

PL/pgSQL

Overview & Programming Structures

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

PL/pgSQL history

Block structure and declaration of variables

Anonymous blocks

Functions in PL/pgSQL

Conditional operators and loops

Computing expressions

3

The History of PL/pgSQL

First appeared in version 6.4 in 1998
is installed by default since version 9.0

Objectives
create a simple language for user-defined functions and triggers
add control structures to the SQL language
keep the opportunity to use any user-defined types, functions, and operators

Ancestors: Oracle PL/SQL, Ada

PL/pgSQL is one of the first procedural languages for PostgreSQL.
It appeared in 1998 in version 6.4, and starting from version 9.0 it is
installed by default when a database is created.

PL/pgSQL extends the SQL functionality, providing such capabilities of
procedural languages as using variables and cursors, conditional operators,
loops, error handling, etc.

PL/pgSQL is based on the Oracle PL/SQL language, which, in its turn, is
derived from a subset of the Ada language. This branch stems from such
languages as Algol and Pascal. Most of the modern programming
languages belong to another branch of the C-like languages, that’s why
PL/pgSQL can at first seem unusual and excessively verbose (its distinctive
feature is using BEGIN and END keywords instead of curly brackets). Yet its
syntax goes well with SQL.

https://postgrespro.com/docs/postgresql/12/plpgsql-overview

4

Block Structure

A block label

Declaration of variables
the lifetime of a variable is limited to a block
the visibility scope can be overridden by a nested block, but a variable can
still be referenced by a block label
any SQL types, references to object types (%TYPE) are allowed

Operators
Control structures
SQL operators, except for the service ones

Handling exceptions

PL/pgSQL operators are organized into blocks. We can single out the
following components in the block structure:

- An optional label that can be used to eliminate naming ambiguities.

- An optional section for declaration of local variables and cursors. You can
use any types defined in SQL. It is also possible to refer to the type of a
table column using the %TYPE construct.

- The main execution section that contains operators.

- An optional section for handling exceptions.

You can use both PL/pgSQL commands and most of SQL commands as
operators, so the two languages are integrated almost seamlessly. It is
forbidden to use SQL service commands, such as VACUUM. As for
transaction control commands (such as COMMIT and ROLLBACK), they are
allowed only in procedures.

A nested PL/pgSQL block can also be used as an operator.

https://postgrespro.com/docs/postgresql/12/plpgsql-structure

https://postgrespro.com/docs/postgresql/12/plpgsql-declarations#PLPGSQL
-DECLARATION-TYPE

5

Anonymous Blocks

One-time execution of procedures
without creating a stored routine
with no parameters
with no return values

DO operator of the SQL language

It is possible to use PL/pgSQL without creating routines. The PL/pgSQL
code can be written as an anonymous block and executed using the DO
command of the SQL language.

This command can be used with various server languages, but if you do not
specify the language explicitly, it will be assumed that PL/pgSQL is used.

The code of anonymous blocks is not saved on the server. Anonymous
blocks do not allow passing parameters or returning values. But there are
indirect ways to achieve the same outcome, e.g., using tables.

https://postgrespro.com/docs/postgresql/12/sql-do

Anonymous	Blocks

A	general	structure	of	a	PL/pgSQL	block:

<<label>>
DECLARE
				--	declaration	of	variables
BEGIN
				--	operators
EXCEPTION
				--	error	handling
END	label;

All	sections	except	for	the	operators’	one	are	optional.

The	smallest	block	of	PL/pgSQL	code:

=>	DO	$$
BEGIN
				--	there	can	be	no	operators
END;
$$;

DO

One	of	the	implementations	of	“Hello,	World!”:

=>	DO	$$
DECLARE
				--	This	is	a	one-line	comment.
				/*	This	is	a	multi-line	comment.
							Each	declaration	is	ended	by	a	semicolon	';'.
							A	semicolon	is	also	placed	after	each	operator.
				*/
				foo	text;
				bar	text	:=	'World';	--	you	can	also	use		=	or	DEFAULT
BEGIN
				foo	:=	'Hello';	--	this	is	an	assignment	operation
				RAISE	NOTICE	'%,	%!',	foo,	bar;	--	message	output
END;
$$;

NOTICE:		Hello,	World!
DO

There	must	be	no	semicolon	after	BEGIN!

