

PL/pgSQL

Cursors

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Motivation

Declaration and opening

Operations with cursors

Loops over cursors and query results

Passing a cursor to clients

3

Motivation

A cursor implies iterative processing
a full result set takes too much memory
only some part of the result set is needed, but its size is unknown in advance
it is required to allow the client to control the selection
row-by-row processing is really needed (such cases are quite rare)

We have already learned about the concept of cursors in “Architecture.
A General Overview of PostgreSQL.” In that lecture, cursors were
presented as a server feature, and we explained how to access them using
SQL. Now let’s talk about how to use cursors in the PL/pgSQL language.

Why do we need cursors at all? SQL is a declarative language; first and
foremost, it is designed to work with sets of rows, which is its strength and
advantage. Being a procedural language, PL/pgSQL has to work with data
row by row, using explicit loops. It can be achieved via cursors.

For example, a full SELECT result сan take too much memory, so it has to
be processed piece by piece. Or the size of the result set is unknown in
advance, i.e., it is required to stop the query at some point. Or control over
the query has to be delegated to the client.

(However, we would like to emphasize once again that although such row-
by-row processing may be really required from time to time, the same
outcome can often be achieved using pure SQL; as a result, the code will
become simpler and will work faster.)

4

Declaration and Opening

Unbound cursor variables
a variable of the refcursor type is declared

the actual query is specified when the cursor is being opened

Bound cursor variables
the query is specified at declaration time (parameters are also allowed)
the actual parameter values are passed when the cursor is being opened

Distinctive features
the value of the cursor variable is set to the cursor name
(can be specified explicitly or generated automatically)
PL/pgSQL variables become implicit parameters in the query (their values
are filled in when the cursor is being opened)
the query is prepared

Unsupported in SQL

As we have seen, SQL uses a single DECLARE command that both declares
and opens a cursor. In PL/pgSQL, these are two different steps. Besides,
there are so-called cursor variables that are used for cursor access. These
variables have the refcursor type and virtually contain the name of the
cursor (if you do not provide this name explicitly, PL/pgSQL ensures that it
is unique).

A cursor variable can be declared without being bound to a particular query.
Then you have to specify the query at the cursor’s opening time.

Alternatively, you can specify the query (including parameters) when
declaring a variable. Then you’ll only have to pass actual parameter values
when opening the cursor.

These methods are equivalent; which one to use is a matter of taste. In both
cases, a query can have implicit parameters, which are derived from
PL/pgSQL variables.

As noted above, a query opened with a cursor is prepared automatically.

https://postgrespro.com/docs/postgresql/12/plpgsql-cursors#PLPGSQL-CU
RSOR-DECLARATIONS

https://postgrespro.com/docs/postgresql/12/plpgsql-cursors#PLPGSQL-CU
RSOR-OPENING

Declaration	and	Opening

Let’s	create	a	table:

=>	CREATE	TABLE	t(id	integer,	s	text);

CREATE	TABLE

=>	INSERT	INTO	t	VALUES	(1,	'One'),	(2,	'Two'),	(3,	'Three');

INSERT	0	3

An	unbound	variable:

=>	DO	$$
DECLARE
				--	declare	a	variable
				cur	refcursor;
BEGIN
				--	bind	the	variable	to	a	query	and	open	a	cursor
				OPEN	cur	FOR	SELECT	*	FROM	t;
END;
$$;

DO

A	bound	variable:	the	query	is	already	specified	at	the	declaration	stage.	The	cur	variable	still	has	the	same	type:
refcursor.

=>	DO	$$
DECLARE
				--	declare	and	bind	a	variable
				cur	CURSOR	FOR	SELECT	*	FROM	t;
BEGIN
				--	open	a	cursor
				OPEN	cur;
END;
$$;

DO

If	a	variable	is	bound,	the	corresponding	query	can	have	parameters.

Note	how	naming	ambiguities	are	resolved	in	the	next	two	examples.

=>	DO	$$
DECLARE
				--	declare	and	bind	a	variable
				cur	CURSOR(id	integer)	FOR	SELECT	*	FROM	t	WHERE	t.id	=	cur.id;
BEGIN
				--	open	a	cursor	with	actual	parameters	specified
				OPEN	cur(1);
END;
$$;

DO

PL/pgSQL	variables	are	also	(implicit)	parameters	of	the	cursor.

