

Access Control

Access Control Overview

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Roles and attributes

Connecting to a server

Privileges

Row-level security policies

3

Roles and Attributes

A role is a database user
roles are not associated with OS users

Role properties are defined by attributes
LOGIN permission to connect

SUPERUSER a superuser
CREATEDB permission to create databases

CREATEROLE permission to create roles

REPLICATION using the replication protocol

etc.

A role is a database user. (A role can also comprise a group of users, but
we’ll discuss it later.)

Formally, roles are not associated with operating system users in any way,
but many programs imply it when choosing default values. For example,
if psql is started on behalf of the student OS user, the connection is
established on behalf of the database role with the same name, i.e.,
student (unless another role is explicitly specified in the psql options).

At the time of cluster initialization, an initial role is defined, which has
superuser privileges (this role is usually called postgres). Later on, you can
create, modify, and delete roles.

https://postgrespro.com/docs/postgresql/12/database-roles

A role has several attributes that define its general properties and rights
(unrelated to object access).

There are usually two flavors of each attribute; for example, CREATEDB
(gives the right to create a database) and NOCREATEDB (gives no such
right). As a rule, a restrictive flavor is the default one.

If a role has no LOGIN attribute, it cannot connect to a server. (Such roles
can be used as group ones.)

This slide lists only some of the available attributes. INHERIT and
BYPASSRLS attributes will be covered in more detail further in this lecture.

https://postgrespro.com/docs/postgresql/12/role-attributes

https://postgrespro.com/docs/postgresql/12/sql-createrole

Roles	and	Attributes

Let’s	create	a	role	for	user	Alice.	The	command	specifies	two	attributes.

In	the	context	of	this	demo,	it	is	important	to	see	the	name	of	the	role	that	executes	commands,	so	the	name	of	the	current
role	is	displayed	in	the	prompt.

student=#	CREATE	ROLE	alice	LOGIN	PASSWORD	'alicepass';

CREATE	ROLE

The	following	command	displays	the	list	of	roles:

student=#	\du

																																			List	of	roles
	Role	name	|																									Attributes																									|	Member	of	
-----------+--+-----------
	alice					|																																																												|	{}
	buyer					|																																																												|	{}
	employee		|																																																												|	{}
	postgres		|	Superuser,	Create	role,	Create	DB,	Replication,	Bypass	RLS	|	{}
	student			|	Superuser																																																		|	{}

Note	that	the	student	role	is	a	superuser.	That’s	why	there	has	been	no	need	to	take	care	of	access	rights	so	far.

Let’s	create	a	database	as	well:

student=#	CREATE	DATABASE	access_overview;

CREATE	DATABASE

5

Connection

1. The rows of pg_hba.conf are searched from top to bottom

2. The first row that corresponds to the provided connection
 parameters (type, database, user, address) will be used

TYPE DATABASE USER ADDRESS METHOD
local all postgres peer
local all all peer
host all all 127.0.0.1/32 md5
host all all ::1/128 md5

local — socket all — any role
host — TCP/IP role name

all — any database all — any IP
database name IP/mask

domain name

listen_addresses

For each new client, the server has to evaluate whether a database
connection should be allowed. Connection parameters are defined in the
pg_hba.conf configuration file (hba stands for host-based authentication).
As with the main configuration file (postgresql.conf), changes come into
effect only after the server reloads this file (SELECT pg_reload_conf()
in SQL, or pg_ctl reload in the operating system terminal).

When a new client appears, the server reads the configuration file from top
to bottom to find the row that matches the requested connection. The match
is defined by four fields: connection type, database name, user name, and
IP address.

Here we list only the main basic options.

Connection: local (unix sockets, unavailable for Windows) or host
(a TCP/IP connection).

Database: all (this keyword corresponds to any database) or the name
of a particular database.

User: all or the name of a particular role.

Address: all, a particular IP address with a mask, or a domain name. The
address is omitted for the local connection type. By default, PostgreSQL
listens for incoming connections only on localhost; the listen_addresses
parameter is usually set to * (listen on all interfaces), while the access is
controlled using pg_hba.conf settings.

https://postgrespro.com/docs/postgresql/12/client-authentication

6

Connection

3. The server performs authentication using the chosen method

4. If successful, access is allowed; otherwise, it is forbidden
 (if no rows match the given parameters, access is forbidden)

TYPE DATABASE USER ADDRESS METHOD
local all postgres peer
local all all peer
host all all 127.0.0.1/32 md5
host all all ::1/128 md5

trust — allow all
reject — forbid all

scram-sha-256 and md5 — request a password
peer — ask OS

Once the server finds an appropriate row in the file, it performs client
authentication using the method specified in this row, and checks for the
LOGIN attribute and the CONNECT privilege. If everything is OK, the
connection is allowed; otherwise, it is forbidden (other rows won’t be
considered in this case).

