

PL/pgSQL

Triggers

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Triggers and trigger functions

Triggers’ firing time

Execution context of a trigger function

Return values

Dos and don’ts when using triggers

Event triggers

3

Triggers and Functions

A trigger
a database object: the list of events to process
once an event occurs, the trigger function is called,
and the call context is passed to this function

Trigger functions
a database object: event-processing code
is executed in the same transaction as the main operation
convention: the function does not take any parameters,
returns a value of the trigger pseudotype (which is virtually a record)

can be used in several triggers

Triggers enables us to perform particular actions in response to particular
events. A trigger consists of two parts: the trigger itself (which defines the
events) and a trigger function (which defines the actions). Both the trigger
and the function are independent database objects.

When an event occurs to which the trigger is subscribed, the trigger function
is called. It receives the context of the call that defines the exact trigger that
has called the function and the exact conditions that have led to this call.

A trigger function is a regular function that follows some conventions:

- It can be written in any language except pure SQL.

- It must have no parameters.

- Its return value is of the trigger type (it is actually a pseudotype;
a record corresponding to a table row is returned instead).

The trigger function is executed in the same transaction as the main
operation. Thus, if a trigger function results in an error, the whole
transaction is aborted.

https://postgrespro.com/docs/postgresql/12/trigger-definition

4

Events

INSERT, UPDATE, DELETE

tables before/after statement
before/after row

views before/after statement
instead of row

TRUNCATE

tables before/after statement

WHEN condition

sets an additional filter

Triggers can fire for INSERT, UPDATE, or DELETE operations performed on
tables or views, as well as for the TRUNCATE operation on tables.

A trigger can fire before the specified action (BEFORE), after the action
(AFTER), or instead of the action (INSTEAD OF).

A trigger can fire once for the whole operation (FOR EACH STATEMENT)
or for each affected row (FOR EACH ROW).

There are some combinations of these conditions that are not supported.
For example, INSTEAD OF triggers can be defined only for views at the
row level, while TRUNCATE triggers can be defined only for tables and only
at the statement level. Possible combinations are listed on this slide.

Besides, you can limit the area controlled by the trigger by specifying the
WHEN condition: if this condition is false, the trigger does
not fire.

https://postgrespro.com/docs/postgresql/12/sql-createtrigger

5

Before Statement

Is triggered
before the operation

Return value
is ignored

Context
TG variables

BEFORE STATEMENT

op
er

at
io

n
ex

ec
ut

io
n

Let’s take a closer look at different trigger types.

The BEFORE STATEMENT trigger fires only once per operation, regardless
of the number of affected rows (even if there is none). It happens before the
start of the operation.

The return value of the trigger function is ignored, it can simply return NULL.
If there is an error in the trigger, the operation is canceled.

Since the trigger function has no parameters, the call context in PL/pgSQL
is passed via predefined TG variables, such as:

- TG_WHEN = “BEFORE”

- TG_LEVEL = “STATEMENT”

- TG_OP = “INSERT”/“UPDATE”/“DELETE”/“TRUNCATE”

You can also pass a user-defined context (which is analogous to the absent
parameters) via the TG_ARGV variable, although it is usually advisable to
create several specialized functions instead of a single generic one.

https://postgrespro.com/docs/postgresql/12/plpgsql-trigger

6

Before Row

Is triggered
before the action on the row
during the statement execution

Return value
a row (possibly modified)
null cancels the operation

Context
OLD update, delete
NEW insert, update

TG variables

BEFORE STATEMENT

op
er

at
io

n
ex

ec
ut

io
n

BEFORE ROW

BEFORE ROW triggers fire each time an operation is about to process a row.
It happens right during the operation execution.

Trigger functions get the context via variables, such as:

- OLD — an old state of the row (undefined for insertion)

- NEW — an updated state of the row (undefined for deletion)

- TG_WHEN = “BEFORE”

- TG_LEVEL = “ROW”

- TG_OP = “INSERT”/“UPDATE”/“DELETE”

The NULL return value is interpreted as cancellation of the action for the
current row. The execution of the operation itself will continue, but the
current row won’t be processed, and other triggers won’t fire for this row.

To avoid interfering with the operation, the trigger must return the received
row without any modifications, so it must always return NEW for insert and
update operations. For delete operations, it can return any value except
NULL (usually OLD is used).

