

Backup

Logical Backup

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Logical and physical backups

Backup and restore of separate tables

Backup and restore of separate databases

Backup and restore of the whole cluster

3

Logical Backup

SQL commands to create objects and fill them with data
+ backup of a separate object or a database

+ recovery on a different architecture or PostgreSQL version
+ (binary compatibility is not required)

+ ease of use

− modest operation speed

− no point-in-time recovery

A logical backup is a set of SQL commands that can restore the database
cluster (or a separate database/table) from scratch: it creates all the
required objects and fills them with data.

These commands can be run on a different server version (if it provides
compatibility at the command level) or on a different platform/architecture
(binary compatibility is not required).

In particular, a logical backup can be used for long-term storage: you can
restore it even after upgrading the server to a higher version.

The process of creating a logical backup is relatively easy. It is usually
enough to run a single command or launch a single utility.

But for large databases, the execution of these commands can take a very
long time. Using a logical backup, you can restore your database system
only to its state exactly at the time the process of taking a backup was
started.

https://postgrespro.com/docs/postgresql/12/backup-dump

4

Physical Backup

A copy of the database cluster’s file system
+ faster than logical backup

+ statistics are restored

− recovery is only possible on a compatible system, with the same
 PostgreSQL major version installed

− partial backup is impossible, the whole cluster is copied

WAL archive

+ point-in-time recovery is available

A physical backup implies creating a copy of all files related to the database
cluster, i.e., creating its full binary copy.

It is faster to copy files than dump SQL commands; besides, unlike restoring
a logical backup, starting a server using a physical copy is a matter of
several minutes. Another advantage is that you do not have to recollect
statistical data: it is also restored from a physical copy.

But this approach has its own shortcomings. A physical backup can be used
to restore the system only on a compatible platform (that has the same OS,
architecture, etc.) with the same PostgreSQL major version installed.
Besides, it is impossible to create a physical copy of a separate database:
you can only back up the whole database cluster.

Physical backups are usually used together with WAL archives. It enables
system recovery not only at the time of backup creation, but also at an
arbitrary point in time.

https://postgrespro.com/docs/postgresql/12/backup-file

https://postgrespro.com/docs/postgresql/12/continuous-archiving

Creating physical backups for any important production systems is a
common practice. It is the responsibility of a DBA to take such backups.

5

Making a Table Copy in SQL

YKS Yakutsk (129.770
MJZ Mirnyj (114.039
KHV Khabarovsk (135.188
PKC Petropavlovsk (1
UUS Yuzhno-Sakhalinsk (1
VVO Vladivostok (1
LED St. Petersburg (3
KGD Kaliningrad (2
KEJ Kemorovo (86.1072
CEK Chelyabinsk (6
MQF Magnetiogorsk (5
PEE Perm (56.0211
SGC Surgut (73.4018

=# COPY table TO 'file';

=# COPY table FROM 'file';

the file is located in the server file system and can be accessed by the owner of the
PostgreSQL instance
you can specify the columns to copy (or use an arbitrary query)
new rows are added to already existing ones during recovery

the format
is configurable

If you only need to save the contents of a single table, you can use the
COPY command.

The COPY TO flavor of this command enables you to save the table (or
some of its columns, or even the result of an arbitrary query) into a file,
display it in the terminal, or provide it as input to an application. You can also
specify some additional parameters, such as the format (plain text, CSV, or
binary), delimiter characters, text representation of NULL values, etc.

The COPY FROM flavor does the opposite: it reads data from a file or from
the terminal and inserts the retrieved rows into the table. The table is not
cleared in this case: new rows are simply appended to the already existing
ones.

The COPY command is much faster than the analogous INSERT commands:
the client does not have to access the server multiple times, and the server
does not have to repeatedly analyze the received commands.

Here is a subtle point: the COPY FROM command ignores the defined rules,
although integrity constraints and triggers are respected.

https://postgrespro.com/docs/postgresql/12/sql-copy

6

Making a Table Copy in psql

YKS Yakutsk (129.770
MJZ Mirnyj (114.039
KHV Khabarovsk (135.188
PKC Petropavlovsk (1
UUS Yuzhno-Sakhalinsk (1
VVO Vladivostok (1
LED St. Petersburg (3
KGD Kaliningrad (2
KEJ Kemorovo (86.1072
CEK Chelyabinsk (6
MQF Magnetiogorsk (5
PEE Perm (56.0211
SGC Surgut (73.4018

=# \copy table to 'file'

=# \copy table from 'file'

the file is located in the client file system and can be accessed by the OS user who
has started psql
the data is transferred between the client and the server
the syntax and the supported features are analogous to those provided by COPY

The psql utility provides a client version of the COPY command with a similar
syntax.