If no appropriate row is found, the access is also forbidden.

Thus, more specific connection rows should precede more generic ones
while the file is viewed from top to bottom.

There are a lot of different authentication methods:

https://postgrespro.com/docs/postgresql/12/auth-methods

Here we mention only some of the main ones.

The trust method allows connections unconditionally. If security is not a
concern, you can specify the trust method and use all for all the other
parameters; then all connections will be allowed.

The reject method, on the contrary, unconditionally forbids all
connections.

The most popular methods are md5 and a more secure scram-sha-256.
These methods ask for a password and check that the provided password
matches the one stored in the system catalog of the database cluster.

The peer method checks the name of the operating system user and allows
connections on behalf of the database user with the same name (you can
also define a different name-mapping pattern).

7

Password Authentication

At the server side
the password is set when the role is created and can be altered later
a user that has no password won’t be able to connect
the password is stored in the pg_authid table of the system catalog

Entering the password on the client
manually
using the PGPASSWORD environment variable

using the ~/.pgpass file (its lines have the following format:
node:port:databse:role:password)

If password authentication is used, there must be a reference password
stored for the user; otherwise the connection will be rejected.

Passwords are stored in the pg_authid table of the system catalog.

The user can either enter the password manually, or automate password
input using one of the following options.

The first one is to define the password on the client in the PGPASSWORD
environment variable. However, it is inconvenient if you have to connect to
several databases, and it is not recommended for security reasons.

The second option to store passwords on the client is to use the ~/.pgpass
file. The access to this file must be allowed to its owner only, otherwise
PostgreSQL will ignore it.

Connection

To	be	able	to	connect	to	a	database,	a	role	must	have	the	LOGIN	attribute,	and	the	pg_hba.conf	file	must	allow	connections	for	this	role.
The	pg_hba.conf	file	can	be	read	from	SQL:

student=#	SELECT	type,	database,	user_name,	address,	auth_method
FROM	pg_hba_file_rules();

	type		|			database				|	user_name		|		address		|	auth_method	
-------+---------------+------------+-----------+-------------
	local	|	{all}									|	{postgres}	|											|	peer
	local	|	{all}									|	{all}						|											|	peer
	host		|	{all}									|	{all}						|	127.0.0.1	|	md5
	host		|	{all}									|	{all}						|	::1							|	md5
	local	|	{replication}	|	{all}						|											|	peer
	host		|	{replication}	|	{all}						|	127.0.0.1	|	md5
	host		|	{replication}	|	{all}						|	::1							|	md5
(7	rows)

(Depending	on	the	PostrgeSQL	distribution,	the	contents	of	the	file	may	differ.)

We	are	going	to	use	a	TCP/IP	host	connection.	This	connection	type	corresponds	to	the	third	line	in	pg_hba.conf.	It	requires	password
authentication.

The	alice	role	was	created	with	a	password,	but	you	can	change	it	any	time:

student=#	ALTER	ROLE	alice	PASSWORD	'alicepass';

ALTER	ROLE

Let’s	try	to	connect	to	the	database	by	providing	all	the	required	information	in	the	connection	string:

student$	psql	"host=localhost	user=alice	dbname=access_overview	password=alicepass"

alice=>	\conninfo

You	are	connected	to	database	"access_overview"	as	user	"alice"	on	host	"localhost"	(address	"127.0.0.1")	at	port	"5432".
SSL	connection	(protocol:	TLSv1.3,	cipher:	TLS_AES_256_GCM_SHA384,	bits:	256,	compression:	off)

Success!

9

Privileges

Privileges define roles’ access rights for different objects

Tables
SELECT read data
INSERT insert rows
UPDATE update rows
REFERENCES set a foreign key
DELETE delete rows
TRUNCATE truncate a table
TRIGGER create triggers

Views
SELECT read data
TRIGGER create triggers

 can be used for columns

Privileges are defined for combinations of roles and database objects. They
determine the actions that roles can perform with these objects.

There are different privileges available for different object types. The
privileges that can be defined for the main object types are listed on this and
the next slide.