But the trigger function can also change the NEW value to affect the result of
the operation; this trigger is often defined exactly for this purpose.

7

Instead of Row

Is triggered
instead of the action on the row
for views

Return value
a row (possibly modified) —
is shown in RETURNING

null cancels the operation

Context
OLD update, delete
NEW insert, update

TG variables

BEFORE STATEMENT

op
er

at
io

n
ex

ec
ut

io
n

BEFORE ROW
INSTEAD OF ROW

INSTEAD OF triggers are very similar to BEFORE triggers, but they can
be defined only for views and fire instead of the specified operation, not
before it.

Such triggers usually perform operations on the base tables for views. The
trigger can also return a modified NEW value: this value will be available
when performing an operation with the RETURNING clause.

8

After Row

Is triggered
after the operation
the queue of rows satisfying the WHEN condition

Return value
is ignored

Context
OLD, OLD TABLE update, delete
NEW, NEW TABLE insert, update

TG variables

BEFORE STATEMENT

AFTER ROW

op
er

at
io

n
ex

ec
ut

io
n

BEFORE ROW
INSTEAD OF ROW

Just as BEFORE ROW, AFTER ROW triggers fire for each affected row; but it
happens only after the whole operation is complete, not immediately after
processing the row. For this purpose, all events are placed in a queue and
processed after the operation has finished. The fewer events get queued,
the smaller overhead will be incurred; that’s why it is recommended to use
the WHEN clause in this case, which allows us to filter out the rows that we
definitely won't need.

The return value of the AFTER ROW triggers is ignored (because the
operation is already complete).

The context of the trigger function is constituted by the following variables:

- OLD — an old value of the row (undefined for insertion)

- NEW — an updated value of the row (undefined for deletion)

Apart from these variables, in PostgreSQL 10 or higher, the trigger function
can get access to special transition tables. The table listed in trigger
definition as OLD TABLE contains old values of the rows processed by the
trigger; NEW TABLE provides updated values of these rows.

Regular TG variables are also available, including the following ones:

- TG_WHEN = “AFTER”

- TG_LEVEL = “ROW”

- TG_OP = “INSERT”/“UPDATE”/“DELETE”

9

After Statement

Is triggered
after the operation
(even if none of the rows are affected)

Return value
is ignored

Context
OLD TABLE update, delete
NEW TABLE insert, update

TG variables

BEFORE STATEMENT

AFTER STATEMENT

AFTER ROW

op
er

at
io

n
ex

ec
ut

io
n

BEFORE ROW
INSTEAD OF ROW

The AFTER STATEMENT trigger fires after the operation has completed
(including all the AFTER ROW triggers, if any). This trigger fires only once
regardless of the number of the affected rows.

The return value of the trigger function is ignored.

The call context is passed using transition tables. The trigger function can
access these table to analyze all the affected rows. Transition tables are
usually used with AFTER STATEMENT, not with AFTER ROW triggers.

Besides, regular TG variables are defined, such as:

- TG_WHEN = “AFTER”

- TG_LEVEL = “STATEMENT”

- TG_OP = “INSERT”/“UPDATE”/“DELETE”/“TRUNCATE”

The	Triggers’	Firing	Order

Let’s	create	a	“universal”	trigger	function	that	describes	the	context	in	which	it	is	called.	The	context	is	passed	in	various
TG	variables.

We	are	going	to	define	triggers	for	various	events	and	observe	the	order	in	which	the	triggers	are	fired	during	execution.

=>	CREATE	OR	REPLACE	FUNCTION	describe()	RETURNS	trigger
AS	$$
DECLARE
				rec	record;
				str	text	:=	'';
BEGIN
				IF	TG_LEVEL	=	'ROW'	THEN
								CASE	TG_OP
												WHEN	'DELETE'	THEN	rec	:=	OLD;	str	:=	OLD::text;
												WHEN	'UPDATE'	THEN	rec	:=	NEW;	str	:=	OLD	||	'	->	'	||	NEW;
												WHEN	'INSERT'	THEN	rec	:=	NEW;	str	:=	NEW::text;
								END	CASE;
				END	IF;
				RAISE	NOTICE	'%	%	%	%:	%',
								TG_TABLE_NAME,	TG_WHEN,	TG_OP,	TG_LEVEL,	str;
				RETURN	rec;
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

A	table:

=>	CREATE	TABLE	t(
				id	integer	PRIMARY	KEY,
				s	text
);

CREATE	TABLE

Triggers	at	the	statement	level:

=>	CREATE	TRIGGER	t_before_stmt
BEFORE	INSERT	OR	UPDATE	OR	DELETE	--	events
ON	t																														--	table
FOR	EACH	STATEMENT																--	level
EXECUTE	FUNCTION	describe();						--	trigger	function

CREATE	TRIGGER

=>	CREATE	TRIGGER	t_after_stmt
AFTER	INSERT	OR	UPDATE	OR	DELETE	ON	t
FOR	EACH	STATEMENT	EXECUTE	FUNCTION	describe();

CREATE	TRIGGER

Triggers	at	the	row	level:

=>	CREATE	TRIGGER	t_before_row
BEFORE	INSERT	OR	UPDATE	OR	DELETE	ON	t
FOR	EACH	ROW	EXECUTE	FUNCTION	describe();

CREATE	TRIGGER

=>	CREATE	TRIGGER	t_after_row
AFTER	INSERT	OR	UPDATE	OR	DELETE	ON	t
FOR	EACH	ROW	EXECUTE	FUNCTION	describe();

CREATE	TRIGGER

Let’s	perform	an	insert	operation:

=>	INSERT	INTO	t	VALUES	(1,'aaa');

NOTICE:		t	BEFORE	INSERT	STATEMENT:	
NOTICE:		t	BEFORE	INSERT	ROW:	(1,aaa)
NOTICE:		t	AFTER	INSERT	ROW:	(1,aaa)
NOTICE:		t	AFTER	INSERT	STATEMENT:	
INSERT	0	1

And	now	run	an	update	operation:

=>	UPDATE	t	SET	s	=	'bbb';

NOTICE:		t	BEFORE	UPDATE	STATEMENT:	
NOTICE:		t	BEFORE	UPDATE	ROW:	(1,aaa)	->	(1,bbb)
NOTICE:		t	AFTER	UPDATE	ROW:	(1,aaa)	->	(1,bbb)
NOTICE:		t	AFTER	UPDATE	STATEMENT:	
UPDATE	1

Statement-level	triggers	will	fire	even	if	the	command	has	not	processed	any	rows	at	all:

=>	UPDATE	t	SET	s	=	'ccc'	where	id	=	0;

NOTICE:		t	BEFORE	UPDATE	STATEMENT:	
NOTICE:		t	AFTER	UPDATE	STATEMENT:	
UPDATE	0

Here	is	a	subtle	point:	the	INSERT	statement	with	the	ON	CONFLICT	clause	activates	BEFORE	triggers	both	on	inserts
and	updates:

=>	INSERT	INTO	t	VALUES	(1,'ccc'),	(3,'ddd')
ON	CONFLICT(id)	DO	UPDATE	SET	s	=	EXCLUDED.s;

NOTICE:		t	BEFORE	INSERT	STATEMENT:	
NOTICE:		t	BEFORE	UPDATE	STATEMENT:	
NOTICE:		t	BEFORE	INSERT	ROW:	(1,ccc)
NOTICE:		t	BEFORE	UPDATE	ROW:	(1,bbb)	->	(1,ccc)
NOTICE:		t	BEFORE	INSERT	ROW:	(3,ddd)
NOTICE:		t	AFTER	UPDATE	ROW:	(1,bbb)	->	(1,ccc)
NOTICE:		t	AFTER	INSERT	ROW:	(3,ddd)
NOTICE:		t	AFTER	UPDATE	STATEMENT:	
NOTICE:		t	AFTER	INSERT	STATEMENT:	
INSERT	0	2

And	finally,	let’s	try	out	deletion:

=>	DELETE	FROM	t;

NOTICE:		t	BEFORE	DELETE	STATEMENT:	
NOTICE:		t	BEFORE	DELETE	ROW:	(1,ccc)
NOTICE:		t	BEFORE	DELETE	ROW:	(3,ddd)
NOTICE:		t	AFTER	DELETE	ROW:	(1,ccc)
NOTICE:		t	AFTER	DELETE	ROW:	(3,ddd)
NOTICE:		t	AFTER	DELETE	STATEMENT:	
DELETE	2

Transition	Tables

Let’s	create	a	trigger	function	that	shows	the	contents	of	transition	tables.	Here	we	use	old_table	and	new_table	names:
they	will	be	declared	as	part	of	the	trigger	definition.