The file name provided in the COPY command corresponds to the file on the
database server. The user on whose behalf PostgreSQL is started (usually
postgres) must have access to this file.

The client implementation of this command refers to the file located on the
client, which allows keeping a local copy of data even if there is no access
to the server file system. The table contents is automatically sent between
the client and the server.

https://postgrespro.com/docs/postgresql/12/app-psql

The	COPY	Command

Let’s	create	a	database	and	a	table.

=>	CREATE	DATABASE	db1;

CREATE	DATABASE

=>	\c	db1

You	are	now	connected	to	database	"db1"	as	user	"student".

=>	CREATE	TABLE	t(
				id	integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY,
				s	text
);

CREATE	TABLE

=>	INSERT	INTO	t(s)	VALUES	('Hello,	world!'),	(''),	(NULL);

INSERT	0	3

Here	is	the	output	of	the	COPY	command	(we’ll	display	it	in	the	terminal	instead	of	saving	it	into	a	file):

=>	COPY	t	TO	stdout;

1	 Hello,	world!
2	
3	 \N

You	can	see	the	difference	between	empty	rows	and	null	values	in	the	output.

The	output	format	is	quite	flexible.	You	can	change	the	delimiter	symbol,	null	value	representation,	etc.	For	example:

=>	COPY	t	TO	stdout	WITH	(null	'<NULL>',	delimiter	',');

1,Hello\,	world!
2,
3,<NULL>

Note	that	the	delimiter	inside	the	row	has	been	escaped	(the	escape	symbol	is	also	configurable).

Instead	of	the	table	name,	you	can	specify	an	arbitrary	query.

=>	COPY	(SELECT	*	FROM	t	WHERE	s	IS	NOT	NULL)	TO	stdout;

1	 Hello,	world!
2	

This	way,	you	can	save	the	result	of	a	query,	the	contents	of	a	view,	etc.

This	command	can	also	return	the	output	in	the	CSV	format,	which	is	supported	by	many	programs.

=>	COPY	t	TO	stdout	WITH	(format	csv);

1,"Hello,	world!"
2,""
3,

Data	input	from	a	file	or	from	the	terminal	works	quite	similar	to	data	output.

The	input	from	the	terminal	requires	an	end-of-file	indicator:	a	backslash	followed	by	a	dot.	It	is	not	required	for	a	regular
file.

All	parameters	provided	on	input	must	match	those	specified	on	output.

=>	TRUNCATE	TABLE	t;

TRUNCATE	TABLE

=>	COPY	t	FROM	stdin;
1		 Hello,	world!
2	
3	 \N
\.

COPY	3

Here	is	what	has	been	loaded	into	the	table	(psql	is	configured	to	display	null	values	for	visual	clarity):

=>	\pset	null	'\\N'

Null	display	is	"\N".

=>	SELECT	*	FROM	t;

	id	|							s							
----+---------------
		1	|	Hello,	world!
		2	|	
		3	|	\N
(3	rows)

8

A Database Backup

--
-- PostgreSQL database dum
--

-- Dumped from database ve
-- Dumped by pg_dump versi

SET statement_timeout = 0;
SET lock_timeout = 0;
SET
idle_in_transaction_sessio
SET client_encoding = 'UTF
SET standard_conforming_st

$ pg_dump -d database -f file

$ psql -f file

format: SQL commands
you can specify the database objects to be dumped
the new database must be cloned from template0

roles and tablespaces must be created in advance
it makes sense to perform ANALYZE after recovery

To create a full-fledged backup of a database, use the pg_dump utility.

If you omit the file name (-f, --file), the utility’s output will be displayed in the
terminal. The produced output is a script to be run in psql; it contains the
commands that will create the required objects and fill them with data.

You can use optional parameters to limit the set of backed up objects: for
example, you can choose to back up only particular tables, objects in
particular schemas, or use some other filters.

To restore the objects from the backup, it is enough to run the received
script in psql.

Note that the database to be restored should be cloned from template0
since all the changes made in template1 will also make it into the backup.