Variables	can	have	modifiers:

CONSTANT	—	once	a	variable	is	initialized,	its	value	must	not	change;
NOT	NULL	—	undefined	values	are	not	allowed.

=>	DO	$$
DECLARE
				foo	integer	NOT	NULL	:=	0;
				bar	CONSTANT	text	:=	42;
BEGIN
				bar	:=	bar	+	1;	--	error
END;
$$;

ERROR:		variable	"bar"	is	declared	CONSTANT
LINE	6:					bar	:=	bar	+	1;	--	error
												^

Here	is	an	example	of	nested	blocks.	A	variable	in	the	inner	block	overrides	the	one	declared	in	the	outer	block,	but	you
can	refer	to	any	of	them	using	labels:

=>	DO	$$
<<outer_block>>
DECLARE
				foo	text	:=	'Hello';
BEGIN
				<<inner_block>>
				DECLARE

								foo	text	:=	'World';
				BEGIN
								RAISE	NOTICE	'%,	%!',	outer_block.foo,	inner_block.foo;
								RAISE	NOTICE	'An	inner	variable,	without	a	label:	%',	foo;
				END	inner_block;
END	outer_block;
$$;

NOTICE:		Hello,	World!
NOTICE:		An	inner	variable,	without	a	label:	World
DO

7

PL/pgSQL Routines

A routine header does not depend on the language
name, input and output parameters
for functions: return value and volatility category

Specifying LANGUAGE plpgsql

Returning values
the RETURN operator

assigning values to the output parameters (INOUT, OUT)

We have already learned about stored functions and procedures using the
SQL language as an example. Most of the covered information related to
routines’ creation and management applies to PL/pgSQL routines as well,
such as:

- creating, modifying, and deleting routines

- system catalog location (pg_proc)

- parameters

- return value and volatility categories (for functions)

- overloading and polymorphism

While SQL routines return a value produced by the last SQL operator,
PL/pgSQL routines either have to assign return values to formal INOUT or
OUT parameters, or use a special RETURN operator (which is available for
functions).

PL/pgSQL	Routines

Here	is	an	example	of	a	function	that	returns	a	value	using	the	RETURN	operator:

=>	CREATE	FUNCTION	sqr_in(IN	a	numeric)	RETURNS	numeric
AS	$$
BEGIN
				RETURN	a	*	a;
END;
$$	LANGUAGE	plpgsql	IMMUTABLE;

CREATE	FUNCTION

Now	let’s	take	a	look	at	the	same	function	with	the	OUT	parameter.	The	return	value	is	assigned	to	this	parameter:

=>	CREATE	FUNCTION	sqr_out(IN	a	numeric,	OUT	retval	numeric)
AS	$$
BEGIN
				retval	:=	a	*	a;
END;
$$	LANGUAGE	plpgsql	IMMUTABLE;

CREATE	FUNCTION

Here	is	the	same	function	with	the	INOUT	parameter.	This	parameter	is	used	for	both	providing	input	values	and
returning	the	function	value:

=>	CREATE	FUNCTION	sqr_inout(INOUT	a	numeric)
AS	$$
BEGIN
				a	:=	a	*	a;
END;
$$	LANGUAGE	plpgsql	IMMUTABLE;

CREATE	FUNCTION

=>	SELECT	sqr_in(3),	sqr_out(3),	sqr_inout(3);

	sqr_in	|	sqr_out	|	sqr_inout	
--------+---------+-----------
						9	|							9	|									9
(1	row)

9

Conditional Operators

IF

a regular conditional operator

CASE

is similar to CASE in the SQL language, but does not return a value

Attention: three-valued logic
a condition must be true; false and NULL are ignored

PL/pgSQL provides two conditional operators: IF and CASE.

The first one is an absolutely standard operator, which is available in all
languages.

The second one works similar to CASE in SQL, but it’s a proper operator
that does not return a value. It is somewhat analogous to the switch
operator in C or Java.