Transition	tables	look	just	like	regular	ones,	but	they	are	not	included	into	the	system	catalog	and	are	located	in	RAM
(although	they	can	be	flushed	to	disk	if	they	get	too	large).

=>	CREATE	OR	REPLACE	FUNCTION	transition()	RETURNS	trigger
AS	$$
DECLARE
				rec	record;
BEGIN
				IF	TG_OP	=	'DELETE'	OR	TG_OP	=	'UPDATE'	THEN
								RAISE	NOTICE	'Old	state:';
								FOR	rec	IN	SELECT	*	FROM	old_table	LOOP
												RAISE	NOTICE	'%',	rec;
								END	LOOP;
				END	IF;
				IF	TG_OP	=	'UPDATE'	OR	TG_OP	=	'INSERT'	THEN
								RAISE	NOTICE	'New	state:';
								FOR	rec	IN	SELECT	*	FROM	new_table	LOOP
												RAISE	NOTICE	'%',	rec;
								END	LOOP;
				END	IF;
				RETURN	NULL;
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	create	a	new	table:

=>	CREATE	TABLE	trans(

				id	integer	PRIMARY	KEY,
				n	integer
);

CREATE	TABLE

=>	INSERT	INTO	trans	VALUES	(1,10),	(2,20),	(3,30);

INSERT	0	3

To	create	transition	tables	for	an	operation,	you	have	to	specify	their	names	in	the	trigger	definition:

=>	CREATE	TRIGGER	t_after_upd_trans
AFTER	UPDATE	ON	trans	--	one	event	per	trigger
REFERENCING
				OLD	TABLE	AS	old_table	--	it’s	OK	to	specify	only	one	table,
				NEW	TABLE	AS	new_table	--	there	is	no	need	to	provide	both
FOR	EACH	STATEMENT
EXECUTE	FUNCTION	transition();

CREATE	TRIGGER

Let’s	check	the	result:

=>	UPDATE	trans	SET	n	=	n	+	1	WHERE	n	<=	20;

NOTICE:		Old	state:
NOTICE:		(1,10)
NOTICE:		(2,20)
NOTICE:		New	state:
NOTICE:		(1,11)
NOTICE:		(2,21)
UPDATE	2

Transition	tables	contain	only	those	rows	that	have	been	affected	by	the	operation.

In	addition	to	updates,	transition	tables	are	also	supported	for	INSERT	and	DELETE	operations,	although	OLD	TABLE	is
unavailable	for	inserts,	while	NEW	TABLE	is	unavailable	for	deletes.

Since	AFTER	ROW	triggers	fire	after	the	whole	operation	is	completed,	they	can	also	use	transition	tables.	But	there	is
usually	no	point	in	it.

11

Possible Use Cases

changing the base tables for views

consistency checks,
including table-level checks;
logging operations for audit purposes;
cascading table updates (denormalization,
asynchronous processing...)

operation applicability checks

correctness checks;
row modifications

BEFORE STATEMENT

AFTER STATEMENT

AFTER ROW

op
er

at
io

n
ex

ec
ut

io
n

BEFORE ROW

INSTEAD OF ROW

How can we put this theory into practice?

BEFORE triggers can be used to check that the operation is valid and to
raise errors if required.

BEFORE ROW triggers can be used to modify a row (for example, fill an
empty field with the required value). It is convenient to use such triggers to
avoid repeating the logic of filling out “technical” fields in each operation, as
well as tweak the application behavior if its code cannot be modified.

INSTEAD OF ROW triggers are used to translate operations on views into
the corresponding operations on the underlying base tables.

AFTER ROW and AFTER STATEMENT triggers can be useful for getting
the exact state after the operation (BEFORE triggers may affect the result,
so the state is not yet clear at this stage):

- to check consistency of the operation

- to perform audit operations, i.e., logging all changes in a separate storage

- to cascade changes to other tables (for example, to update denormalized
data if the base tables have changed, or queue changes for subsequent
processing outside of the current transaction)

If the operation affects multiple rows, it may be more efficient to use AFTER
STATEMENT on transition tables instead of AFTER ROW as it can process
changes in batches.

