

PL/pgSQL

Arrays

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Arrays and their usage in PL/pgSQL

Loops over array elements

Functions with a variable number of arguments
and polymorphic functions

Array usage in tables

3

Array Type

Array
a set of numbered elements of the same type
one-dimensional, multidimensional

Initialization
usage without an explicit declaration (name-type[])

implicit declaration when creating a base type or a table (_name-type)

Usage
elements as scalar values
array slices
operations on arrays: comparison, inclusion, intersection, concatenation,
usage with ANY or ALL instead of a subquery, etc.

Just like a composite type (a record), an array is not a scalar; it consists of
several elements of another type. But unlike in records, a) all these
elements are of the same type, and b) they are accessed by an integer
index, not by name (here the term index is used in the mathematical sense
of the word, not in the sense of a database index).

An array type does not have to be explicitly declared; it is enough to append
square brackets to the name of the element type. (Besides, when any base
type or a table is created, a new array type is also declared; its name is
derived from the name of the element type by prepending an underscore to
it. But such naming is less intuitive.)

An array is a full-fledged SQL type: you can create table columns of this
type, pass arrays as function parameters, etc. Array elements can be
applied as regular scalar values. Array slices can also be used.

Arrays can be compared and checked for null; you can search arrays for
element inclusion and intersection with other arrays, perform concatenation,
etc. Arrays can also be applied in ANY/SOME and ALL constructs, similar to
subqueries.

https://postgrespro.com/docs/postgresql/12/arrays

You can find various array functions in course handouts.

Initializing	an	Array	and	Referencing	its	Elements

Declaring	a	variable	and	initializing	an	array:

=>	DO	$$
DECLARE
				a	integer[2];	--	the	size	is	ignored
BEGIN
				a	:=	ARRAY[10,20,30];
				RAISE	NOTICE	'%',	a;
				--	by	default,	one-based	indexing	is	used
				RAISE	NOTICE	'a[1]	=	%,	a[2]	=	%,	a[3]	=	%',	a[1],	a[2],	a[3];
				--	array	slice
				RAISE	NOTICE	'Slice	[2:3]	=	%',	a[2:3];
END;
$$	LANGUAGE	plpgsql;

NOTICE:		{10,20,30}
NOTICE:		a[1]	=	10,	a[2]	=	20,	a[3]	=	30
NOTICE:		Slice	[2:3]	=	{20,30}
DO

A	one-dimensional	array	can	be	constructed	element	by	element:	it	will	be	expanded	automatically	if	required.	If	you	omit
some	of	the	elements,	they	will	receive	NULL	values.

What	will	be	displayed?

=>	DO	$$
DECLARE
				a	integer[];
BEGIN
				a[2]	:=	10;
				a[3]	:=	20;
				a[6]	:=	30;
				RAISE	NOTICE	'%',	a;
END;
$$	LANGUAGE	plpgsql;

NOTICE:		[2:6]={10,20,NULL,NULL,30}
DO

Since	element	numbering	begins	with	a	value	other	than	one,	the	array	itself	is	preceded	by	a	range	of	element	indexes.

Another	way	to	construct	an	array	is	to	use	a	subquery:

=>	DO	$$
DECLARE
				a	integer[];
BEGIN
				a	:=	ARRAY(SELECT	n	FROM	generate_series(1,3)	n);
				RAISE	NOTICE	'%',	a;
END;
$$	LANGUAGE	plpgsql;

NOTICE:		{1,2,3}
DO

You	can	also	do	the	inverse	operation:	convert	an	array	into	a	table:

=>	SELECT	unnest(ARRAY[1,2,3]);

	unnest	

						1
						2
						3
(3	rows)

Fun	fact:	the	IN	clause	with	a	list	of	values	is	transformed	into	a	search	operation	over	the	array:

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	generate_series(1,10)	g(id)	WHERE	id	IN	(1,2,3);

																	QUERY	PLAN																		

	Function	Scan	on	generate_series	g
			Filter:	(id	=	ANY	('{1,2,3}'::integer[]))
(2	rows)

A	two-dimensional	array	is	virtually	an	array	of	arrays	(i.e.	an	array	of	rows,	with	each	row	being	an	array	of	elements).
Here	we	have	applied	another	initialization	method	that	uses	a	string	literal.