The widest choice of privileges is available for tables. Some of these
privileges can be defined not only at the table level, but also at the column
level.

https://postgrespro.com/docs/postgresql/12/ddl-priv

https://postgrespro.com/docs/postgresql/12/sql-grant

10

Privileges

Tablespaces,
databases, schemas

Sequences
SELECT currval
UPDATE nextval setval
USAGE currval nextval

database

schema pg_temp

tablespace
таблицатаблицаobject

CREATE
USAGE

CREATE

таблицатаблицаobject

TEMPORARY

CREATE

CONNECT

For sequences, the set of available privileges may seem a bit odd. Setting
these privileges, you can allow or forbid access to three control functions.

For tablespaces, there is a CREATE privilege that allows creating objects in
this tablespace.

When defined for a database, the CREATE privilege allows creating schemas
in this database; for schemas, this privilege allows creating objects in this
schema.

Since the exact name of the schema for temporary objects is unknown in
advance, the privilege for creating temporary tables is defined at the
database level (TEMPORARY).

The USAGE privilege of a schema enables access to objects in this schema.

The CONNECT privilege of a database allows connections to this database.

11

Managing Privileges

Granting privileges
role1: GRANT privileges ON objects TO role2;

Revoking privileges
role1: REVOKE privileges ON object FROM role2;

role1 role2privileges
on an object

Privileges on a particular object can be granted and revoked by the object
owner (and a superuser).

The syntax of GRANT and REVOKE commands is quite complex. It allows
addressing different scenarios: you can specify either some particular
privileges or all the available privileges at once, grant privileges on individual
objects or on groups of objects that belong to particular schemas, etc.

https://postgrespro.com/docs/postgresql/12/sql-grant

https://postgrespro.com/docs/postgresql/12/sql-revoke

12

public

Group Roles

Including a role into a group
role1: GRANT group TO role2;

the public pseudorole implicitly includes
all the other roles

Excluding a role from a group
role1: REVOKE group FROM role2;

role1 role2group

group

role2

role1

Apart from representing a database user, each role can also include other
roles, i.e., represent a group of roles. A role can be included into another
role, just like a Unix user can be included into a group.

It is also possible to include a group role into another group (but circular
membership loops are not allowed). In fact, PostgreSQL does not
differentiate between single-user and group roles.

The idea of such inclusion is to make group role privileges available to
single-user roles.

We can think of a group role as a predefined set of privileges that can be
granted to a role just like any regular privilege. It facilitates database
administration and access control.

There is also a pseudorole called public, which implicitly includes all the
other roles. Any privilege granted to the public role is automatically
granted to all the other roles as well.

The following roles have the right to modify a role by including or excluding
other roles:

- the role to be included (or excluded)

- a role with the SUPERUSER attribute

- a role with the CREATEROLE attribute

https://postgrespro.com/docs/postgresql/12/role-membership

13

Superusers

This category includes
roles with the SUPERUSER attribute

Rights
unlimited access to all objects: no checks are performed

In general, we can simply say that the role’s access to an object is defined
by its privileges. But it makes sense to single out three categories of roles
and discuss them separately.

Roles with the superuser attribute follow the most straightforward rules.
Such roles bypass access control checks and can perform any operations.

14

Object Owner

This category includes
initially, the role that has created the object (can be reassigned)
any roles included into the owner role

Rights

initially, all the privileges that can be granted on this object (can be revoked)
actions on the owned object that are not regulated by privileges,
such as deleting objects or granting and revoking privileges

Each object has an owner, i.e., the role that owns this object. Initially, it is
the role that created the object, but you can change the owner later. Here is
a subtle point: any role included into the owner role is also considered to be
an owner.

The object owner gets the full range of privileges on this object.

In theory, these privileges can be revoked, but the object owner also has an
inalienable right to perform some actions that are not regulated by
privileges. In particular, the owner can grant and revoke privileges (to other
roles and to itself) and delete the owned object.

15

Other Roles

This category includes
all other roles (which are neither superusers nor object owners)

Rights
access rights are defined by the granted privileges
group privileges are usually inherited
(but the NOINHERIT attribute requires the role to be used directly)

And last but not least, all the other roles can access objects as defined by
the privileges granted to them. If a role belongs to a group, group-role
privileges are also taken into account (in particular, those of the public
pseudorole, which implicitly includes all the other roles).

A role usually inherits all group privileges at once. You can change this
behavior by specifying the NOINHERIT attribute: then you’ll have to explicitly
call the SET ROLE command to use group role privileges.

To check whether a role has the required privilege on a particular object, you
can call the has_*_privilege functions:

https://postgrespro.com/docs/postgresql/12/functions-info

It is convenient to view granted privileges using psql commands (listed in
the catalogs.pdf handout).