=>	DO	$$
<<local>>
DECLARE
				id	integer	:=	3;
				--	declare	and	bind	a	variable
				cur	CURSOR	FOR	SELECT	*	FROM	t	WHERE	t.id	=	local.id;
BEGIN
				id	:=	1;
				--	open	a	cursor	(the	id	value	is	bound	at	this	moment)
OPEN	cur;
END;
$$;

DO

Apart	from	the	SELECT	command,	a	query	can	also	be	formed	by	any	other	command	that	returns	a	result	(such	as
INSERT,	UPDATE,	DELETE	with	the	RETURNING	clause).

6

Operations with Cursors

Fetching
row-by-row only

Accessing the current row of the cursor
is supported only for simple queries
(one table, no grouping or sorting)

Processing is usually performed in a loop
a FOR loop over a cursor

a FOR loop over a query without an explicitly declared cursor

Closing
explicitly or automatically at transaction end

In SQL,
DECLARE

WITH HOLD

In SQL,
selection size is

configurable

PL/pgSQL allows fetching data from a cursor row by row only. It is done via
the FETCH INTO command.

If the query is simple enough (it works with one table, without grouping or
sorting), it is possible to access the current row of the cursor in such
commands as UPDATE or DELETE.

Procedural processing implies looping through data. The rows returned by a
cursor can be iterated through and processed using control commands that
are already familiar to us. But since such loops are required quite often,
PL/pgSQL offers a special FOR command that implements them. We have
already seen an integer flavor of FOR in the “PL/pgSQL. Overview and
Programming Structures” lecture; this one works with cursors. Moreover,
there is one more flavor of the FOR loop that does not require cursor
declaration at all: the query is specified in the command itself.

A cursor can be explicitly closed by a CLOSE command, but it will be closed
anyway once the transaction is complete (in SQL, a cursor can remain open
even after the transaction has finished if you have specified WITH HOLD).

https://postgrespro.com/docs/postgresql/12/plpgsql-cursors#PLPGSQL-CU
RSOR-USING

https://postgrespro.com/docs/postgresql/12/plpgsql-cursors#PLPGSQL-CU
RSOR-FOR-LOOP

Cursor	Operations

The	current	row	is	read	from	the	cursor	by	the	FETCH	command.	To	get	to	the	next	row,	you	can	use	MOVE.

What	will	be	displayed	on	the	screen?

=>	DO	$$
DECLARE
				cur	refcursor;
				rec	record;	--	you	can	also	use	several	scalar	variables
BEGIN
				OPEN	cur	FOR	SELECT	*	FROM	t	ORDER	BY	id;
				MOVE	cur;
				FETCH	cur	INTO	rec;
				RAISE	NOTICE	'%',	rec;
				CLOSE	cur;
END;
$$;

NOTICE:		(2,Two)
DO

Data	selection	is	usually	performed	in	a	loop,	which	can	be	set	up	as	follows:

=>	DO	$$
DECLARE
				cur	refcursor;
				rec	record;
BEGIN
				OPEN	cur	FOR	SELECT	*	FROM	t;
				LOOP
								FETCH	cur	INTO	rec;
								EXIT	WHEN	NOT	FOUND;	--	FOUND:	is	the	next	row	selected?
								RAISE	NOTICE	'%',	rec;
				END	LOOP;
				CLOSE	cur;
END;
$$;

NOTICE:		(1,One)
NOTICE:		(2,Two)
NOTICE:		(3,Three)
DO

But	to	avoid	writing	multiple	commands,	you	can	use	a	FOR	loop	over	the	cursor,	which	does	exactly	the	same	thing:

=>	DO	$$
DECLARE
				cur	CURSOR	FOR	SELECT	*	FROM	t;
				--	the	loop	variable	is	not	declared
BEGIN
				FOR	rec	IN	cur	LOOP	--	cur	must	be	bound	to	a	query
								RAISE	NOTICE	'%',	rec;
				END	LOOP;
END;
$$;

NOTICE:		(1,One)
NOTICE:		(2,Two)
NOTICE:		(3,Three)
DO

Moreover,	you	can	do	without	an	explicit	cursor	at	all	if	iterating	through	a	loop	is	all	that	you	actually	need.

It	is	convenient	to	enclose	the	query	into	parentheses,	although	it	is	not	mandatory.