Besides, all the required roles and tablespaces must be set up in advance.
Since these objects do not belong to any particular database, they won’t be
included into the dump.

Once the database is restored, it makes sense to run the ANALYZE
command: it will collect statistics that the optimizer requires for query
planning.

https://postgrespro.com/docs/postgresql/12/app-pgdump

9

The custom Format

;
; Archive created at 2017-
; dbname: demo
; TOC Entries: 146
; Compression: -1
; Dump Version: 1.12-0
; Format: CUSTOM
;
; Selected TOC Entries:
;
2297; 1262 475453 DATABASE
5; 2615 475454 SCHEMA - bo
2298; 0 0 COMMENT - SCHEMA

$ pg_dump -d database -F c -f file

$ pg_restore -d database -j N file

an internal format with a table of contents (TOC)
database objects to be restored can be selected at the time of recovery
recovery can be performed in the parallel mode

The pg_dump utility allows you to specify the backup format. By default, the
plain format is used; it provides pure psql commands.

The custom format (-F c, --format=custom) creates a backup in a special
format that contains not only the backed up objects, but also a table of
contents (TOC). Having a TOC allows you to choose the objects to be
restored right at the time of recovery, not while making the dump.

By default, the output of the custom format is compressed.

To restore the database, you need to run another utility: pg_restore.
It reads the file and converts it to psql commands. If you do not explicitly
provide the database name (in the -d option), all commands will be output
to the terminal. If the database is specified, pg_restore will connect to this
database and execute the commands; you won’t have to start psql.

To restore only some of the objects, you can use one of the following
approaches. The first one is to filter the objects to be restored, just like it is
done in pg_dump. In fact, pg_restore supports many pg_dump parameters.

The second option is to use the TOC to retrieve the list of objects included
into the backup (via the --list option). Then you can edit this list manually:
delete the objects you do not need and pass the modified list to pg_restore
(via the --use-list option).

https://postgrespro.com/docs/postgresql/12/app-pgrestore.html

10

The directory Format

 $ pg_dump -d database -F d -j N -f directory

$ pg_restore -d database -j N directory

the directory contains a separate file for each database object and a TOC
database objects to be restored can be selected at the time of recovery
both dump and restore operations can be performed in the parallel mode

a common data
snapshot guarantees

 data consistency

You can also create backups in the directory format. In this case, pg_dump
produces a whole directory instead of a single file; it contains the backed up
objects and the table of contents. By default, all files in the directory are
compressed.

Its advantage over the custom format is that such a backup can be created
concurrently using several processes (the number of processes is specified
in option -j, --jobs).

Naturally, the backup will contain consistent data even though it has been
created concurrently. Consistency is ensured by using a single data
snapshot for all parallel processes.

https://postgrespro.com/docs/postgresql/12/functions-admin.html#FUNCTIO
NS-SNAPSHOT-SYNCHRONIZATION

Data recovery can also be performed in the parallel mode (it is also
supported for the custom format).

Other capabilities are quite similar to those provided by the previously
discussed formats: the directory format supports the same options and
approaches.

11

Format Comparison

plain custom directory tar

recovery
utility psql pg_restore

compression zlib

partial restore yes yes yes

parallel backup yes

parallel restore yes yes

This slide compares different features provided by different backup formats.

Note that there is also one more format available: tar. We do not cover it
here as it does not bring anything new and has no advantages as compared
to other formats. In fact, this format is simply a tar-ed version of the directory
format, but it does not support compression or parallel execution.

The	pg_dump	Utility

If	started	without	optional	parameters,	pg_dump	utility	outputs	SQL	commands	that	recreate	all	objects	of	the	database:

student$	pg_dump	-d	db1

--
--	PostgreSQL	database	dump
--

--	Dumped	from	database	version	12.8	(Ubuntu	12.8-1.pgdg20.04+1)
--	Dumped	by	pg_dump	version	12.8	(Ubuntu	12.8-1.pgdg20.04+1)

SET	statement_timeout	=	0;
SET	lock_timeout	=	0;
SET	idle_in_transaction_session_timeout	=	0;
SET	client_encoding	=	'UTF8';
SET	standard_conforming_strings	=	on;
SELECT	pg_catalog.set_config('search_path',	'',	false);
SET	check_function_bodies	=	false;
SET	xmloption	=	content;
SET	client_min_messages	=	warning;
SET	row_security	=	off;