Once	initialized,	a	multidimensional	array	cannot	be	expanded.

=>	DO	$$
DECLARE
				a	integer[][]	:=	'{
								{	10,	20,	30},
								{100,200,300}
				}';
BEGIN
				RAISE	NOTICE	'%',	a;
				RAISE	NOTICE	'Slice	[1:2][2:3]	=	%',	a[1:2][2:3];
				--	cannot	be	expanded
				a[4][4]	:=	1;
END;
$$	LANGUAGE	plpgsql;

NOTICE:		{{10,20,30},{100,200,300}}
NOTICE:		Slice	[1:2][2:3]	=	{{20,30},{200,300}}
ERROR:		array	subscript	out	of	range
CONTEXT:		PL/pgSQL	function	inline_code_block	line	11	at	assignment

5

Arrays and Loops

A regular loop over element indexes
array_lower

array_upper

A FOREACH loop over array elements
this approach is easier, but it does not provide access to indexes

To iterate through array elements, you can simply set up an integer FOR
loop using functions that return the minimum and the maximum index of the
array.

But there is also a specialized loop: FOREACH. In this case, a loop variable
iterates through the elements, not their indexes. That’s why the variable
must be of the same type as the array elements (as always, if the elements
are records, you can replace a single composite variable with several scalar
ones).

If a loop contains the SLICE clause, it will iterate through array slices.
For example, the rows of a two-dimensional array will be treated as its one-
dimensional slices.

https://postgrespro.com/docs/postgresql/12/plpgsql-control-structures#PLP
GSQL-FOREACH-ARRAY

Arrays	and	Loops

You	can	set	up	a	loop	that	iterates	through	index	values	of	array	elements.	The	second	parameter	of	the	array_lower	and
array_upper	functions	defines	the	array	dimension	(1	denotes	a	one-dimensional	array).

=>	DO	$$
DECLARE
				a	integer[]	:=	ARRAY[10,20,30];
BEGIN
				FOR	i	IN	array_lower(a,1)..array_upper(a,1)	LOOP
								RAISE	NOTICE	'a[%]	=	%',	i,	a[i];
				END	LOOP;
END;
$$	LANGUAGE	plpgsql;

NOTICE:		a[1]	=	10
NOTICE:		a[2]	=	20
NOTICE:		a[3]	=	30
DO

If	you	do	not	need	to	know	index	values,	it’s	easier	to	iterate	directly	though	the	elements:

=>	DO	$$
DECLARE
				a	integer[]	:=	ARRAY[10,20,30];
				x	integer;
BEGIN
				FOREACH	x	IN	ARRAY	a	LOOP
								RAISE	NOTICE	'%',	x;
				END	LOOP;
END;
$$	LANGUAGE	plpgsql;

NOTICE:		10
NOTICE:		20
NOTICE:		30
DO

Index	iteration	in	a	two-dimensional	array:

=>	DO	$$
DECLARE
				--	double	square	brackets	are	optional
				a	integer[]	:=	ARRAY[
								ARRAY[10,	20,	30],
								ARRAY[100,200,300]
];
BEGIN
				FOR	i	IN	array_lower(a,1)..array_upper(a,1)	LOOP	--	over	rows
								FOR	j	IN	array_lower(a,2)..array_upper(a,2)	LOOP	--	over	columns
												RAISE	NOTICE	'a[%][%]	=	%',	i,	j,	a[i][j];
								END	LOOP;
				END	LOOP;
END;
$$	LANGUAGE	plpgsql;

NOTICE:		a[1][1]	=	10
NOTICE:		a[1][2]	=	20
NOTICE:		a[1][3]	=	30
NOTICE:		a[2][1]	=	100
NOTICE:		a[2][2]	=	200
NOTICE:		a[2][3]	=	300
DO

You	do	not	need	a	nested	loop	to	iterate	through	the	elements	of	a	two-dimensional	array:

=>	DO	$$
DECLARE
				a	integer[]	:=	ARRAY[
								ARRAY[10,	20,	30],
								ARRAY[100,200,300]
];
				x	integer;
BEGIN
				FOREACH	x	IN	ARRAY	a	LOOP
								RAISE	NOTICE	'%',	x;
				END	LOOP;
END;
$$	LANGUAGE	plpgsql;