It’s important to always remember that boolean expressions in SQL (and,
consequently, in PL/pgSQL) can take three values: true, false, and NULL.
A condition is triggered only if it is true; it won’t be triggered if it is false or
undefined. It is equally applicable to both WHERE conditions in SQL and
conditional operators in PL/pgSQL.

https://postgrespro.com/docs/postgresql/12/plpgsql-control-structures#PLP
GSQL-CONDITIONALS

Conditional	Operators

A	generic	form	of	the	IF	operator:

IF	condition	THEN
				--	operators
ELSIF	condition	THEN
				--	operators
ELSE
				--	operators
END	IF;

The	ELSIF	section	can	be	used	several	times,	or	there	can	be	no	such	section	at	all.
There	can	be	no	ELSE	section.
The	operators	corresponding	to	the	first	true	condition	will	be	executed.
If	none	of	the	conditions	is	true,	the	operators	of	the	ELSE	section	are	executed	(if	available).

Consider	an	example	of	a	function	that	uses	a	conditional	operator	for	decoding	an	ISBN-10	number.	The	function	returns
three	values:

=>	CREATE	FUNCTION	decode_isbn(
				IN	isbn	text,
				OUT	country	text,
				OUT	publisher_and_book	text,
				OUT	check_digit	integer
)	AS	$$
DECLARE
				country_len	integer;
BEGIN
				IF	left(isbn,1)::integer	IN	(0,1,2,3,4,5,7)	THEN
								country_len	:=	1;
				ELSIF	left(isbn,2)::integer	BETWEEN	80	AND	94	THEN
								country_len	:=	2;
				ELSIF	left(isbn,3)::integer	BETWEEN	600	AND	649	THEN
								country_len	:=	3;
				ELSIF	left(isbn,3)::integer	BETWEEN	950	AND	993	THEN
								country_len	:=	3;
				ELSIF	left(isbn,4)::integer	BETWEEN	9940	AND	9989	THEN
								country_len	:=	4;
				ELSE
								country_len	:=	5;
				END	IF;
				country	:=	left(isbn,	country_len);
				publisher_and_book	:=	substr(isbn,	country_len+1,	12);
				check_digit	:=	right(isbn,	1);
END;
$$	LANGUAGE	plpgsql	IMMUTABLE;

CREATE	FUNCTION

=>	SELECT	*	FROM	decode_isbn('1484268849');

	country	|	publisher_and_book	|	check_digit	
---------+--------------------+-------------
	1							|	484268849										|											9
(1	row)

=>	SELECT	*	FROM	decode_isbn('8845210669');

	country	|	publisher_and_book	|	check_digit	
---------+--------------------+-------------
	88						|	45210669											|											9
(1	row)

A	generic	form	of	the	CASE	operator	(by	condition):

CASE
				WHEN	condition	THEN
								--	operators
				ELSE
								--	operators
END	CASE;

There	can	be	several	WHEN	sections.

There	can	be	no	ELSE	section.
The	operators	corresponding	to	the	first	true	condition	will	be	executed.
If	none	of	the	conditions	is	true,	ELSE	operators	are	executed	(it	is	an	error	to	have	no	ELSE	in	this	case).

Usage	example:

=>	DO	$$
DECLARE
				country	text	:=	(decode_isbn('1484268849')).country;
BEGIN
				CASE
								WHEN	country	IN	('0','1')	THEN
												RAISE	NOTICE	'%	—	English-speaking	area',	country;
								WHEN	country	=	'7'	THEN
												RAISE	NOTICE	'%	—	Russia',	country;
								WHEN	country	=	'88'	THEN
												RAISE	NOTICE	'%	—	Italy',	country;
								ELSE
												RAISE	NOTICE	'%	—	Other',	country;
				END	CASE;
END;
$$;

NOTICE:		1	—	English-speaking	area
DO

A	generic	form	of	the	CASE	operator	(by	expression):

CASE	expression
				WHEN	value,	...	THEN
								--	operators
				ELSE
								--	operators
END	CASE;

There	can	be	several	WHEN	sections.
There	can	be	no	ELSE	section.
The	operators	corresponding	to	the	first	true	condition	“expression	=	value”	will	be	executed.
If	none	of	the	conditions	is	true,	ELSE	operators	are	executed	(it	is	an	error	to	have	no	ELSE	in	this	case).