SET	default_tablespace	=	'';

SET	default_table_access_method	=	heap;

--
--	Name:	t;	Type:	TABLE;	Schema:	public;	Owner:	student
--

CREATE	TABLE	public.t	(
				id	integer	NOT	NULL,
				s	text
);

ALTER	TABLE	public.t	OWNER	TO	student;

--
--	Name:	t_id_seq;	Type:	SEQUENCE;	Schema:	public;	Owner:	student
--

ALTER	TABLE	public.t	ALTER	COLUMN	id	ADD	GENERATED	ALWAYS	AS	IDENTITY	(
				SEQUENCE	NAME	public.t_id_seq
				START	WITH	1
				INCREMENT	BY	1
				NO	MINVALUE
				NO	MAXVALUE
				CACHE	1
);

--
--	Data	for	Name:	t;	Type:	TABLE	DATA;	Schema:	public;	Owner:	student
--

COPY	public.t	(id,	s)	FROM	stdin;
1	 Hello,	world!
2	
3	 \N
.

--
--	Name:	t_id_seq;	Type:	SEQUENCE	SET;	Schema:	public;	Owner:	student
--

SELECT	pg_catalog.setval('public.t_id_seq',	3,	true);

--
--	Name:	t	t_pkey;	Type:	CONSTRAINT;	Schema:	public;	Owner:	student
--

ALTER	TABLE	ONLY	public.t
				ADD	CONSTRAINT	t_pkey	PRIMARY	KEY	(id);

--
--	PostgreSQL	database	dump	complete
--

As	you	can	see,	pg_dump	has	created	table	t,	enabled	automatic	ID	generation,	filled	the	table	with	data	using	the	already
discussed	COPY	command,	and	finally	added	the	primary	key	constraint.	The	--column-inserts	option	allows	using	INSERT
commands,	but	the	restore	operation	will	take	much	longer.

Let’s	take	a	look	at	some	useful	options.

These	options	can	help	you	restore	a	copy	on	a	system	with	a	different	set	of	roles:

-O,	--no-owner	-	do	not	generate	commands	that	set	object	ownership;
-x,	--no-acl	-	do	not	generate	commands	for	granting	privileges.

These	options	are	useful	for	partial	dump/restore	operations:

-s,	--schema-only	-	dump	only	object	definitions	without	actual	data;
-a,	--data-only	-	dump	only	data	without	creating	any	objects.

The	first	parameter	of	the	following	two	is	used	to	restore	a	backup	on	a	system	that	already	contains	some	data;	the	second
one	should	be	used	on	a	clean	system:

-c,	--clean	-	generate	DROP	commands	for	the	created	objects;
-C,	--create	-	generate	commands	to	create	the	database	and	to	connect	to	this	database.

An	important	note:	all	changes	made	in	the	template1	database	also	make	it	into	the	dump.	So	it	is	better	to	restore	the	backup
on	a	database	cloned	from	template0.	The	--create	option	automatically	takes	it	into	account:

student$	pg_dump	--create	-d	db1	|	grep	'CREATE	DATABASE'

CREATE	DATABASE	db1	WITH	TEMPLATE	=	template0	ENCODING	=	'UTF8'	LC_COLLATE	=	'en_US.UTF-8'	LC_CTYPE	=	'en_US.UTF-8';

There	are	several	options	for	filtering	objects	that	must	be	included	into	the	backup:

-n,	--schema	-	a	pattern	for	schema	names;
-t,	--table	-	a	pattern	for	table	names.

And	vice	versa,	the	following	options	can	be	used	to	backup	everything	except	the	specified	objects:

-N,	--exclude-schema	-	a	pattern	for	schema	names;
-T,	--exclude-table	-	a	pattern	for	table	names.

For	example,	let’s	restore	table	t	in	a	different	database.

=>	CREATE	DATABASE	db2;

CREATE	DATABASE

student$	pg_dump	--table=t	-d	db1	|	psql	-d	db2

SET
SET
SET
SET
SET
	set_config	

(1	row)

SET
SET
SET
SET
SET
SET
CREATE	TABLE
ALTER	TABLE
ALTER	TABLE
COPY	3
	setval	

						3
(1	row)

ALTER	TABLE

Now	let’s	connect	to	database	db2	and	check	the	result:

=>	\c	db2

You	are	now	connected	to	database	"db2"	as	user	"student".