NOTICE:		10
NOTICE:		20
NOTICE:		30
NOTICE:		100
NOTICE:		200
NOTICE:		300
DO

7

Arrays and Routines

Routines with a variable number of arguments
all optional parameters must be of the same type
optional parameters are passed to the routine as an array
the last parameter must be of an array type and declared VARIADIC

Polymorphic routines
support values of various types;
the actual type is defined at run time
use additional polymorphic pseudotypes anyarray and anynonarray
can have a variable number of parameters

Using arrays, you can create routines (functions and procedures) with a
variable number of parameters.

While parameters with the default values have to be explicitly specified in
routine declaration, optional parameters can be passed with no limit: they
are provided as an array. Consequently, all of them must be of the same
type.

The last parameter in routine declaration must be marked as VARIADIC;
it must be of an array type.

https://postgrespro.com/docs/postgresql/12/xfunc-sql#XFUNC-SQL-VARIA
DIC-FUNCTIONS

We have already mentioned polymorphic routines that can accept
parameters of various types. Routine declaration uses a special
polymorphic pseudotype, while the actual type is defined at run time based
on the type of the passed parameters.

There is a separate polymorphic type anyarray (and anynonarray for
non-arrays).

This type can be used when passing a variable number of arguments via
a VARIADIC parameter.

https://postgrespro.com/docs/postgresql/12/xfunc-sql#id-1.8.3.8.18

Arrays	and	Routines

When	discussing	polymorphism	and	overloading	as	part	of	the	“SQL.	Procedures”	lecture,	we	created	the	maximum
function	to	compare	three	numbers	and	find	the	greatest	one.	Now	let’s	generalize	this	function,	so	that	it	can	be	used
with	an	arbitrary	number	of	arguments.	For	this	purpose,	we’ll	declare	a	single	VARIADIC	parameter:

=>	CREATE	FUNCTION	maximum(VARIADIC	a	integer[])	RETURNS	integer
AS	$$
DECLARE
				x	integer;
				maxsofar	integer;
BEGIN
				FOREACH	x	IN	ARRAY	a	LOOP
								IF	x	IS	NOT	NULL	AND	(maxsofar	IS	NULL	OR	x	>	maxsofar)	THEN
												maxsofar	:=	x;
								END	IF;
				END	LOOP;
				RETURN	maxsofar;
END;
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	try	it	out:

=>	SELECT	maximum(12,	65,	47);

	maximum	

						65
(1	row)

=>	SELECT	maximum(12,	65,	47,	null,	87,	24);

	maximum	

						87
(1	row)

=>	SELECT	maximum(null,	null);

	maximum	

(1	row)

To	complete	this	illustration,	we	can	make	this	function	polymorphic	as	well,	so	that	it	takes	any	data	type	(which	supports
comparison	operators,	of	course).

Polymorphic	types	anyarray	and	anyelement	must	match	each	other:	anyarray	=	anyelement[];
The	variable	must	be	of	the	same	type	as	the	array	element.	But	it	cannot	be	declared	as	anyelement:	it	must	have
an	actual	type.	The	%TYPE	construct	helps	us	out	here.

=>	DROP	FUNCTION	maximum(integer[]);

DROP	FUNCTION

=>	CREATE	FUNCTION	maximum(VARIADIC	a	anyarray,	maxsofar	OUT	anyelement)
AS	$$
DECLARE
				x	maxsofar%TYPE;
BEGIN
				FOREACH	x	IN	ARRAY	a	LOOP
								IF	x	IS	NOT	NULL	AND	(maxsofar	IS	NULL	OR	x	>	maxsofar)	THEN
												maxsofar	:=	x;
								END	IF;
				END	LOOP;
END;
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	check	the	result:

=>	SELECT	maximum(12,	65,	47);

	maximum	

						65
(1	row)

=>	SELECT	maximum(12.1,	65.3,	47.6);

	maximum	

				65.3
(1	row)

Now	our	function	is	almost	completely	analogous	to	the	greatest	expression	provided	in	SQL.