Privileges

Alice	has	managed	to	connect	to	the	database.	Now	she	wants	to	create	a	separate	schema	and	several	objects	in	it.

alice=>	CREATE	SCHEMA	alice;

ERROR:		permission	denied	for	database	access_overview

What	has	gone	wrong?

Alice	has	no	privilege	to	create	schemas	in	this	database.	Let’s	grant	it:

student=#	GRANT	CREATE	ON	DATABASE	access_overview	TO	alice;

GRANT

Now	try	once	again:

alice=>	CREATE	SCHEMA	alice;

CREATE	SCHEMA

Since	Alice	owns	a	separate	schema,	this	role	now	has	all	the	privileges	for	this	schema	and	can	create	any	objects	in	it.	It
is	this	schema	that	will	be	used	by	default:

alice=>	SELECT	current_schemas(true);

						current_schemas						

	{pg_catalog,alice,public}
(1	row)

Let’s	create	two	tables.

alice=>	CREATE	TABLE	t1(n	numeric);

CREATE	TABLE

alice=>	INSERT	INTO	t1	VALUES	(1);

INSERT	0	1

alice=>	CREATE	TABLE	t2(n	numeric,	who	text	DEFAULT	current_user);

CREATE	TABLE

alice=>	INSERT	INTO	t2(n)	VALUES	(1);

INSERT	0	1

Now	let’s	create	another	role	for	Bob,	who	is	going	to	access	the	objects	that	belong	to	Alice.

student=#	CREATE	ROLE	bob	LOGIN	PASSWORD	'bobpass';

CREATE	ROLE

student$	psql	"host=localhost	user=bob	dbname=access_overview	password=bobpass"

Bob	tries	to	access	the	t1	table.

bob=>	SELECT	*	FROM	alice.t1;

ERROR:		permission	denied	for	schema	alice
LINE	1:	SELECT	*	FROM	alice.t1;
																						^

What	has	caused	an	error?

The	schema	is	unavailable	because	Bob	is	neither	its	owner	nor	a	superuser.

To	check	access	rights	for	a	schema,	you	can	run	the	following	command	(see	the	Access	privileges	column):

alice=>	\dn+

																										List	of	schemas
		Name		|		Owner			|		Access	privileges			|						Description							
--------+----------+----------------------+------------------------
	alice		|	alice				|																						|	
	public	|	postgres	|	postgres=UC/postgres+|	standard	public	schema
								|										|	=UC/postgres									|	
(2	rows)

Privileges	are	displayed	in	the	following	format:	role=privileges/granted_by.

Each	privilege	is	represented	by	one	symbol;	for	example,	schemas	use	the	following	notation:

U	=	usage
C	=	create

If	the	role	name	is	omitted	(as	in	the	last	row),	the	public	pseudorole	is	implied.

If	the	whole	field	is	omitted	(as	in	the	first	row),	the	default	privileges	of	the	owner	are	in	effect.	We	can	see	that	alice	has
both	privileges	for	her	own	schema.

Let’s	grant	Bob	access	to	the	schema.	Alice	can	do	it	as	the	schema	owner.

alice=>	GRANT	CREATE,	USAGE	ON	SCHEMA	alice	TO	bob;

GRANT

Bob	tries	to	access	the	table	again:

bob=>	SELECT	*	FROM	alice.t1;

ERROR:		permission	denied	for	table	t1

What	has	caused	an	error?

Now	Bob	has	access	to	the	schema,	but	has	no	access	to	the	table	itself.	Here	is	how	we	can	check	access	rights:

alice=>	\dp	alice.t1

																												Access	privileges
	Schema	|	Name	|	Type		|	Access	privileges	|	Column	privileges	|	Policies	
--------+------+-------+-------------------+-------------------+----------
	alice		|	t1			|	table	|																			|																			|	
(1	row)

We	see	an	empty	field	again:	only	the	owner	(i.e.,	Alice)	has	access	permissions.

Alice	grants	Bob	the	right	to	read	and	update	table	t1:

alice=>	GRANT	SELECT,UPDATE	ON	alice.t1	TO	bob;

GRANT

For	the	second	table,	Bob	gets	the	right	to	insert	rows	and	read	one	of	the	columns:

alice=>	GRANT	SELECT(n),INSERT	ON	alice.t2	TO	bob;

GRANT

Let’s	see	how	the	privileges	have	changed:

alice=>	\dp	alice.*

																													Access	privileges
	Schema	|	Name	|	Type		|		Access	privileges		|	Column	privileges	|	Policies	
--------+------+-------+---------------------+-------------------+----------
	alice		|	t1			|	table	|	alice=arwdDxt/alice+|																			|	
								|						|							|	bob=rw/alice								|																			|	
	alice		|	t2			|	table	|	alice=arwdDxt/alice+|	n:															+|	
								|						|							|	bob=a/alice									|			bob=r/alice					|	
(2	rows)

The	contents	of	the	field	has	become	visible;	we	can	now	see	the	full	list	of	privileges	in	there.	Here	is	the	adopted
notation,	which	is	sometimes	not	quite	intuitive:

a	=	insert
r	=	select
w	=	update
d	=	delete
D	=	truncate
x	=	reference
t	=	trigger

Column	privileges	are	displayed	separately	(in	the	column	with	the	corresponding	name).