=>	SELECT	*	FROM	t;

	id	|							s							
----+---------------
		1	|	Hello,	world!
		2	|	
		3	|	\N
(3	rows)

The	pg_dump	Utility:	Custom	Format

A	major	limitation	of	the	plain	format	is	that	the	objects	to	back	up	must	be	selected	at	the	time	of	taking	the	dump.	The
custom	format	allows	you	to	first	create	a	full	copy	and	then	select	the	objects	to	restore.

student$	pg_dump	--format=custom	-d	db1	-f	/home/student/db1.custom

To	restore	objects	from	such	a	backup	you	can	use	the	pg_restore	utility.	Let’s	restore	table	t	once	again.

=>	DROP	TABLE	t;

DROP	TABLE

You	can	omit	the	backup	format	parameter:	the	utility	will	recognize	it	anyway.

The	pg_restore	utility	can	take	the	same	filtering	options	as	pg_dump,	and	even	more:

-I,	--index	-	restore	the	specified	indexes;
-P,	--function	-	restore	the	specified	functions;
-T,	--trigger	-	restore	the	specified	triggers.

student$	pg_restore	--table=t	-d	db2	/home/student/db1.custom

=>	SELECT	*	FROM	t;

	id	|							s							
----+---------------
		1	|	Hello,	world!
		2	|	
		3	|	\N
(3	rows)

Here	is	another	example:	let’s	restore	the	whole	db1	database	in	its	initial	state.

=>	DROP	DATABASE	db1;

DROP	DATABASE

The	-d	option	is	used	to	specify	any	existing	database;	if	the	--create	option	is	provided,	pg_restore	will	automatically	create	the
database	specified	in	the	archive	and	connect	to	it.

student$	pg_restore	--create	-d	student	/home/student/db1.custom

Let’s	check	the	result:

=>	\c	db1

You	are	now	connected	to	database	"db1"	as	user	"student".

=>	SELECT	*	FROM	t;

	id	|							s							
----+---------------
		1	|	Hello,	world!
		2	|	
		3	|	\N
(3	rows)

A	backup	in	the	plain	format	can	be	modified	in	a	text	editor,	if	required.	A	backup	in	the	custom	format	is	stored	in	a	binary
format,	but	it	provides	wider	capabilities	for	filtering	objects	than	the	options	discussed	above.	The	pg_restore	utility	can
produce	the	list	of	all	objects,	i.e.,	the	table	of	contents	of	the	backup:

student$	pg_restore	--list	/home/student/db1.custom

;
;	Archive	created	at	2021-10-19	17:04:51	MSK
;					dbname:	db1
;					TOC	Entries:	9
;					Compression:	-1
;					Dump	Version:	1.14-0
;					Format:	CUSTOM
;					Integer:	4	bytes

;					Offset:	8	bytes
;					Dumped	from	database	version:	12.8	(Ubuntu	12.8-1.pgdg20.04+1)
;					Dumped	by	pg_dump	version:	12.8	(Ubuntu	12.8-1.pgdg20.04+1)
;
;
;	Selected	TOC	Entries:
;
203;	1259	16944	TABLE	public	t	student
202;	1259	16942	SEQUENCE	public	t_id_seq	student
2962;	0	16944	TABLE	DATA	public	t	student
2969;	0	0	SEQUENCE	SET	public	t_id_seq	student
2834;	2606	16951	CONSTRAINT	public	t	t_pkey	student

You	can	save	this	list	into	a	file,	edit	it,	and	use	it	to	perform	recovery	via	the	--use-list	option.

The	pg_dump	Utility:	Directory	Format

The	directory	format	is	worth	noting	because	it	allows	you	to	perform	the	recovery	in	several	parallel	threads.	Data	consistency
is	guaranteed:	all	the	threads	will	be	using	one	and	the	same	data	snapshot.

student$	pg_dump	--format=directory	--jobs=2	-d	db1	-f	/home/student/db1.directory

Let’s	take	a	look	inside	the	directory:

student$	ls	-l	/home/student/db1.directory

total	8
-rw-rw-r--	1	student	student			49	Oct	19	17:04	2961.dat.gz
-rw-rw-r--	1	student	student	1995	Oct	19	17:04	toc.dat

It	contains	the	table	of	contents	file	and	one	file	per	each	object	to	be	restored	(we	have	only	one	object	here):

student$	zcat	/home/student/db1.directory/2961.dat.gz

1	 Hello,	world!
2	
3	 \N
.

Let’s	restore	the	db1	database	from	a	backup	using	two	threads.