If	conditions	are	similar,	this	form	of	the	CASE	operator	can	turn	out	to	be	shorter:

=>	DO	$$
DECLARE
				country	text	:=	(decode_isbn('8845210669')).country;
BEGIN
				CASE	country
								WHEN	'0',	'1'	THEN
												RAISE	NOTICE	'%	—	English-speaking	area',	country;
								WHEN	'7'	THEN
												RAISE	NOTICE	'%	—	Russia',	country;
								WHEN	'88'	THEN
												RAISE	NOTICE	'%	—	Italy',	country;
								ELSE
												RAISE	NOTICE	'%	—	Other',	country;
				END	CASE;
END;
$$;

NOTICE:		88	—	Italy
DO

11

Loops

A FOR loop over a range of numbers

A WHILE loop with a precondition

An infinite loop

A loop can have its own label, just like any block

Control
exiting a loop (EXIT)
initiating a new iteration (CONTINUE)

For repeated execution of a set of operators, PL/pgSQL offers several types
of loops:

- a FOR loop over a range of numbers

- a WHILE loop with a precondition

- an infinite loop

A loop is a special kind of a block; it can have its own label.

You can additionally control loop execution by initiating a new iteration or
terminating the loop.

https://postgrespro.com/docs/postgresql/12/plpgsql-control-structures#PLP
GSQL-CONTROL-STRUCTURES-LOOPS

In addition to working with ranges of numbers, FOR loops can iterate
through query results and arrays. These flavors of the FOR loop will be
discussed in the next lectures.

Loops

In	PL/pgSQL,	all	loops	have	the	same	structure:

LOOP
				--	operators
END	LOOP;

It	can	be	extended	by	a	header	that	defines	the	exit	condition	for	the	loop.

A	FOR	loop	over	a	range	is	executed	while	the	loop	counter	goes	over	the	values	from	bottom	to	top.	Each	iteration
increases	the	counter	by	1	(but	the	increment	can	be	changed	in	the	optional	BY	clause).

FOR	name	IN	bottom	..	top	BY	increment
LOOP
				--	operators
END	LOOP;

The	variable	used	as	a	counter	is	declared	implicitly	and	exists	only	within	the	LOOP	—	END	LOOP	block.

If	REVERSE	is	specified,	the	counter	value	is	reduced	with	each	iteration,	and	the	top	and	bottom	of	the	loop	have	to	be
swapped:

FOR	name	IN	REVERSE	top	..	bottom	BY	increment
LOOP
				--	operators
END	LOOP;

An	example	of	using	a	FOR	loop	is	a	function	that	reverses	a	string:

=>	CREATE	FUNCTION	reverse_for	(line	text)	RETURNS	text
AS	$$
DECLARE
				line_length	CONSTANT	int	:=	length(line);
				retval	text	:=	'';
BEGIN
				FOR	i	IN	1	..	line_length
				LOOP
								retval	:=	substr(line,	i,	1)	||	retval;
				END	LOOP;
				RETURN	retval;
END;
$$	LANGUAGE	plpgsql	IMMUTABLE	STRICT;

CREATE	FUNCTION

As	you	might	remember,	a	STRICT	function	returns	NULL	right	away	if	at	least	one	of	the	input	parameters	is	undefined.
The	function	body	is	not	executed	in	this	case.

A	WHILE	loop	is	executed	while	the	condition	is	true:

WHILE	condition
LOOP
				--	operators
END	LOOP;

Here	is	the	same	function	that	reverses	a	string	using	a	WHILE	loop:

=>	CREATE	FUNCTION	reverse_while	(line	text)	RETURNS	text
AS	$$
DECLARE
				line_length	CONSTANT	int	:=	length(line);
				i	int	:=	1;
				retval	text	:=	'';
BEGIN
				WHILE	i	<=	line_length
				LOOP
								retval	:=	substr(line,	i,	1)	||	retval;
								i	:=	i	+	1;
				END	LOOP;
				RETURN	retval;
END;
$$	LANGUAGE	plpgsql	IMMUTABLE	STRICT;

CREATE	FUNCTION

A	LOOP	without	a	header	runs	infinitely.	To	terminate	it,	use	the	EXIT	operator.

EXIT	label	WHEN	condition;

The	label	is	optional;	if	it	is	not	specified,	the	most	inner	loop	will	be	terminated.
The	WHEN	condition	is	also	optional;	if	it	is	not	specified,	the	loop	is	exited	unconditionally.