=>	DO	$$
DECLARE
				rec	record;	--	has	to	be	declared	explicitly
BEGIN
				FOR	rec	IN	(SELECT	*	FROM	t)	LOOP
								RAISE	NOTICE	'%',	rec;
				END	LOOP;
END;
$$;

NOTICE:		(1,One)
NOTICE:		(2,Two)
NOTICE:		(3,Three)
DO

As	with	any	loop,	you	can	add	a	label,	which	can	be	useful	for	nested	loops.

What	will	be	displayed?

=>	DO	$$
DECLARE
				rec_outer	record;
				rec_inner	record;
BEGIN
				<<outer>>
				FOR	rec_outer	IN	(SELECT	*	FROM	t	ORDER	BY	id)	LOOP
								<<inner>>
								FOR	rec_inner	IN	(SELECT	*	FROM	t	ORDER	BY	id)	LOOP
												EXIT	outer	WHEN	rec_inner.id	=	3;
												RAISE	NOTICE	'%,	%',	rec_outer,	rec_inner;
								END	LOOP	INNER;
				END	LOOP	outer;
END;
$$;

NOTICE:		(1,One),	(1,One)
NOTICE:		(1,One),	(2,Two)
DO

Once	the	loop	is	complete,	the	FOUND	variable	shows	whether	any	rows	have	been	processed:

=>	DO	$$
DECLARE
				rec	record;
BEGIN
				FOR	rec	IN	(SELECT	*	FROM	t	WHERE	false)	LOOP
								RAISE	NOTICE	'%',	rec;
				END	LOOP;
				RAISE	NOTICE	'Has	at	least	one	iteration	completed?	%',	FOUND;
END;
$$;

NOTICE:		Has	at	least	one	iteration	completed?	f
DO

The	current	row	of	the	cursor	bound	to	a	simple	query	(over	a	single	table,	without	grouping	or	sorting)	can	be	referred	to
using	the	CURRENT	OF	clause.	A	typical	use	case	is	processing	a	batch	of	jobs	with	changing	status.

=>	DO	$$
DECLARE
				cur	refcursor;
				rec	record;
BEGIN
				OPEN	cur	FOR	SELECT	*	FROM	t
								FOR	UPDATE;	--	rows	are	locked	as	they	are	being	processed
				LOOP
								FETCH	cur	INTO	rec;
								EXIT	WHEN	NOT	FOUND;
								UPDATE	t	SET	s	=	s	||	'	(processed)'	WHERE	CURRENT	OF	cur;
				END	LOOP;
				CLOSE	cur;
END;
$$;

DO

=>	SELECT	*	FROM	t;

	id	|									s									
----+-------------------
		1	|	One	(processed)
		2	|	Two	(processed)
		3	|	Three	(processed)
(3	rows)

Note	that	CURRENT	OF	does	not	support	FOR	loops	over	queries,	as	such	loops	do	not	explicitly	use	cursors.	Clearly,	you
can	get	the	same	result	by	using	UPDATE	or	DELETE	with	the	unique	table	ID	(WHERE	id=rec.id).	But	CURRENT	OF
works	faster	and	does	not	require	an	index.

Note	that	in	many	cases,	you	can	replace	a	loop	with	a	single	SQL	operator:	it	is	easier	and	faster.	Very	often,	loops	are
used	simply	because	they	have	a	more	familiar	“procedural”	programming	style.	But	this	style	is	not	a	good	choice	for

databases.

For	example:

=>	BEGIN;
DO	$$
DECLARE
				rec	record;
BEGIN
				FOR	rec	IN	(SELECT	*	FROM	t)	LOOP
								RAISE	NOTICE	'%',	rec;
								DELETE	FROM	t	WHERE	id	=	rec.id;
				END	LOOP;
END;
$$;
ROLLBACK;

BEGIN
NOTICE:		(1,"One	(processed)")
NOTICE:		(2,"Two	(processed)")
NOTICE:		(3,"Three	(processed)")
DO
ROLLBACK

Such	a	loop	can	be	replaced	by	one	simple	command:

=>	BEGIN;
DELETE	FROM	t	RETURNING	*;
ROLLBACK;

BEGIN
	id	|									s									
----+-------------------
		1	|	One	(processed)
		2	|	Two	(processed)
		3	|	Three	(processed)
(3	rows)

DELETE	3
ROLLBACK

8

Passing a Cursor to a Client

backendclient
application

background process

PL/pgSQL function

refcursor

cursor (portal)

As we have already said, a PL/pgSQL cursor variable (of the refcursor
type) contains the name of an open SQL cursor. To denote the memory
allocated in the backend for keeping the cursor state, the portal term is
used.