Now	Bob’s	attempts	are	successful.	To	avoid	specifying	the	schema	name	all	the	time,	Bob	adds	it	to	the	search	path.

bob=>	SET	search_path	=	public,	alice;

SET

bob=>	UPDATE	t1	SET	n	=	n	+	1;

UPDATE	1

bob=>	SELECT	*	FROM	t1;

	n	

	2
(1	row)

But	other	operations	are	still	forbidden:

bob=>	DELETE	FROM	t1;

ERROR:		permission	denied	for	table	t1

Bob	can	also	access	the	first	column	of	the	t2	table:

bob=>	INSERT	INTO	t2(n)	VALUES	(100);

INSERT	0	1

bob=>	SELECT	n	FROM	t2;

		n		

			1
	100
(2	rows)

But	it	is	forbidden	to	read	the	second	column:

bob=>	SELECT	*	FROM	t2;

ERROR:		permission	denied	for	table	t2

17

Routines

The only privilege available for functions and procedures
EXECUTE allows routine execution

Security attributes
SECURITY INVOKER executes a routine with the caller’s rights

(the default behavior)

SECURITY DEFINER executes a routine with the owner’s rights

The only privilege applicable to functions and procedures is EXECUTE;
it allows executing the routine on which it is granted.

A subtle point is on whose behalf the routine is executed. If the routine is
declared as SECURITY INVOKER (which is the default), it is executed with
the caller’s rights. In this case, the statements defined within the routine can
access only those objects for which the caller has the corresponding
privileges.

If the SECURITY DEFINER clause is specified, the routine is executed with
the rights of its owner. This mechanism allows other users to perform some
particular actions on the objects to which they have no direct access.

https://postgrespro.com/docs/postgresql/12/sql-createfunction

https://postgrespro.com/docs/postgresql/12/sql-createprocedure

18

Default Privileges

Privileges of the public pseudorole
connection to any database
access to the public schema and the right to create objects in it

access to the system catalog
execution of any routines
privileges are automatically granted on each new object

Configuring default privileges
a possibility to grant or revoke privileges on a newly created object

As we have already said, the public pseudorole includes all other roles, so
they inherit all the privileges granted to public.

And public has quite an extensive list of privileges by default. In particular:

- The right to connect to any database (that’s why the role alice could
connect to the database although the CONNECT privilege had not been
explicitly granted to this role).

- Access to the system catalog and the public schema.

- The right to execute any routines.

On the one hand, it enables seamless operation without having to deal with
privileges; but on the other hand, it brings extra complications if access
control is really required.

The public role automatically receives all the privileges listed above for all
newly created objects. So it is not enough to simply revoke the EXECUTE
privilege from public: once a new routine appears, public immediately
gets the right to execute it.

There is a special mechanism of default privileges that enables you to
automatically grant the required privileges on newly created objects. It can
be also used to revoke the EXECUTE privilege from the public pseudorole.

https://postgrespro.com/docs/postgresql/12/sql-alterdefaultprivileges

Default	Privileges	and	Routines

Alice	creates	a	function:

alice=>	CREATE	FUNCTION	foo()	RETURNS	SETOF	t2
AS	$$
SELECT	*	FROM	t2;
$$	LANGUAGE	sql	STABLE;

CREATE	FUNCTION

Can	Bob	call	it	if	Alice	has	not	granted	him	the	EXECUTE	privilege?

bob=>	SELECT	foo();

ERROR:		permission	denied	for	table	t2
CONTEXT:		SQL	function	"foo"	statement	1

Yes,	the	call	is	possible,	but	Bob	won’t	be	able	to	access	the	objects	for	which	no	privileges	have	been	granted	to	him.