9

An Array or a Table?

1 ... {A}

2 ... {B,C,D}

3 ... {A,C}

1 ...

2 ...

3 ...

1 1

2 2

2 3

2 4

3 1

3 3

a concise view
does not require joins
convenient in simple cases

separate tables:
many-to-many relationship
a universal solution

1 A ...

2 B ...

3 C ...

4 D ...

A traditional relational approach assumes that a table stores atomic values
(first normal form). The SQL language has no tools for peeking into
composite values.

That’s why a traditional approach consists in creating an additional table
connected to the main one by a many-to-many relationship.

Nevertheless, we can create a table with a column of an array type.
PostgreSQL offers a rich set of array functions; the search for an array
element can be sped up using special indexes (covered in the DEV2
course).

This approach can be convenient: we get a concise view that does not
require any joins. For example, arrays are extensively used in PostgreSQL
system catalog.

Which approach to choose depends on the goals and the operations
required. Take a look at the example in the demo.

An	Array	or	a	Table?

Imagine	that	we	are	designing	a	database	for	writing	a	blog.	The	blog	contains	some	posts,	and	we	would	like	to	tag	them.

The	traditional	approach	is	to	create	a	separate	table	for	tags.	For	example:

=>	CREATE	TABLE	posts(
				post_id	integer	PRIMARY	KEY,
				message	text
);

CREATE	TABLE

=>	CREATE	TABLE	tags(
				tag_id	integer	PRIMARY	KEY,
				name	text
);

CREATE	TABLE

Let’s	connect	posts	and	tags	by	a	many-to-many	relationship	via	an	additional	table:

=>	CREATE	TABLE	posts_tags(
				post_id	integer	REFERENCES	posts(post_id),
				tag_id	integer	REFERENCES	tags(tag_id)
);

CREATE	TABLE

Let’s	fill	our	tables	with	text	data:

=>	INSERT	INTO	posts(post_id,message)	VALUES
				(1,	'I	set	my	password	to	“incorrect”.'),
				(2,	'Your	future	is	whatever	you	make	it,	so	make	it	a	good	one.');

INSERT	0	2

=>	INSERT	INTO	tags(tag_id,name)	VALUES
				(1,	'my	past	and	thoughts'),	(2,	'technology'),	(3,	'family');

INSERT	0	3

=>	INSERT	INTO	posts_tags(post_id,tag_id)	VALUES
				(1,1),	(1,2),	(2,1),	(2,3);

INSERT	0	4

Now	we	can	display	posts	and	tags:

=>	SELECT	p.message,	t.name
FROM	posts	p
					JOIN	posts_tags	pt	ON	pt.post_id	=	p.post_id
					JOIN	tags	t	ON	t.tag_id	=	pt.tag_id
ORDER	BY	p.post_id,	t.name;

																											message																											|									name									
---+----------------------
	I	set	my	password	to	“incorrect”.																											|	my	past	and	thoughts
	I	set	my	password	to	“incorrect”.																											|	technology
	Your	future	is	whatever	you	make	it,	so	make	it	a	good	one.	|	family
	Your	future	is	whatever	you	make	it,	so	make	it	a	good	one.	|	my	past	and	thoughts
(4	rows)

Or	we	can	do	it	a	bit	differently	to	get	an	array	of	tags.	We	are	going	to	use	an	aggregate	function	for	this	purpose:

=>	SELECT	p.message,	array_agg(t.name	ORDER	BY	t.name)	tags
FROM	posts	p
				JOIN	posts_tags	pt	ON	pt.post_id	=	p.post_id
				JOIN	tags	t	ON	t.tag_id	=	pt.tag_id
GROUP	BY	p.post_id
ORDER	BY	p.post_id;

																											message																											|																tags																	
---+-------------------------------------
	I	set	my	password	to	“incorrect”.																											|	{"my	past	and	thoughts",technology}
	Your	future	is	whatever	you	make	it,	so	make	it	a	good	one.	|	{family,"my	past	and	thoughts"}
(2	rows)

We	can	find	all	posts	with	a	particular	tag:

=>	SELECT	p.message
FROM	posts	p
				JOIN	posts_tags	pt	ON	pt.post_id	=	p.post_id
				JOIN	tags	t	ON	t.tag_id	=	pt.tag_id
WHERE	t.name	=	'my	past	and	thoughts'
ORDER	BY	p.post_id;

																											message																											

	I	set	my	password	to	“incorrect”.
	Your	future	is	whatever	you	make	it,	so	make	it	a	good	one.
(2	rows)

We	may	also	need	to	find	all	the	unique	tags,	and	it	is	really	easy:

=>	SELECT	t.name
FROM	tags	t
ORDER	BY	t.name;

									name									

	family
	my	past	and	thoughts
	technology
(3	rows)

Now	let’s	try	another	approach	to	this	task.	Suppose	the	tags	are	stored	as	a	text	array	right	inside	the	table	with	posts.

=>	DROP	TABLE	posts_tags;

DROP	TABLE

=>	DROP	TABLE	tags;

DROP	TABLE

=>	ALTER	TABLE	posts	ADD	COLUMN	tags	text[];

ALTER	TABLE

There	are	no	tag	IDs,	but	we	don’t	really	need	them.

=>	UPDATE	posts	SET	tags	=	'{"my	past	and	thoughts","technology"}'
WHERE	post_id	=	1;

UPDATE	1

=>	UPDATE	posts	SET	tags	=	'{"my	past	and	thoughts","family"}'
WHERE	post_id	=	2;

UPDATE	1

Now	it’s	easier	to	display	all	posts:

=>	SELECT	p.message,	p.tags
FROM	posts	p
ORDER	BY	p.post_id;

																											message																											|																tags																	
---+-------------------------------------
	I	set	my	password	to	“incorrect”.																											|	{"my	past	and	thoughts",technology}
	Your	future	is	whatever	you	make	it,	so	make	it	a	good	one.	|	{"my	past	and	thoughts",family}
(2	rows)

It	is	also	easy	to	find	all	posts	with	the	same	tag	(using	the	intersection	operator	&&).

This	operation	can	be	sped	up	using	GIN	index,	and	the	query	won’t	require	searching	through	the	whole	table	of	posts.

=>	SELECT	p.message
FROM	posts	p
WHERE	p.tags	&&	'{"my	past	and	thoughts"}'
ORDER	BY	p.post_id;

																											message																											

	I	set	my	password	to	“incorrect”.
	Your	future	is	whatever	you	make	it,	so	make	it	a	good	one.
(2	rows)

But	it	is	quite	hard	to	get	the	list	of	all	tags.	It	requires	unnesting	all	the	tag	arrays	into	a	big	table,	and	the	search	for
unique	values	in	this	table	is	quite	resource-intensive.

=>	SELECT	DISTINCT	unnest(p.tags)	AS	name
FROM	posts	p;

									name									

	family
	technology
	my	past	and	thoughts
(3	rows)

We	can	clearly	see	data	duplication	here.

Thus,	both	approaches	have	the	right	to	be	applied.

In	simple	cases,	arrays	look	more	straightforward	and	work	well.

In	more	complex	scenarios	(imagine	that	we	would	like	to	store	the	date	of	tag	creation	together	with	its	name,	or	we	need
to	use	check	constraints),	the	traditional	approach	becomes	more	preferable.

11

Summary

An array consists of numbered elements of the same data type

A column with arrays is an alternative to a separate table:
it offers convenient operations on arrays and index support

Arrays enable you to create functions with a variable number
of arguments

12

Practice

1. Create an add_book function for adding a new book.

The function must take two parameters: the name of the book
and an array of author IDs. It must return the ID of the added
book.

Check that the application now allows adding books.

Task 1.
FUNCTION add_book(title text, authors integer[])
RETURNS integer

Task	1.	The	add_book	Function

=>	CREATE	OR	REPLACE	FUNCTION	add_book(title	text,	authors	integer[])
RETURNS	integer
AS	$$
DECLARE
				book_id	integer;
				id	integer;
				seq_num	integer	:=	1;
BEGIN
				INSERT	INTO	books(title)
								VALUES(title)
								RETURNING	books.book_id	INTO	book_id;
				FOREACH	id	IN	ARRAY	authors	LOOP
								INSERT	INTO	authorship(book_id,	author_id,	seq_num)
												VALUES	(book_id,	id,	seq_num);
								seq_num	:=	seq_num	+	1;
				END	LOOP;
				RETURN	book_id;
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

13

Practice

1. Implement a map function that takes two parameters:
array A of real numbers and the name of function F that takes a
single parameter of a real type.