12

Challenges

The code is called implicitly
the execution logic is hard to track

Visibility rules for volatile trigger functions
the result of BEFORE ROW and INSTEAD OF ROW triggers is visible

The order of calling triggers for one and the same event
triggers fire in the alphabetical order

Infinite looping can occur
a trigger can activate other triggers

Integrity constraints can be broken
for example, by excluding the rows that have to be deleted

Triggers should not be overused. As they fire implicitly, the logic of the
application becomes obscure, thus making its maintenance hugely
complicated. Attempts to use triggers for implementing complex logic are
usually quite unfortunate.

In some cases, you can use generated columns instead of triggers
(GENERATED ALWAYS AS ... STORED). If applicable, this solution is sure
to be more transparent and easier to implement.

There is a number of subtle points related to using triggers; we consciously
skip their detailed discussion here:

- visibility rules of volatile functions in BEFORE ROW and INSTEAD OF ROW
triggers (do not rely on the order of triggers when accessing a table)

- the order of calling several triggers on one and the same event (do not
aggravate implicit firing of triggers by relying on their exact processing
sequence)

- a possibility of infinite looping if cascade firing of triggers leads to another
activation of the first trigger

- a risk of integrity constraint violation (for example, referential integrity can
be compromised when skipping a row deleted by the ON DELETE CASCADE
condition)

If you see that these subtleties are important for your application, you
should seriously consider redesign.

Examples	of	Using	Triggers

Example	1:	saving	the	history	of	row	updates.

Suppose	we	have	a	table	that	contains	the	current	data.	The	task	is	to	save	the	main	table’s	history	of	all	row	updates	into
a	separate	table.

Historical	table	support	could	be	delegated	to	the	application,	but	chances	are	high	that	some	part	of	the	history	won’t	be
saved	if	an	error	occurs.	That’s	why	we	are	going	to	solve	this	problem	using	triggers.

The	main	table:

=>	CREATE	TABLE	coins(
				face_value	numeric,
				name	text
);

CREATE	TABLE

To	get	the	name	of	the	historical	table,	we	must	extend	the	name	of	the	main	table	with	the	“_history”	suffix.	We	are	going
to	clone	the	main	table...

=>	CREATE	TABLE	coins_history(LIKE	coins);

CREATE	TABLE

...and	then	add	columns	containing	“valid	from”	and	“valid	until”:

=>	ALTER	TABLE	coins_history
				ADD	start_date	timestamp,
				ADD	end_date	timestamp;

ALTER	TABLE

The	first	trigger	function	will	be	inserting	a	new	historical	row	with	an	open	validity	interval:

=>	CREATE	OR	REPLACE	FUNCTION	history_insert()	RETURNS	trigger
AS	$$
BEGIN
				EXECUTE	format(
								'INSERT	INTO	%I	SELECT	($1).*,	current_timestamp,	NULL',
								TG_TABLE_NAME||'_history'
)	USING	NEW;

				RETURN	NEW;
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

The	second	function	will	be	closing	the	historical	row’s	validity	interval:

=>	CREATE	OR	REPLACE	FUNCTION	history_delete()	RETURNS	trigger
AS	$$
BEGIN
				EXECUTE	format(
								'UPDATE	%I	SET	end_date	=	current_timestamp	WHERE	face_value	=	$1	AND	end_date	IS	NULL',
								TG_TABLE_NAME||'_history'
)	USING	OLD.face_value;

				RETURN	OLD;
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

Now	let’s	define	triggers.	Some	important	points	to	keep	in	mind:

An	update	is	treated	as	deletion	followed	by	insertion;	the	order	of	triggers	is	important	here	(they	fire	in	the
alphabetical	order).
Current_timestamp	returns	the	time	of	the	transaction	start,	so	if	an	update	is	performed,	the	start_date	of	one	row
will	be	the	same	as	the	end_date	of	another	row.
Using	AFTER	triggers	allows	avoiding	issues	with	INSERT	...	ON	CONFLICT	and	potential	conflicts	with	other
triggers	that	may	be	defined	on	the	main	table.