But	if	Bob	creates	table	t2	in	the	public	schema,	the	function	will	work	for	both	users	(it	will	use	different	tables	since
Alice	and	Bob	have	different	search	paths):

bob=>	CREATE	TABLE	t2(n	numeric,	who	text	DEFAULT	current_user);

CREATE	TABLE

bob=>	INSERT	INTO	t2(n)	VALUES	(42);

INSERT	0	1

bob=>	SELECT	foo();

			foo				

	(42,bob)
(1	row)

alice=>	SELECT	foo();

				foo				

	(1,alice)
	(100,bob)
(2	rows)

Another	possible	option	is	to	declare	a	function	with	the	owner’s	privileges	(SECURITY	DEFINER):

alice=>	ALTER	FUNCTION	foo()	SECURITY	DEFINER;

ALTER	FUNCTION

In	this	case,	the	function	is	run	with	the	privileges	of	the	role	that	owns	it,	regardless	of	the	identity	of	the	caller.

Bob	deletes	the	owned	table...

bob=>	DROP	TABLE	t2;

DROP	TABLE

...and	gets	access	to	the	contents	of	the	table	that	belongs	to	Alice:

bob=>	SELECT	foo();

				foo				

	(1,alice)
	(100,bob)
(2	rows)

In	this	case,	Alice	should	be	more	careful	with	granting	privileges.	It	is	highly	likely	that	the	EXECUTE	privilege	has	to	be
revoked	from	the	pubic	role	and	explicitly	granted	only	to	those	roles	that	really	need	it.

alice=>	REVOKE	EXECUTE	ON	ALL	FUNCTIONS	IN	SCHEMA	alice	FROM	public;

REVOKE

bob=>	SELECT	foo();

ERROR:		permission	denied	for	function	foo

What’s	worse,	the	EXECUTE	privilege	is	automatically	granted	to	the	public	role	for	each	newly	created	function.

alice=>	CREATE	FUNCTION	bar()	RETURNS	integer	AS	$$
SELECT	1;
$$	LANGUAGE	sql	IMMUTABLE	SECURITY	DEFINER;

CREATE	FUNCTION

bob=>	SELECT	bar();

	bar	

			1
(1	row)

But	it	can	be	avoided	if	you	modify	the	default	privileges:

alice=>	ALTER	DEFAULT	PRIVILEGES
FOR	ROLE	alice
REVOKE	EXECUTE	ON	FUNCTIONS	FROM	public;

ALTER	DEFAULT	PRIVILEGES

alice=>	\ddp

											Default	access	privileges
	Owner	|	Schema	|			Type			|	Access	privileges	
-------+--------+----------+-------------------
	alice	|								|	function	|	alice=X/alice
(1	row)

Now	the	public	role	has	no	EXECUTE	privilege	for	functions	owned	by	Alice,	so	only	Alice	can	run	them.

alice=>	CREATE	FUNCTION	baz()	RETURNS	integer	AS	$$
SELECT	1;
$$	LANGUAGE	sql	IMMUTABLE	SECURITY	DEFINER;

CREATE	FUNCTION

bob=>	SELECT	baz();

ERROR:		permission	denied	for	function	baz

20

Row-Level Security

Policies complement privileges
to manage access to tables at the row level

A policy is applied
to particular roles
to particular commands (SELECT, INSERT, UPDATE, DELETE)

A policy defines row access conditions
permissive: allows row access if the condition is true
restrictive: forbids row access if the condition is false
different conditions (predicates) for existing rows and the rows to be inserted

While privileges provide access control at the table and column levels, row-
level security policies do it at the row level.

By default, RLS is switched off. If required, it has to be enabled for each
table explicitly.

Policies can be defined for a table, a set of commands (SELECT, INSERT,
UPDATE, DELETE), and for particular roles. In fact, each policy is a boolean
condition (a predicate), which is computed for each selected row. If the
condition is true, the access is allowed (the access must not be forbidden by
any restrictive policy and must be allowed by at least one permissive policy
at the same time). Otherwise, the row won’t be visible.

The predicates defining access to existing and newly added rows can differ
(in this case, an UPDATE operation will be successful only if both predicates
are true).

Predicates are computed with the rights of the caller.

RLS policies do not apply to the table owner (in most cases), superusers,
roles with the BYPASSRLS attribute, and cannot be used for integrity
constraints (uniqueness, foreign keys).

https://postgrespro.com/docs/postgresql/12/ddl-rowsecurity

Row-Level	Security

Security	policies	enable	us	to	control	table	access	at	the	row	level,	for	each	particular	role.

alice=>	SELECT	*	FROM	t2;

		n		|		who		
-----+-------
			1	|	alice
	100	|	bob
(2	rows)

To	see	how	it	works,	let’s	make	the	role	reading	the	table	see	only	its	own	rows,	i.e.,	in	which	the	who	field	contains	this
role’s	name.

alice=>	CREATE	POLICY	who_policy	ON	t2
USING	(who	=	current_user);