LOOP	usage	example:

=>	CREATE	FUNCTION	reverse_loop	(line	text)	RETURNS	text
AS	$$
DECLARE
				line_length	CONSTANT	int	:=	length(reverse_loop.line);
				i	int	:=	1;
				retval	text	:=	'';
BEGIN
				<<main_loop>>
				LOOP
								EXIT	main_loop	WHEN	i	>	line_length;
								retval	:=	substr(reverse_loop.line,	i,1)	||	retval;
								i	:=	i	+	1;
				END	LOOP;
				RETURN	retval;
END;
$$	LANGUAGE	plpgsql	IMMUTABLE	STRICT;

CREATE	FUNCTION

The	function	body	is	placed	into	an	implicit	block,	with	the	function	name	used	as	the	block	label.	So	you	can	access
parameters	using	the	“function_name.parameter”	notation.

Let's	make	sure	that	all	functions	work	correctly:

=>	SELECT	reverse_for('AMBULANCE')	as	"for",
										reverse_while('AMBULANCE')	as	"while",
										reverse_loop('AMBULANCE')	as	"loop";

				for				|			while			|			loop				
-----------+-----------+-----------
	ECNALUBMA	|	ECNALUBMA	|	ECNALUBMA
(1	row)

Note:	PostgreSQL	has	a	built-in	reverse	function.

It	is	sometimes	useful	to	apply	the	CONTINUE	operator,	which	starts	a	new	iteration	of	the	loop:

=>	DO	$$
DECLARE
				s	integer	:=	0;
BEGIN
				FOR	i	IN	1	..	100
				LOOP
								s	:=	s	+	i;
								CONTINUE	WHEN	mod(i,	10)	!=	0;
								RAISE	NOTICE	'i	=	%,	s	=	%',	i,	s;
				END	LOOP;
END;
$$;

NOTICE:		i	=	10,	s	=	55
NOTICE:		i	=	20,	s	=	210
NOTICE:		i	=	30,	s	=	465
NOTICE:		i	=	40,	s	=	820
NOTICE:		i	=	50,	s	=	1275
NOTICE:		i	=	60,	s	=	1830
NOTICE:		i	=	70,	s	=	2485
NOTICE:		i	=	80,	s	=	3240
NOTICE:		i	=	90,	s	=	4095
NOTICE:		i	=	100,	s	=	5050
DO

13

Computing Expressions

Any expression is computed in the context of SQL
an expression is automatically converted into a query
a query is getting prepared
PL/pgSQL variables become implicit parameters

Distinctive features
you can use all SQL capabilities, including subqueries
the execution speed is quite low,
although the parsed query (and sometimes the query plan) is cached
naming ambiguities have to be taken care of

All expressions that occur in the PL/pgSQL code are computed as SQL
queries to the database. The interpreter builds the required query by
substituting PL/pgSQL variables with parameters, prepares the operator
(while the parsed query is being caсhed, as it is usually done for prepared
operators), and executes it.

Although it’s not good for PL/pgSQL performance, it ensures very close
integration with SQL. In fact, expressions can use any SQL functionality
without limitations, including calling built-in and user-defined functions,
running subqueries, etc.

https://postgrespro.com/docs/postgresql/12/plpgsql-expressions

Computing	Expressions

Any	PL/pgSQL	expression	is	computed	using	database	queries.	The	easiest	way	to	verify	it	is	to	make	a	mistake	and	check
the	message:

=>	DO	$$
BEGIN
				RAISE	NOTICE	'%',	2	+	'a';
END;
$$;

ERROR:		invalid	input	syntax	for	type	integer:	"a"
LINE	1:	SELECT	2	+	'a'
																			^
QUERY:		SELECT	2	+	'a'
CONTEXT:		PL/pgSQL	function	inline_code_block	line	3	at	RAISE

Thus,	PL/pgSQL	provides	exactly	the	same	features	as	SQL.	For	example,	since	SQL	allows	using	CASE,	the	same
construct	will	also	work	in	PL/pgSQL	code	(as	an	expression;	it	should	not	be	confused	with	the	CASE	...	END	CASE
operator,	which	is	available	only	in	PL/pgSQL):

=>	DO	$$
BEGIN
				RAISE	NOTICE	'%',	CASE	2+2	WHEN	4	THEN	'Everything	is	OK'	END;
END;
$$;