The map function must apply function F to each element of
array A and return the result.

2. Implement a reduce function that takes two parameters:
an array of real numbers and the name of an auxiliary function
that takes two parameters of a real type.

The function must return a real number calculated by
sequentially folding the array from left to right.

3. Make map and reduce functions polymorphic.

Task 1. For example:
map(ARRAY[4.0,9.0],'sqrt') → ARRAY[2.0,3.0]

Task 2. For example:
reduce(ARRAY[1.0,3.0,2.0,0.5],'greatest') → 3.0

In this case, the value is calculated as follows:
greatest(greatest(greatest(1.0,3.0), 2.0), 0.5)

Task	1.	The	map	Function

=>	CREATE	DATABASE	plpgsql_arrays;

CREATE	DATABASE

=>	\c	plpgsql_arrays

You	are	now	connected	to	database	"plpgsql_arrays"	as	user	"student".

=>	CREATE	FUNCTION	map(a	INOUT	float[],	func	text)
AS	$$
DECLARE
				i	integer;
				x	float;
BEGIN
				IF	cardinality(a)	>	0	THEN
								FOR	i	IN	array_lower(a,1)..array_upper(a,1)	LOOP
												EXECUTE	format('SELECT	%I($1)',func)	USING	a[i]	INTO	x;
												a[i]	:=	x;
								END	LOOP;
				END	IF;
END;
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

INTO	a[i]	does	not	work	here,	so	we	need	a	separate	variable.

=>	SELECT	map(ARRAY[4.0,9.0,16.0],'sqrt');

			map			

	{2,3,4}
(1	row)

=>	SELECT	map(ARRAY[]::float[],'sqrt');

	map	

	{}
(1	row)

Here	is	another	implementation	that	uses	a	FOREACH	loop:

=>	CREATE	OR	REPLACE	FUNCTION	map(a	float[],	func	text)	RETURNS	float[]
AS	$$
DECLARE
				x	float;
				b	float[];	--	an	empty	array
BEGIN
				FOREACH	x	IN	ARRAY	a	LOOP
								EXECUTE	format('SELECT	%I($1)',func)	USING	x	INTO	x;
								b	:=	b	||	x;
				END	LOOP;
				RETURN	b;
END;
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	SELECT	map(ARRAY[4.0,9.0,16.0],'sqrt');

			map			

	{2,3,4}
(1	row)

=>	SELECT	map(ARRAY[]::float[],'sqrt');

	map	

(1	row)

Task	2.	The	reduce	Function

=>	CREATE	FUNCTION	reduce(a	float[],	func	text)	RETURNS	float
AS	$$
DECLARE
				i	integer;
				r	float	:=	NULL;
BEGIN
				IF	cardinality(a)	>	0	THEN
								r	:=	a[array_lower(a,1)];
								FOR	i	IN	array_lower(a,1)+1	..	array_upper(a,1)	LOOP
												EXECUTE	format('SELECT	%I($1,$2)',func)	USING	r,	a[i]
																INTO	r;
								END	LOOP;
				END	IF;
				RETURN	r;
END;
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Greatest	(just	like	least)	is	not	a	function;	it’s	a	built-in	conditional	expression,	so	we	cannot	use	it	directly	because	of
escaping:

=>	SELECT	reduce(ARRAY[1.0,3.0,2.0],	'greatest');

ERROR:		function	greatest(double	precision,	double	precision)	does	not	exist
LINE	1:	SELECT	"greatest"($1,$2)
															^
HINT:		No	function	matches	the	given	name	and	argument	types.	You	might	need	to	add	explicit	type	casts.
QUERY:		SELECT	"greatest"($1,$2)
CONTEXT:		PL/pgSQL	function	reduce(double	precision[],text)	line	9	at	EXECUTE

Instead,	let’s	use	the	maximum	function	implemented	as	part	of	the	demo.