CREATE	POLICY

For	security	policy	to	come	into	effect,	it	has	to	be	enabled	at	the	table	level:

alice=>	ALTER	TABLE	t2	ENABLE	ROW	LEVEL	SECURITY;

ALTER	TABLE

Now	Bob	sees	only	its	own	rows.	In	fact,	each	row	has	to	be	checked	separately	during	query	execution	to	verify	that	it
satisfies	the	predicate	specified	in	the	policy.

bob=>	SELECT	n	FROM	t2;

		n		

	100
(1	row)

bob=>	INSERT	INTO	t2(n)	VALUES	(101);

INSERT	0	1

bob=>	SELECT	n	FROM	t2;

		n		

	100
	101
(2	rows)

Row-level	security	policies	do	not	apply	to	superusers	and	roles	with	the	BYPASSRLS	attribute.	The	table	owner	usually
bypasses	these	policies	as	well:

alice=>	SELECT	*	FROM	t2;

		n		|		who		
-----+-------
			1	|	alice
	100	|	bob
	101	|	bob
(3	rows)

But	the	owner	can	choose	to	limit	its	own	rights:

alice=>	ALTER	TABLE	t2	FORCE	ROW	LEVEL	SECURITY;

ALTER	TABLE

alice=>	SELECT	*	FROM	t2;

	n	|		who		
---+-------
	1	|	alice
(1	row)

22

Summary

Roles, privileges, and policies provide a flexible access control
mechanism for different usage scenarios

you can easily allow everything to everyone
you can set up strict access control if required

When creating a new role, it is important to ensure that it can
connect to the server

23

Practice

1. Create two roles (the password must match the role’s name):
– employee: the store’s employee
– buyer: a customer

Make sure that the created roles can connect to the database.

2. Revoke the privileges to execute all functions and to connect to
the database from the public role.

3. Configure access control as follows:
– employee can only order books or add new authors and books
– buyer can only purchase books

Check that the application works as expected with these settings
enabled.

Task 1. The employee role is an internal user of the application; its
authentication is performed at the server level.

The buyer role is an external user. In a real online store, such users are
managed by the application while all the queries are sent to the server on
behalf of a single generic role (buyer); the ID of a particular customer can
be passed as a parameter (but we do not do it in our application).

Task 3. In general, access control must be implemented in the application
as well. In our bookstore application, there is no access control for a reason:
instead, its web interface allows you to explicitly select the role on behalf of
which to execute the query. As a result, you can see what happens on the
server side if the application behavior is incorrect.

So, we need to grant the following privileges:

- The right to connect to the bookstore database and to access the
bookstore schema.

- Access to views that will be called directly.

- Access to functions called as part of the API. With the default SECURITY
INVOKER rights, the function would require access to all the underlying
objects (tables and other functions). But it is more convenient to simply
declare API functions as SECURITY DEFINER.

Naturally, the roles must be granted privileges only on those objects that
they need to access.

Task	1.	Creating	Roles

=>	CREATE	ROLE	employee	LOGIN	PASSWORD	'employee';

CREATE	ROLE

=>	CREATE	ROLE	buyer	LOGIN	PASSWORD	'buyer';

CREATE	ROLE

The	default	settings	allow	connections	from	the	local	host	using	password	authentication.	That	will	do	for	our	purposes.

Task	2.	Privileges	of	the	public	Role

We	need	to	revoke	excessive	privileges	from	the	public	role.

=>	REVOKE	EXECUTE	ON	ALL	FUNCTIONS	IN	SCHEMA	bookstore	FROM	public;

REVOKE

=>	REVOKE	CONNECT	ON	DATABASE	bookstore	FROM	public;

REVOKE

Task	3.	Access	Control

Functions	with	the	owner’s	privileges:

=>	ALTER	FUNCTION	get_catalog(text,text,boolean)	SECURITY	DEFINER;

ALTER	FUNCTION

=>	ALTER	FUNCTION	update_catalog()	SECURITY	DEFINER;

ALTER	FUNCTION

=>	ALTER	FUNCTION	add_author(text,text,text)	SECURITY	DEFINER;

ALTER	FUNCTION

=>	ALTER	FUNCTION	add_book(text,integer[])	SECURITY	DEFINER;

ALTER	FUNCTION

=>	ALTER	FUNCTION	buy_book(integer)	SECURITY	DEFINER;

ALTER	FUNCTION

=>	ALTER	FUNCTION	book_name(integer,text,integer)	SECURITY	DEFINER;

ALTER	FUNCTION

=>	ALTER	FUNCTION	authors(books)	SECURITY	DEFINER;

ALTER	FUNCTION

The	buyer’s	privileges:	the	buyer	role	must	have	access	to	book	search	and	purchase	functionality.