NOTICE:		Everything	is	OK
DO

You	can	also	use	subqueries	in	expressions:

=>	DO	$$
BEGIN
				RAISE	NOTICE	'%',	(
								SELECT	code
								FROM	(VALUES	(1,	'One'),	(2,	'Two'))	t(id,	code)
								WHERE	id	=	1
);
END;
$$;

NOTICE:		One
DO

15

Summary

PL/pgSQL is installed by default and is integrated with SQL;
it is a convenient and easy-to-use language

The process of managing routines in PL/pgSQL is the same as
in other languages

DO is an SQL command for executing anonymous blocks

PL/pgSQL variables can use any SQL types

PL/pgSQL supports regular control structures, such as
conditional operators and loops

16

Practice

1. Modify the book_name function, so that the length of the return
value does not exceed 47 characters.
If the book title gets truncated, it must be concluded with an
ellipsis.

Check your implementation in SQL and in the application;
add more books with long titles if required.

2. Modify the book_name function again, so that an excessively
long title gets shortened by a full word.

Check your implementation.

Task 1. For example:
Travels into Several Remote Nations of the World. In Four Parts.
By Lemuel Gulliver, First a Surgeon, and then a Captain of
Several Ships →

→ Travels into Several Remote Nations of the W...

Here are some cases that are worth checking for:

- The title length is less than 47 characters (should not change).

- The title length is exactly 47 characters (should not change).

- The title length is 48 characters

(four characters have to be truncated because three dots will be added).

It is recommended to implement and debug a separate function for
truncation, and then use it in book_name. It is useful for other reasons as
well:

- This function can be used somewhere else.

- Each function will perform exactly one task.

Task 2. For example:
Travels into Several Remote Nations of the World. In Four Parts.
By Lemuel Gulliver, First a Surgeon, and then a Captain of
Several Ships →

→ Travels into Several Remote Nations of the...

Will your implementation work well if the title consists of a single long word
without spaces?

Task	1.	Truncating	Book	Titles

Let’s	create	a	more	general	function	that	accepts	the	following	parameters:	the	string	to	truncate,	the	maximum	length,	and	the	suffix	to	be	used	in	case	of
truncation.	It	won’t	complicate	the	code	and	will	allow	us	to	do	without	magic	numbers.

=>	CREATE	OR	REPLACE	FUNCTION	shorten(
				s	text,
				max_len	integer	DEFAULT	47,
				suffix	text	DEFAULT	'...'
)
RETURNS	text	AS	$$
DECLARE
				suffix_len	integer	:=	length(suffix);
BEGIN
				RETURN	CASE	WHEN	length(s)	>	max_len
								THEN	left(s,	max_len	-	suffix_len)	||	suffix
								ELSE	s
				END;
END;
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	check	the	result:

=>	SELECT	shorten(
				'Travels	into	Several	Remote	Nations	of	the	World.	In	Four	Parts.	By	Lemuel	Gulliver,	First	a	Surgeon,	and	then	a	Captain	of	Several	Ships'
);

																					shorten																					

	Travels	into	Several	Remote	Nations	of	the	W...
(1	row)

=>	SELECT	shorten(
				'Travels	into	Several	Remote	Nations	of	the	World.	In	Four	Parts.	By	Lemuel	Gulliver,	First	a	Surgeon,	and	then	a	Captain	of	Several	Ships',
				34
);

														shorten															

	Travels	into	Several	Remote	Nat...
(1	row)

Let’s	use	the	created	function:

=>	CREATE	OR	REPLACE	FUNCTION	book_name(book_id	integer,	title	text)
RETURNS	text
AS	$$
SELECT	shorten(book_name.title)	||
							'.	'	||
							string_agg(
											author_name(a.last_name,	a.first_name,	a.middle_name),	',	'
											ORDER	BY	ash.seq_num
)
FROM			authors	a
							JOIN	authorship	ash	ON	a.author_id	=	ash.author_id
WHERE		ash.book_id	=	book_name.book_id;
$$	STABLE	LANGUAGE	sql;