Thus, a PL/pgSQL function can open a cursor and return its name to the
client. Then the client will be able to work with the cursor as if it has been
opened by this client, but will have access only to the provided data. It adds
one more way of setting up the interface between the database and the
application.

Passing	a	Cursor	to	a	Client

Let’s	open	a	cursor	and	check	the	value	of	the	cursor	variable:

=>	DO	$$
DECLARE
				cur	refcursor;
BEGIN
				OPEN	cur	FOR	SELECT	*	FROM	t;
				RAISE	NOTICE	'%',	cur;
END;
$$;

NOTICE:		<unnamed	portal	10>
DO

It	is	the	name	of	the	cursor	(portal)	that	has	been	opened	on	the	server.	Its	name	has	been	generated	automatically.

You	can	set	the	name	explicitly	if	you	like	(but	it	must	be	unique):

=>	DO	$$
DECLARE
				cur	refcursor	:=	'cursor12345';
BEGIN
				OPEN	cur	FOR	SELECT	*	FROM	t;
				RAISE	NOTICE	'%',	cur;
END;
$$;

NOTICE:		cursor12345
DO

Taking	advantage	of	this	capability,	we	can	create	a	function	that	opens	the	cursor	and	returns	its	name:

=>	CREATE	FUNCTION	t_cur()	RETURNS	refcursor
AS	$$
DECLARE
				cur	refcursor;
BEGIN
				OPEN	cur	FOR	SELECT	*	FROM	t;
				RETURN	cur;
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

The	client	starts	a	transaction,	calls	the	function,	gets	the	cursor	name,	and	can	start	reading	data	from	this	cursor.	The
exact	way	to	do	it	depends	on	the	programming	language.	In	psql,	it	is	done	as	follows:

=>	BEGIN;

BEGIN

=>	SELECT	t_cur()	AS	curname	\gset

=>	\echo	:curname

<unnamed	portal	11>

=>	FETCH	:"curname";	--	quotes	are	required	because	of	special	characters	in	the	name

	id	|								s								
----+-----------------
		1	|	One	(processed)
(1	row)

=>	COMMIT;

COMMIT

You	can	also	allow	the	client	to	set	the	name	of	the	cursor	if	it	is	more	convenient:

=>	DROP	FUNCTION	t_cur();

DROP	FUNCTION

=>	CREATE	FUNCTION	t_cur(cur	refcursor)	RETURNS	void
AS	$$
BEGIN
				OPEN	cur	FOR	SELECT	*	FROM	t;
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

The	client	code	becomes	simpler:

=>	BEGIN;

BEGIN

=>	SELECT	t_cur('cursor12345');

	t_cur	

(1	row)

=>	FETCH	cursor12345;

	id	|								s								
----+-----------------
		1	|	One	(processed)
(1	row)

=>	COMMIT;

COMMIT

A	function	can	use	OUT	parameters	to	return	several	open	cursors.	This	way,	a	single	function	call	can	provide	the	client
with	data	from	different	tables,	if	required.

Alternatively,	you	can	select	all	the	required	data	at	once	at	the	server	side	and	put	it	together	as	a	JSON	or	XML
document.	We	will	cover	these	formats	in	DEV2.

10

Summary

A cursor allows fetching and processing data row by row

A FOR loop can simplify cursor handling

Processing data in loops is common for procedural languages,
but should not be overused

11

Practice

1. Modify the book_name function: if the book has more than two
authors, the title should include only the first two, while the rest
are to be replaced with “et al.”

Check that the function works fine in SQL and in the application.

2. Try writing the book_name function in SQL.
Which implementation do you prefer: PL/pgSQL or SQL?

Task 1. For example:
101 Famous Poems. Alexander S. Pushkin, William Shakespeare, Ivan
A. Bunin →
→ 101 Famous Poems. Alexander S. Pushkin, William Shakespeare, et
al.

Task	1.	The	book_name	Function	(Truncating	the	List	of	Authors)

Let’s	create	a	more	generic	function	with	an	additional	parameter	that	defines	the	maximum	number	of	authors	in	a	title.

Since	we	are	going	to	change	the	function	signature	(the	number	and/or	types	of	its	input	parameters),	we	have	to	delete
this	function	and	then	create	it	anew.	In	this	case,	the	function	has	a	dependency:	it	is	used	in	the	catalog_v	view.	This
view	will	also	have	to	be	recreated	(in	real	life,	all	these	actions	must	be	performed	in	one	and	the	same	transaction,	so
that	the	changes	come	into	effect	atomically).