Here	we	have	to	add	the	--clean	option	to	generate	a	command	that	will	drop	the	database,	because	db1	already	exists.	You
must	first	disconnect	from	db1:

=>	\c	db2

You	are	now	connected	to	database	"db2"	as	user	"student".

student$	pg_restore	--clean	--create	--jobs=2	-d	student	/home/student/db1.custom

13

A Database Cluster Backup

--
-- PostgreSQL database clu
--

SET default_transaction_re
SET client_encoding = 'UTF
SET standard_conforming_st

--
-- Roles
--

CREATE ROLE postgres;

$ pg_dumpall -f file

$ psql -f file

format: SQL commands
dumps the whole cluster, including roles and tablespaces
the user must have access to all objects of the database cluster
parallel backups are not supported

To back up the whole cluster, including roles and tablespaces, you can use
the pg_dumpall utility.

Since pg_dumpall requires access to all objects of all databases, it make
sense to run it on behalf of a superuser. The utility connects to each
database and dumps their contents using pg_dump. Besides, it also saves
cluster-wide data.

To start this process, pg_dumpall has to establish a connection with any
available database. By default, either postgres or template1 is selected,
but you can also specify a different database.

The pg_dumpall utility produces a psql script. This is the only supported
format. It means that pg_dumpall cannot perform parallel dumps, and it can
turn out to be a problem for large volumes of data. In this case, you can use
the --globals-only option to dump only roles and tablespaces, while all
databases will be dumped separately using pg_dump in the parallel mode.

https://postgrespro.com/docs/postgresql/12/app-pg-dumpall

The	pg_dumpall	Utility

While	the	pg_dump	utility	is	good	for	dumping	a	single	database,	it	cannot	dump	common	cluster	objects,	such	as	roles	or	tablespaces.	To	take	a	full	backup	of	a
cluster,	you	have	to	use	pg_dumpall.

None	of	the	utilities	covered	in	this	lecture	require	any	specific	privileges,	but	the	role	that	runs	them	must	have	the	right	to	read	(or	create)	all	the	affected	objects.
For	example,	pg_dump	can	be	run	by	the	database	owner.	But	to	back	up	the	whole	cluster,	the	pg_dumpall	utility	must	have	access	to	all	the	databases,	so	you
should	use	a	role	with	superuser	privileges.

student$	pg_dumpall	--clean	-f	/home/student/main.sql

The	cluster	backup	also	includes	such	commands	as:

student$	grep	'ROLE'	main.sql

DROP	ROLE	buyer;
DROP	ROLE	employee;
DROP	ROLE	postgres;
DROP	ROLE	student;
CREATE	ROLE	buyer;
ALTER	ROLE	buyer	WITH	NOSUPERUSER	INHERIT	NOCREATEROLE	NOCREATEDB	LOGIN	NOREPLICATION	NOBYPASSRLS	PASSWORD	'md546cbf9abe0323700ba0e419091271507';
CREATE	ROLE	employee;
ALTER	ROLE	employee	WITH	NOSUPERUSER	INHERIT	NOCREATEROLE	NOCREATEDB	LOGIN	NOREPLICATION	NOBYPASSRLS	PASSWORD	'md59c0967753a201ecde21ef29efa514761';
CREATE	ROLE	postgres;
ALTER	ROLE	postgres	WITH	SUPERUSER	INHERIT	CREATEROLE	CREATEDB	LOGIN	REPLICATION	BYPASSRLS	PASSWORD	'md53175bce1d3201d16594cebf9d7eb3f9d';
CREATE	ROLE	student;
ALTER	ROLE	student	WITH	SUPERUSER	INHERIT	NOCREATEROLE	NOCREATEDB	LOGIN	NOREPLICATION	NOBYPASSRLS	PASSWORD	'md550d9482e20934ce6df0bf28941f885bc';

Recovery	is	performed	using	psql;	this	is	the	only	supported	format.	Here	is	the	restore	command	(we	are	not	going	to	run	it):

student$	psql	-f	main.sql

During	recovery,	you	might	see	some	errors	caused	by	already	existing	objects.	It’s	OK	in	most	cases:	such	errors	usually	do	not	interfere	with	the	recovery	process,
although	you	should	still	analyze	all	messages	to	be	on	the	safe	side.