=>	CREATE	TRIGGER	coins_history_insert
AFTER	INSERT	OR	UPDATE	ON	coins
FOR	EACH	ROW	EXECUTE	FUNCTION	history_insert();

CREATE	TRIGGER

=>	CREATE	TRIGGER	coins_history_delete
AFTER	UPDATE	OR	DELETE	ON	coins
FOR	EACH	ROW	EXECUTE	FUNCTION	history_delete();

CREATE	TRIGGER

Let’s	check	our	trigger	implementation:

=>	INSERT	INTO	coins	VALUES	(25,	'quarter'),	(10,	'dime');

INSERT	0	2

=>	UPDATE	coins	SET	name	=	'10	cents'	WHERE	face_value	=	10;

UPDATE	1

=>	INSERT	INTO	coins	VALUES	(5,	'5	cents');

INSERT	0	1

=>	DELETE	FROM	coins	WHERE	face_value	=	25;

DELETE	1

=>	SELECT	*	FROM	coins;

	face_value	|			name			
------------+----------
									10	|	10	cents
										5	|	5	cents
(2	rows)

The	historical	table	stores	the	whole	history	of	changes:

=>	SELECT	*	FROM	coins_history	ORDER	BY	face_value,	start_date;

	face_value	|			name			|									start_date									|										end_date										
------------+----------+----------------------------+----------------------------
										5	|	5	cents		|	2021-10-19	17:03:29.640643	|	
									10	|	dime					|	2021-10-19	17:03:26.467985	|	2021-10-19	17:03:28.604121
									10	|	10	cents	|	2021-10-19	17:03:28.604121	|	
									25	|	quarter		|	2021-10-19	17:03:26.467985	|	2021-10-19	17:03:31.672098
(4	rows)

And	now	we	can	use	it	to	restore	the	state	at	any	point	in	time	(similar	to	the	MVCC	mechanism).	For	example,	at	the	very
beginning	the	table	looked	as	follows:

=>	\set	d	'2021-10-19	17:03:26.578844+03'

=>	SELECT	face_value,	name
FROM	coins_history
WHERE	start_date	<=	:'d'	AND	(end_date	IS	NULL	OR	:'d'	<	end_date)
ORDER	BY	face_value;

	face_value	|		name			
------------+---------
									10	|	dime
									25	|	quarter
(2	rows)

Examples	of	Using	Triggers

Example	2:	an	updatable	view.

Suppose	we	have	two	tables:	airports	and	flights:

=>	CREATE	TABLE	airports(
				code	char(3)	PRIMARY	KEY,
				name	text	NOT	NULL
);

CREATE	TABLE

=>	INSERT	INTO	airports	VALUES
				('LHR',	'London.	Heathrow'),
				('CDG',	'Paris.	Charles	de	Gaulle'),
				('JFK',	'New	York.	John	F.	Kennedy');

INSERT	0	3

=>	CREATE	TABLE	flights(
				id	integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY,
				airport_from	char(3)	NOT	NULL	REFERENCES	airports(code),
				airport_to			char(3)	NOT	NULL	REFERENCES	airports(code),
				UNIQUE	(airport_from,	airport_to)
);

CREATE	TABLE

=>	INSERT	INTO	flights(airport_from,	airport_to)	VALUES
				('LHR','CDG');

INSERT	0	1

For	convenience,	we	can	define	a	view:

=>	CREATE	VIEW	flights_v	AS
SELECT	id,
							(SELECT	name
								FROM	airports
								WHERE	code	=	airport_from)	airport_from,
							(SELECT	name
								FROM	airports
								WHERE	code	=	airport_to)	airport_to
FROM	flights;

CREATE	VIEW

=>	SELECT	*	FROM	flights_v;

	id	|			airport_from			|								airport_to								
----+------------------+--------------------------
		1	|	London.	Heathrow	|	Paris.	Charles	de	Gaulle
(1	row)

But	such	a	view	does	not	support	updates.	For	example,	you	won’t	be	able	to	change	the	destination	point	using	the
following	command:

=>	UPDATE	flights_v
SET	airport_to	=	'New	York.	John	F.	Kennedy'
WHERE	id	=	1;

ERROR:		cannot	update	column	"airport_to"	of	view	"flights_v"
DETAIL:		View	columns	that	are	not	columns	of	their	base	relation	are	not	updatable.

