|														|					1
	Pratchett			|	Terry						|														|					1
(7	rows)

There	are	different	ways	to	eliminate	duplicates.	Here	is	one	example:

=>	CREATE	PROCEDURE	authors_dedup()
AS	$$
DELETE	FROM	authors
WHERE	author_id	IN	(
				SELECT	author_id
				FROM	(
								SELECT	author_id,
															row_number()	OVER	(
																			PARTITION	BY	first_name,	last_name,	middle_name
																			ORDER	BY	author_id
)	AS	rn
								FROM	authors
)	t
				WHERE	t.rn	>	1
);
$$	LANGUAGE	sql;

CREATE	PROCEDURE

=>	CALL	authors_dedup();

CALL

=>	SELECT	last_name,	first_name,	middle_name,	count(*)
FROM	authors
GROUP	BY	last_name,	first_name,	middle_name;

		last_name		|	first_name	|	middle_name		|	count	
-------------+------------+--------------+-------
	Jerome						|	Jerome					|	Klapka							|					1
	Pushkin					|	Alexander		|	Sergeyevich		|					1
	Gaiman						|	Neil							|														|					1
	Swift							|	Jonathan			|														|					1
	Bunin							|	Ivan							|	Alekseyevich	|					1
	Shakespeare	|	William				|														|					1
	Pratchett			|	Terry						|														|					1
(7	rows)

Task	2.	Using	Constraints

We	cannot	define	a	suitable	constraint	because	a	middle	name	can	be	NULL.	NULL	values	are	considered	to	be	different,
so	the	constraint

UNIQUE(first_name,	last_name,	middle_name)

will	still	allow	you	to	add	another	Jonathan	Swift	without	a	middle	name.

The	problem	can	be	solved	by	creating	a	unique	index:

=>	CREATE	UNIQUE	INDEX	authors_full_name_idx	ON	authors(

				last_name,	first_name,	coalesce(middle_name,'')
);

CREATE	INDEX

Let’s	check	the	result:

=>	INSERT	INTO	authors(last_name,	first_name)
				VALUES	('Swift',	'Jonathan');

ERROR:		duplicate	key	value	violates	unique	constraint	"authors_full_name_idx"
DETAIL:		Key	(last_name,	first_name,	COALESCE(middle_name,	''::text))=(Swift,	Jonathan,)	already	exists.

=>	INSERT	INTO	authors(last_name,	first_name,	middle_name)
				VALUES	('Pushkin',	'Alexander',	'Sergeyevich'),

10

Practice

1. Is it possible to create the following objects with the same name
that belong to the same schema:
1) a procedure with one input parameter;
2) a function with one input parameter of the same type that
returns some value?
Check your response.

2. A table stores real numbers (for example, the results of some
measurements). Create a procedure that performs data
normalization by multiplying all numbers by a certain factor,
so that all values fit the interval between −1 and 1.
The procedure must return the chosen normalization factor.

Task 2. As a normalization factor, use the maximum absolute value stored in
the table.

Task	1.	Overloading	Functions	and	Procedures

It	won’t	work	because	the	routine	signature	includes	only	its	name	and	types	of	input	parameters	(the	return	value	is
ignored),	while	procedures	and	functions	have	a	common	namespace.

=>	CREATE	PROCEDURE	test(IN	x	integer)
AS	$$
				SELECT	1;
$$	LANGUAGE	sql;

CREATE	PROCEDURE

=>	CREATE	FUNCTION	test(IN	x	integer)	RETURNS	integer
AS	$$
				SELECT	1;
$$	LANGUAGE	sql;

ERROR:		function	"test"	already	exists	with	same	argument	types

Some	error	messages	(like	this	one	in	particular)	use	the	word	“function”	instead	of	“procedure”	because	they	have	much
in	common.

Task	2.	Data	Normalization

Create	a	table	with	test	data:

=>	CREATE	TABLE	samples(a	float);

CREATE	TABLE

=>	INSERT	INTO	samples(a)
				SELECT	(0.5	-	random())*100	FROM	generate_series(1,10);

INSERT	0	10

You	can	create	a	procedure	with	one	SQL	operator:

=>	CREATE	PROCEDURE	normalize_samples(INOUT	coeff	float)
AS	$$
				WITH	c(coeff)	AS	(
								SELECT	1/max(abs(a))
								FROM	samples
),
				upd	AS	(
								UPDATE	samples
								SET	a	=	a	*	c.coeff
								FROM	c
)
				SELECT	coeff	FROM	c;
$$	LANGUAGE	sql;

CREATE	PROCEDURE

=>	CALL	normalize_samples(NULL);

								coeff									

	0.020797912866554757
(1	row)

=>	SELECT	*	FROM	samples;

										a											

	-0.15036745718412478
		-0.6099210680053324
			0.7097958064669586
																				1
		-0.7465966784372502
		-0.0994382955589336
	0.038246337232130626
	-0.25446926346628457
		-0.6832525076445765
			0.9134939829918195
(10	rows)