15

Summary

Logical backups can be taken for the whole cluster, a particular
database, or separate database objects

Are good for
small amounts of data
long-term storage during which the server can been upgraded
migration to a different platform

Are not so good for
crash recovery with minimal data loss

16

Practice

1. Back up the bookstore database in the custom format.

“Accidentally” empty the authorship table. Check that the
application has stopped displaying book titles in “Bookstore,”
“Books,” and “Catalog” tabs.

Use the created backup to restore the lost data.

Check that normal operation of the bookstore is restored.

Task 1. Use the --data-only option for the restore operation as an attempt to
create a table will result in an error.

Task	1.	Data	Recovery

Create	a	backup:

student$	pg_dump	--format=custom	-d	bookstore	>	/home/student/bookstore.custom

Delete	some	rows:

=>	DELETE	FROM	authorship;

DELETE	10

Perform	the	recovery:

student$	pg_restore	-t	authorship	--data-only	-d	bookstore	/home/student/bookstore.custom

=>	SELECT	count(*)	FROM	authorship;

	count	

				10
(1	row)

17

Practice

1. Create a table with a policy that allows reading only some of the
rows. Create an unprivileged role for Alice and grant her access
to this table.

Alice is responsible for creating table backups. Can she do it
without superuser rights? Try it out.

2. The \copy command provided by psql enables you to pass the
result as input to an arbitrary application. Use this capability to
open the result of some query in the Calc spreadsheet of
LibreOffice.

Task 1. While superuser roles bypass RLS policies, Alice won’t be able to
access some of the table rows, without even knowing that the received data
is incomplete.

If the row_security parameter is set, Alice will be notified that some data has
not been selected. Granting the BYPASSRLS privilege to this role will solve
the problem.

Task 2. The command must save the result into a file and then start
libreoffice with this file passed as a parameter. The file must be saved in the
CSV format.

Naturally, this approach is platform-dependent and will require modifications,
say, on Windows.

Task	1.	Row-Level	Security	Policies

Create	a	table	with	a	policy	and	a	role.

=>	CREATE	DATABASE	backup_logical;

CREATE	DATABASE

=>	\c	backup_logical

You	are	now	connected	to	database	"backup_logical"	as	user	"student".

=>	CREATE	TABLE	t(
				id	integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY,
				s	text
);

CREATE	TABLE

=>	INSERT	INTO	t(s)	VALUES	('foo'),	('bar'),	('baz');

INSERT	0	3

=>	CREATE	POLICY	odd	ON	t	USING	(mod(id,2)	=	1);

CREATE	POLICY

=>	ALTER	TABLE	t	ENABLE	ROW	LEVEL	SECURITY;

ALTER	TABLE

=>	CREATE	ROLE	alice	LOGIN	PASSWORD	'alicepass';

CREATE	ROLE

=>	GRANT	SELECT	ON	t	TO	alice;

GRANT

Alice	tries	to	access	the	table:

student$	psql	"host=localhost	user=alice	dbname=backup_logical	password=alicepass"

alice=>	COPY	t	TO	stdout;	--	or	SELECT	*	FROM	t;

1	 foo
3	 baz

With	the	row_security	parameter	set	to	off,	Alice	will	get	an	error	if	policies	forbid	her	access	to	some	of	the	rows:

alice=>	SET	row_security	=	off;

SET

alice=>	COPY	t	TO	stdout;

ERROR:		query	would	be	affected	by	row-level	security	policy	for	table	"t"

To	bypass	RLS	policies	as	a	non-superuser,	Alice	has	to	receive	the	BYPASSRLS	attribute:

=>	ALTER	ROLE	alice	BYPASSRLS;

ALTER	ROLE

alice=>	COPY	t	TO	stdout;

1	 foo
2	 bar
3	 baz

Task	2.	Opening	Query	Results	in	LibreOffice

Try	this	command:

\copy	t	TO	PROGRAM	'cat	>	/home/student/t.csv;	libreoffice	/home/student/t.csv'	WITH	(format	csv);

If	you	replace	\copy	with	the	COPY	command	available	in	SQL,	the	program	will	be	started	on	the	database	server,	which
is	certainly	incorrect.