CREATE	FUNCTION

Task	2.	Truncating	Book	Titles	by	Full	Words

=>	CREATE	OR	REPLACE	FUNCTION	shorten(
				s	text,
				max_len	integer	DEFAULT	47,
				suffix	text	DEFAULT	'...'
)
RETURNS	text
AS	$$
DECLARE
				suffix_len	integer	:=	length(suffix);
				short	text	:=	suffix;
				pos	integer;
BEGIN
				IF	length(s)	<	max_len	THEN
								RETURN	s;
				END	IF;
				FOR	pos	in	1	..	least(max_len-suffix_len+1,	length(s))
				LOOP
								IF	substr(s,pos-1,1)	!=	'	'	AND	substr(s,pos,1)	=	'	'	THEN
												short	:=	left(s,	pos-1)	||	suffix;
								END	IF;
				END	LOOP;
				RETURN	short;
END;
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	check	the	result:

=>	SELECT	shorten(
				'Travels	into	Several	Remote	Nations	of	the	World.	In	Four	Parts.	By	Lemuel	Gulliver,	First	a	Surgeon,	and	then	a	Captain	of	Several	Ships'
);

																				shorten																				

	Travels	into	Several	Remote	Nations	of	the...
(1	row)

=>	SELECT	shorten(
				'Travels	into	Several	Remote	Nations	of	the	World.	In	Four	Parts.	By	Lemuel	Gulliver,	First	a	Surgeon,	and	then	a	Captain	of	Several	Ships',
				34
);

												shorten													

	Travels	into	Several	Remote...
(1	row)

17

Practice

1. Create a PL/pgSQL function that returns a string of random
characters of the specified length.

2. A shell game problem.

One of the three shells contains a pea.
A player selects one of the shells. The operator removes one of
the two remaining shells (which must be empty) and gives the
player an opportunity to change the choice, i.e., select the other
shell from the remaining two.

Does it make sense to change the choice, or is it better to keep
the initial one?

Assignment: using PL/pgSQL, estimate the probability of the
win for both the first and second choices.

You can first create the rnd_integer function that returns a random
integer within the specified range. This function will be useful for solving
both problems.

For example: rnd_integer(30, 1000) → 616

Task 1. Apart from the string length, you can also provide the list of allowed
characters as an input parameter. By default, it can be all alphabetic
characters, digits, and some other special characters. To select random
characters from the list, you can use the rnd_integer function. A function
declaration can look as follows:
CREATE FUNCTION rnd_text(
 len int,
 list_of_chars text DEFAULT
'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_0123456789'
) RETURNS text AS ...

An example of the function call: rnd_text(10) → 'LjdabF_OОJ'

Task 2. You can use an anonymous block in your solution.

First, you have to develop an individual game run and check which choice
has won: the initial or the modified one. For setting and guessing the
winning shell you can use rnd_integer(1,3).

Then place the game into a loop and iterate through it, e.g., 1000 times,
counting wins for each choice. Finally, use RAISE NOTICE to display the
counter values and determine the winner (or lack thereof).

Task	1.	A	Random	String	of	the	Specified	Length

First,	let’s	declare	an	auxiliary	function	that	returns	a	random	integer	from	the	specified	range.	It’s	easy	to	write	such	a
function	in	pure	SQL,	but	here	we’ll	use	PL/pgSQL:

=>	CREATE	FUNCTION	rnd_integer(min_value	integer,	max_value	integer)
RETURNS	integer
AS	$$
DECLARE
				retval	integer;
BEGIN
				IF	max_value	<=	min_value	THEN
								RETURN	NULL;
				END	IF;

				retval	:=	floor(
											(max_value+1	-	min_value)*random()
)::integer	+	min_value;
				RETURN	retval;
END;
$$	STRICT	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	check	this	implementation:

=>	SELECT	rnd_integer(0,1)	as	"0	-	1",
										rnd_integer(1,365)	as	"1	-	365",
										rnd_integer(-30,30)	as	"-30	-	+30"
			FROM	generate_series(1,10);

	0	-	1	|	1	-	365	|	-30	-	+30	
-------+---------+-----------
					0	|						55	|							-29
					0	|					141	|								-3
					1	|					252	|								21
					0	|							7	|							-19
					0	|					204	|							-25
					0	|					349	|							-15
					0	|						65	|									6
					1	|					336	|									1
					1	|						74	|							-28
					0	|					292	|								-4
(10	rows)