=>	GRANT	CONNECT	ON	DATABASE	bookstore	TO	buyer;

GRANT

=>	GRANT	USAGE	ON	SCHEMA	bookstore	TO	buyer;

GRANT

=>	GRANT	EXECUTE	ON	FUNCTION	get_catalog(text,text,boolean)	TO	buyer;

GRANT

=>	GRANT	EXECUTE	ON	FUNCTION	buy_book(integer)	TO	buyer;

GRANT

The	employee’s	privileges:	the	employee	role	must	have	access	to	viewing	and	adding	books	and	authors,	as	well	as	to	the
book	catalog	for	ordering	books.

=>	GRANT	CONNECT	ON	DATABASE	bookstore	TO	employee;

GRANT

=>	GRANT	USAGE	ON	SCHEMA	bookstore	TO	employee;

GRANT

=>	GRANT	SELECT,UPDATE(onhand_qty)	ON	catalog_v	TO	employee;

GRANT

=>	GRANT	SELECT	ON	authors_v	TO	employee;

GRANT

=>	GRANT	EXECUTE	ON	FUNCTION	book_name(integer,text,integer)	TO	employee;

GRANT

=>	GRANT	EXECUTE	ON	FUNCTION	authors(books)	TO	employee;

GRANT

=>	GRANT	EXECUTE	ON	FUNCTION	author_name(text,text,text)	TO	employee;

GRANT

=>	GRANT	EXECUTE	ON	FUNCTION	add_book(text,integer[])	TO	employee;

GRANT

=>	GRANT	EXECUTE	ON	FUNCTION	add_author(text,text,text)	TO	employee;

GRANT

24

Practice

Routines executed with the owner’s rights (declared with the
SECURITY DEFINER attribute) can be used to allow regular users to
perform some actions that require superuser privileges.

1. Create a regular unprivileged user and check that this user cannot
modify the log_statement parameter.

2. Implement a routine that enables and disables tracing of SQL
queries so that it can be used by the created user.

Task 1. Recall the demo provided for the “PL/pgSQL. Debugging” lecture.
We did not have any issues with setting this parameter because the demo
was performed on behalf of the student user, which had superuser rights.

Task	1.	Role	Creation	and	Validation

student=#	CREATE	DATABASE	access_overview;

CREATE	DATABASE

student=#	\c	access_overview

You	are	now	connected	to	database	"access_overview"	as	user	"student".

student=#	CREATE	ROLE	alice	LOGIN	PASSWORD	'alicepass';

CREATE	ROLE

student$	psql	"host=localhost	user=alice	dbname=access_overview	password=alicepass"

Alice	cannot	modify	the	following	parameter	value:

alice=>	SET	log_statement	=	'all';

ERROR:		permission	denied	to	set	parameter	"log_statement"

Task	2.	A	Tracing	Procedure

On	behalf	of	a	superuser,	create	a	procedure	for	modifying	the	parameter	and	make	it	a	SECURITY	DEFINER:

student=#	CREATE	PROCEDURE	trace(val	boolean)
AS	$$
SELECT	set_config(
				'log_statement',
				CASE	WHEN	val	THEN	'all'	ELSE	'none'	END,
				false	/*	is_local	*/
);
$$	LANGUAGE	sql	SECURITY	DEFINER;

CREATE	PROCEDURE

Revoke	the	execution	privilege	from	the	public	role...

student=#	REVOKE	EXECUTE	ON	PROCEDURE	trace	FROM	public;

REVOKE

...and	grant	it	to	Alice.	Instead	of	choosing	between	FUNCTION	and	PROCEDURE,	almost	all	commands	(except	for
CREATE)	allow	using	ROUTINE	as	a	generic	term:

student=#	GRANT	EXECUTE	ON	ROUTINE	trace	TO	alice;

GRANT

Now	Alice	can	enable	and	disable	tracing,	even	having	no	direct	access	to	this	parameter:

alice=>	CALL	trace(true);

CALL

alice=>	SELECT	2*2;

	?column?	

								4
(1	row)

alice=>	CALL	trace(false);

CALL

student$	tail	-n	2	/var/log/postgresql/postgresql-12-main.log

2021-10-19	17:06:25.984	MSK	[46883]	alice@access_overview	LOG:		statement:	SELECT	2*2;
2021-10-19	17:06:26.025	MSK	[46883]	alice@access_overview	LOG:		statement:	CALL	trace(false);