=>	DROP	FUNCTION	book_name(integer,text)	CASCADE;

NOTICE:		drop	cascades	to	view	catalog_v
DROP	FUNCTION

=>	CREATE	OR	REPLACE	FUNCTION	book_name(
				book_id	integer,
				title	text,
				maxauthors	integer	DEFAULT	2
)
RETURNS	text
AS	$$
DECLARE
				r	record;
				res	text;
BEGIN
				res	:=	shorten(title)	||	'.	';
				FOR	r	IN	(
								SELECT	a.last_name,	a.first_name,	a.middle_name,	ash.seq_num
								FROM			authors	a
															JOIN	authorship	ash	ON	a.author_id	=	ash.author_id
								WHERE		ash.book_id	=	book_name.book_id
								ORDER	BY	ash.seq_num
)
				LOOP
								EXIT	WHEN	r.seq_num	>	maxauthors;
								res	:=	res	||	author_name(r.last_name,	r.first_name,	r.middle_name)	||	',	';
				END	LOOP;
				res	:=	rtrim(res,	',	');
				IF	r.seq_num	>	maxauthors	THEN
								res	:=	res	||	',	et	al.';
				END	IF;
				RETURN	res;
END;
$$	STABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	CREATE	OR	REPLACE	VIEW	catalog_v	AS
SELECT	b.book_id,
							b.title,
							b.onhand_qty,
							book_name(b.book_id,	b.title)	AS	display_name,
							b.authors
FROM			books	b
ORDER	BY	display_name;

CREATE	VIEW

=>	SELECT	book_id,	display_name	FROM	catalog_v;

	book_id	|																										display_name																											
---------+---
							7	|	101	Famous	Poems.	Alexander	S.	Pushkin,	Ivan	A.	Bunin,	et	al.
							4	|	Dark	Avenues.	Ivan	A.	Bunin
							3	|	Good	Omens.	Neil	Gaiman,	Terry	Pratchett
							2	|	Romeo	and	Juliet.	William	Shakespeare
							1	|	The	Tale	of	Tsar	Saltan.	Alexander	S.	Pushkin
							6	|	Three	Men	in	a	Boat	(To	Say	Nothing	of	the....	Jerome	K.	Jerome
							5	|	Travels	into	Several	Remote	Nations	of	the....	Jonathan	Swift
(7	rows)

Task	2.	An	Alternative	Implementation	in	Pure	SQL

=>	CREATE	OR	REPLACE	FUNCTION	book_name(
				book_id	integer,
				title	text,
				maxauthors	integer	DEFAULT	2
)
RETURNS	text
AS	$$
SELECT	shorten(book_name.title)	||
							'.	'	||
							string_agg(
											author_name(a.last_name,	a.first_name,	a.middle_name),	',	'
											ORDER	BY	ash.seq_num
)	FILTER	(WHERE	ash.seq_num	<=	maxauthors)	||
							CASE
											WHEN	max(ash.seq_num)	>	maxauthors	THEN	',	et	al.'
											ELSE	''
							END
FROM			authors	a
							JOIN	authorship	ash	ON	a.author_id	=	ash.author_id
WHERE		ash.book_id	=	book_name.book_id;
$$	STABLE	LANGUAGE	sql;

CREATE	FUNCTION

=>	SELECT	book_id,	display_name	FROM	catalog_v;

	book_id	|																										display_name																											
---------+---
							7	|	101	Famous	Poems.	Alexander	S.	Pushkin,	Ivan	A.	Bunin,	et	al.
							4	|	Dark	Avenues.	Ivan	A.	Bunin
							3	|	Good	Omens.	Neil	Gaiman,	Terry	Pratchett
							2	|	Romeo	and	Juliet.	William	Shakespeare
							1	|	The	Tale	of	Tsar	Saltan.	Alexander	S.	Pushkin
							6	|	Three	Men	in	a	Boat	(To	Say	Nothing	of	the....	Jerome	K.	Jerome
							5	|	Travels	into	Several	Remote	Nations	of	the....	Jonathan	Swift
(7	rows)

12

Practice

1. It is required to distribute energy expenses between different
departments in proportion to their headcount (the list of
departments is stored in a table).
Create a function that takes the total energy cost as an argument
and saves the distributed expenses in different table rows.
The values are rounded to cents; the sum of expenses of all
departments must exactly match the total cost.