But	we	can	define	a	trigger.	A	trigger	function	can	look	as	follows	(for	brevity,	we’ll	process	only	the	destination	airport,
but	it’s	not	hard	to	add	the	departure	airport	as	well):

=>	CREATE	OR	REPLACE	FUNCTION	flights_v_update()	RETURNS	trigger
AS	$$
DECLARE
				code_to	char(3);
BEGIN
				BEGIN
								SELECT	code	INTO	STRICT	code_to
								FROM	airports
								WHERE	name	=	NEW.airport_to;
				EXCEPTION
								WHEN	no_data_found	THEN
												RAISE	EXCEPTION	'Airport	%	is	missing',	NEW.airport_to;
				END;
				UPDATE	flights
				SET	airport_to	=	code_to
				WHERE	id	=	OLD.id;	--	ignore	the	id	change
				RETURN	NEW;
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

And	the	trigger	itself	will	look	like	this:

=>	CREATE	TRIGGER	flights_v_upd_trigger
INSTEAD	OF	UPDATE	ON	flights_v
FOR	EACH	ROW	EXECUTE	FUNCTION	flights_v_update();

CREATE	TRIGGER

Let’s	check	the	result:

=>	UPDATE	flights_v
SET	airport_to	=	'New	York.	John	F.	Kennedy'
WHERE	id	=	1;

UPDATE	1

=>	SELECT	*	FROM	flights_v;

	id	|			airport_from			|								airport_to									
----+------------------+---------------------------
		1	|	London.	Heathrow	|	New	York.	John	F.	Kennedy
(1	row)

An	attempt	to	update	the	airport	to	the	one	missing	from	the	table:

=>	UPDATE	flights_v
SET	airport_to	=	'Amsterdam.	Schiphol'
WHERE	id	=	1;

ERROR:		Airport	Amsterdam.	Schiphol	is	missing
CONTEXT:		PL/pgSQL	function	flights_v_update()	line	11	at	RAISE

14

Event Triggers

An event trigger
is similar to a regular trigger defined on a table, but is a separate object

Trigger functions
convention: a function does not take any parameters,
returns a value of the event_trigger pseudotype

the call context is retrieved using special functions

Events
DDL_COMMAND_START before command execution

DDL_COMMAND_END after command execution
TABLE_REWRITE before rewriting the table

SQL_DROP after deleting objects

Event triggers are virtually the same as regular triggers, but instead of firing
on DML operations, they fire on DDL operations (CREATE, ALTER, DROP,
COMMENT, GRANT, REVOKE).

Such triggers are not an application development tool; they are mainly used
for database administration purposes. We only mention them here to give
you a complete picture, so we’ll provide a very basic example.

https://postgrespro.com/docs/postgresql/12/event-trigger-definition

https://postgrespro.com/docs/postgresql/12/event-trigger-matrix

https://postgrespro.com/docs/postgresql/12/sql-createeventtrigger

https://postgrespro.com/docs/postgresql/12/functions-event-triggers

Event	Triggers

Let’s	consider	an	example	of	a	trigger	for	the	ddl_command_end	event,	which	corresponds	to	the	end	of	a	DDL	operation.

Create	a	function	that	describes	the	context	of	the	call:

=>	CREATE	OR	REPLACE	FUNCTION	describe_ddl()	RETURNS	event_trigger
AS	$$
DECLARE
				r	record;
BEGIN
				--	For	the	ddl_command_end	event,	there	is	a	special	function	for	getting	the	context	of	the	call
				FOR	r	IN	SELECT	*	FROM	pg_event_trigger_ddl_commands()
				LOOP
								RAISE	NOTICE	'%.	type:	%,	OID:	%,	name:	%	',
												r.command_tag,	r.object_type,	r.objid,	r.object_identity;
				END	LOOP;
				--	Event	trigger	functions	do	not	have	to	return	a	value
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

The	trigger	itself	will	look	as	follows:

=>	CREATE	EVENT	TRIGGER	after_ddl
ON	ddl_command_end	EXECUTE	FUNCTION	describe_ddl();

CREATE	EVENT	TRIGGER

Let’s	create	a	new	table:

=>	CREATE	TABLE	t1(id	integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY);

NOTICE:		CREATE	SEQUENCE.	type:	sequence,	OID:	16833,	name:	public.t1_id_seq	
NOTICE:		CREATE	TABLE.	type:	table,	OID:	16835,	name:	public.t1	
NOTICE:		CREATE	INDEX.	type:	index,	OID:	16838,	name:	public.t1_pkey	
NOTICE:		ALTER	SEQUENCE.	type:	sequence,	OID:	16833,	name:	public.t1_id_seq	
CREATE	TABLE

A	table	creation	can	lead	to	invocation	of	several	DDL	commands,	that’s	why	the	pg_event_trigger_ddl_commands	function
returns	a	set	of	rows.