=>	CREATE	FUNCTION	maximum(VARIADIC	a	anyarray,	maxsofar	OUT	anyelement)
AS	$$
DECLARE
				x	maxsofar%TYPE;
BEGIN
				FOREACH	x	IN	ARRAY	a	LOOP
								IF	x	IS	NOT	NULL	AND	(maxsofar	IS	NULL	OR	x	>	maxsofar)	THEN
												maxsofar	:=	x;
								END	IF;
				END	LOOP;
END;
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	SELECT	reduce(ARRAY[1.0,3.0,2.0],	'maximum');

	reduce	

						3
(1	row)

=>	SELECT	reduce(ARRAY[1.0],	'maximum');

	reduce	

						1
(1	row)

=>	SELECT	reduce(ARRAY[]::float[],	'maximum');

	reduce	

(1	row)

An	implementation	with	a	FOREACH	loop:

=>	CREATE	OR	REPLACE	FUNCTION	reduce(a	float[],	func	text)	RETURNS	float
AS	$$
DECLARE
				x	float;
				r	float;
				first	boolean	:=	true;

BEGIN
				FOREACH	x	IN	ARRAY	a	LOOP
								IF	first	THEN
												r	:=	x;
												first	:=	false;
								ELSE
												EXECUTE	format('SELECT	%I($1,$2)',func)	USING	r,	x	INTO	r;
								END	IF;
				END	LOOP;
				RETURN	r;
END;
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	SELECT	reduce(ARRAY[1.0,3.0,2.0],	'maximum');

	reduce	

						3
(1	row)

=>	SELECT	reduce(ARRAY[1.0],	'maximum');

	reduce	

						1
(1	row)

=>	SELECT	reduce(ARRAY[]::float[],	'maximum');

	reduce	

(1	row)

Task	3.	Polymorphic	Function	Flavors

The	map	function:

=>	DROP	FUNCTION	map(float[],text);

DROP	FUNCTION

=>	CREATE	FUNCTION	map(
				a	anyarray,
				func	text,
				elem	anyelement	DEFAULT	NULL
)
RETURNS	anyarray
AS	$$
DECLARE
				x	elem%TYPE;
				b	a%TYPE;
BEGIN
				FOREACH	x	IN	ARRAY	a	LOOP
								EXECUTE	format('SELECT	%I($1)',func)	USING	x	INTO	x;
								b	:=	b	||	x;
				END	LOOP;
				RETURN	b;
END;
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

We	need	a	dummy	parameter	of	the	anyelement	type	to	declare	a	variable	of	the	same	type	within	this	function.

=>	SELECT	map(ARRAY[4.0,9.0,16.0],'sqrt');

																											map																											

	{2.000000000000000,3.000000000000000,4.000000000000000}
(1	row)

=>	SELECT	map(ARRAY[]::float[],'sqrt');

	map	

(1	row)

Here	is	an	example	with	a	different	data	type:

=>	SELECT	map(ARRAY['	a	','		b','c		'],'btrim');

			map			

	{a,b,c}
(1	row)

The	reduce	function:

=>	DROP	FUNCTION	reduce(float[],text);

DROP	FUNCTION

=>	CREATE	FUNCTION	reduce(
				a	anyarray,
				func	text,
				elem	anyelement	DEFAULT	NULL
)
RETURNS	anyelement
AS	$$
DECLARE
				x	elem%TYPE;
				r	elem%TYPE;
				first	boolean	:=	true;
BEGIN
				FOREACH	x	IN	ARRAY	a	LOOP
								IF	first	THEN
												r	:=	x;
												first	:=	false;
								ELSE
												EXECUTE	format('SELECT	%I($1,$2)',func)	USING	r,	x	INTO	r;
								END	IF;
				END	LOOP;
				RETURN	r;
END;
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	CREATE	FUNCTION	add(x	anyelement,	y	anyelement)	RETURNS	anyelement
AS	$$
BEGIN
				RETURN	x	+	y;
END;
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	SELECT	reduce(ARRAY[1,-2,4],	'add');

	reduce	

						3
(1	row)

=>	SELECT	reduce(ARRAY['a','b','c'],	'concat');

	reduce	

	abc
(1	row)