2. Create a set-returning function that simulates merge sort.
The function should take two cursor variables; both cursors are
already open and return sorted integers in non-decreasing order.
It is required to return a single sorted sequence of integers from
both sources.

Task 1. We can use the following table:
CREATE TABLE depts(
 id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
 employees integer,
 expenses numeric(10,2)
);
INSERT INTO depts(employees) VALUES (10),(10),(10);

A possible function implementation:
FUNCTION distribute_expenses(amount numeric) RETURNS void;

If 100.00 is taken as an argument, the expected result is:
 expenses

 33.33
 33.34
 33.33

Task 2. A possible function implementation:
FUNCTION merge(c1 refcursor, c2 refcursor) RETURNS SETOF integer;

For example, if the first cursor returns the sequence 1, 3, 5, and the second
cursor returns the sequence 2, 3, 4, the expected result is as follows:
 merge

 1
 2
 3
 3
 4
 5

Task	1.	Distributing	Expenses

=>	CREATE	DATABASE	plpgsql_cursors;

CREATE	DATABASE

=>	\c	plpgsql_cursors

You	are	now	connected	to	database	"plpgsql_cursors"	as	user	"student".

Create	a	table:

=>	CREATE	TABLE	depts(
				id	integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY,
				employees	integer,
				expenses	numeric(10,2)
);

CREATE	TABLE

=>	INSERT	INTO	depts(employees)	VALUES	(10),(10),(10);

INSERT	0	3

Create	a	function:

=>	CREATE	FUNCTION	distribute_expenses(amount	numeric)	RETURNS	void
AS	$$
DECLARE
				depts_cur	CURSOR	FOR
								SELECT	employees	FROM	depts	FOR	UPDATE;
				total_employees	numeric;
				expense	numeric;
				rounding_err	numeric	:=	0.0;
				cent	numeric;
BEGIN
				SELECT	sum(employees)	FROM	depts	INTO	total_employees;
				FOR	dept	IN	depts_cur	LOOP
								expense	:=	amount	*	(dept.employees	/	total_employees);
								rounding_err	:=	rounding_err	+	(expense	-	round(expense,2));

								cent	:=	round(rounding_err,2);
								expense	:=	expense	+	cent;
								rounding_err	:=	rounding_err	-	cent;

								UPDATE	depts	SET	expenses	=	round(expense,2)
								WHERE	CURRENT	OF	depts_cur;
				END	LOOP;
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Check	the	result:

=>	SELECT	distribute_expenses(100.00);

	distribute_expenses	

(1	row)

=>	SELECT	*	FROM	depts;

	id	|	employees	|	expenses	
----+-----------+----------
		1	|								10	|				33.33
		2	|								10	|				33.34
		3	|								10	|				33.33
(3	rows)

Naturally,	it	is	possible	to	use	other	algorithms,	such	as	moving	all	rounding	errors	to	a	separate	row.

In	the	DEV2	course,	we	provide	another	solution	that	employs	user-defined	aggregate	functions.

Task	2.	Merging	Sorted	Sequences

This	implementation	assumes	that	a	number	cannot	be	NULL.

=>	CREATE	FUNCTION	merge(c1	refcursor,	c2	refcursor)
RETURNS	SETOF	integer
AS	$$
DECLARE
				a	integer;
					b	integer;
BEGIN
				FETCH	c1	INTO	a;
				FETCH	c2	INTO	b;
				LOOP
								EXIT	WHEN	a	IS	NULL	AND	b	IS	NULL;
								IF	a	<	b	OR	b	IS	NULL	THEN
												RETURN	NEXT	a;
												FETCH	c1	INTO	a;
								ELSE
												RETURN	NEXT	b;
												FETCH	c2	INTO	b;
								END	IF;
				END	LOOP;
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Check	the	implementation.

=>	BEGIN;

BEGIN

=>	DECLARE	c1	CURSOR	FOR
				SELECT	*	FROM	(VALUES	(1),(3),(5))	t;

DECLARE	CURSOR

=>	DECLARE	c2	CURSOR	FOR
				SELECT	*	FROM	(VALUES	(2),(3),(4))	t;

DECLARE	CURSOR

=>	SELECT	*	FROM	merge('c1','c2');

	merge	

					1
					2
					3
					3
					4
					5
(6	rows)

=>	COMMIT;

COMMIT