The	function	guarantees	uniform	distribution	of	random	numbers	through	the	whole	range,	including	boundary	values:

=>	SELECT	rnd_value,	count(*)
FROM	(
				SELECT	rnd_integer(1,5)	AS	rnd_value
				FROM	generate_series(1,100000)
)	AS	t
GROUP	BY	rnd_value	ORDER	BY	rnd_value;

	rnd_value	|	count	
-----------+-------
									1	|	20002
									2	|	19938
									3	|	19829
									4	|	20233
									5	|	19998
(5	rows)

Now	we	can	get	down	to	the	function	that	returns	a	string	of	the	specified	length.	We’ll	use	the	rnd_integer	function	to	get
a	random	character	from	the	list.

=>	CREATE	FUNCTION	rnd_text(
				len	int,
				list_of_chars	text	DEFAULT	'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_0123456789'
)	RETURNS	text
AS	$$
DECLARE
				len_of_list	CONSTANT	integer	:=	length(list_of_chars);
				i	integer;
				retval	text	:=	'';
BEGIN
				FOR	i	IN	1	..	len
				LOOP
								--	add	a	random	character	to	the	string
								retval	:=	retval	||
																		substr(list_of_chars,	rnd_integer(1,len_of_list),1);
				END	LOOP;
				RETURN	retval;
END;
$$	STRICT	LANGUAGE	plpgsql;

CREATE	FUNCTION

Check	the	result:

=>	SELECT	rnd_text(rnd_integer(1,30))	FROM	generate_series(1,10);

										rnd_text										

	qb7kITIleu71aPvGmu
	B7K_Qaj8F56NfPTqRwn3Q
	oU1eP07AnFLUMQtrksw
	AOpib4IR9B2X9GtkrbdTuyJ
	RZhnMgtltrpgByQHmYzKCVNzkZ
	gm6BMbFsfbs
	fNB11
	f
	g
	c09Edr6jWYxQVfRzO_oyjCp
(10	rows)

Task	2.	The	Shell	Game

For	setting	and	guessing	the	winning	shell,	we	are	going	to	use	rnd_integer(1,3).

=>	DO	$$
DECLARE
				x	integer;
				choice	integer;
				new_choice	integer;
				remove	integer;
				total_games	integer	:=	1000;
				old_choice_win_counter	integer	:=	0;
				new_choice_win_counter	integer	:=	0;
BEGIN
				FOR	i	IN	1	..	total_games
				LOOP
								--	Setting	the	winning	shell
								x	:=	rnd_integer(1,3);

								--	The	player	makes	a	choice
								choice	:=	rnd_integer(1,3);

								--	We	remove	one	wrong	option,	other	than	the	player's	choice
								FOR	i	IN	1	..	3
								LOOP
												IF	i	NOT	IN	(x,	choice)	THEN
																remove	:=	i;
																EXIT;
												END	IF;
								END	LOOP;

								--	Should	the	player	change	the	choice?

								--	Modified	choice
								FOR	i	IN	1	..	3
								LOOP
												IF	i	NOT	IN	(remove,	choice)	THEN
																new_choice	:=	i;
																EXIT;

												END	IF;
								END	LOOP;

								--	Either	the	initial	or	the	modified	choice	is	bound	to	win
								IF	choice	=	x	THEN
												old_choice_win_counter	:=	old_choice_win_counter	+	1;
								ELSIF	new_choice	=	x	THEN
												new_choice_win_counter	:=	new_choice_win_counter	+	1;
								END	IF;
				END	LOOP;

				RAISE	NOTICE	'The	first	choice	has	won:		%	of	%',
								old_choice_win_counter,	total_games;
				RAISE	NOTICE	'The	second	choice	has	won:	%	of	%',
								new_choice_win_counter,	total_games;
END;
$$;

NOTICE:		The	first	choice	has	won:		309	of	1000
NOTICE:		The	second	choice	has	won:	691	of	1000
DO

At	first,	we	select	one	shell	out	of	three,	so	the	probability	of	the	win	is	1/3.	If	the	choice	is	changed,	the	probability
changes	to	2/3.

Thus,	the	probability	of	the	win	is	higher	for	the	new	choice.	So	it	makes	sense	to	change	the	choice.