16

Summary

A trigger is a way to address a particular event

Using triggers, you can cancel an operation, modify its outcome,
or perform additional actions

Triggers are executed as part of the main transaction;
an error in a trigger aborts this transaction

Using AFTER ROW triggers and transition tables makes processing
more expensive

Everything is good in moderation: complex logic is hard to
debug because of implicit trigger execution

17

Practice

1. Create a trigger that handles updates of the onhand_qty field
in the catalog_v view.

Check that the “Catalog” now allows ordering books.

2. Make sure that the following consistency requirement is met:
the amount of available books cannot be negative (it is
impossible to buy a book if it is not in stock).

Check your implementation carefully, keeping in mind that the
application can be accessed by several users simultaneously.

Task 2. It may seem that it’s enough to define the AFTER trigger on the
operations table to calculate the qty_change sum. However, at the
READ COMMITTED isolation level used in the “Bookstore” application, we will
have to acquire an exclusive lock on this table: otherwise, the check may
not function properly in some scenarios.

Here is a better approach: extend the books table with the onhand_qty
column and create a trigger that will be modifying onhand_qty values when
the operations table is changed (i.e., you should virtually perform data
denormalization). You can now define the CHECK constraint on the
onhand_qty field to ensure data consistency. The onhand_qty() function
created earlier is no longer required.

You should pay special attention to setting the initial value, keeping in mind
that the database system may be serving some users while we perform
these changes.

Task	1.	Using	a	Trigger	to	Update	the	Catalog

=>	CREATE	OR	REPLACE	FUNCTION	update_catalog()	RETURNS	trigger
AS	$$
BEGIN
				INSERT	INTO	operations(book_id,	qty_change)	VALUES
								(OLD.book_id,	NEW.onhand_qty	-	coalesce(OLD.onhand_qty,0));
				RETURN	NEW;
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	CREATE	TRIGGER	update_catalog_trigger
INSTEAD	OF	UPDATE	ON	catalog_v
FOR	EACH	ROW
EXECUTE	FUNCTION	update_catalog();

CREATE	TRIGGER

Task	2.	Checking	the	Quantity	of	Books

Let’s	extend	the	table	with	the	column	that	will	store	the	quantity	of	the	books	available.	(For	versions	prior	to	11,	it	is
important	to	take	into	account	that	the	DEFAULT	clause	will	cause	overwriting	of	all	table	rows	while	holding	the	lock.)

=>	ALTER	TABLE	books	ADD	COLUMN	onhand_qty	integer;

ALTER	TABLE

The	trigger	function	for	the	AFTER	trigger,	which	is	fired	on	insertion	to	update	the	quantity	of	available	books	(we
assume	that	the	onhand_qty	field	cannot	be	empty):

=>	CREATE	OR	REPLACE	FUNCTION	update_onhand_qty()	RETURNS	trigger
AS	$$
BEGIN
				UPDATE	books
				SET	onhand_qty	=	onhand_qty	+	NEW.qty_change
				WHERE	book_id	=	NEW.book_id;
				RETURN	NULL;
END;
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

The	remaining	operations	are	performed	within	a	single	transaction.

=>	BEGIN;

BEGIN

Locking	the	table	for	the	duration	of	the	transaction:

=>	LOCK	TABLE	operations;

LOCK	TABLE

Providing	the	initial	value:

=>	UPDATE	books	b
SET	onhand_qty	=	(
				SELECT	coalesce(sum(qty_change),0)
				FROM	operations	o
				WHERE	o.book_id	=	b.book_id
);

UPDATE	7

Defining	constraints	now	that	the	field	is	non-empty:

=>	ALTER	TABLE	books	ALTER	COLUMN	onhand_qty	SET	DEFAULT	0;

ALTER	TABLE

=>	ALTER	TABLE	books	ALTER	COLUMN	onhand_qty	SET	NOT	NULL;

ALTER	TABLE

=>	ALTER	TABLE	books	ADD	CHECK(onhand_qty	>=	0);

ALTER	TABLE

Creating	a	trigger:

=>	CREATE	TRIGGER	update_onhand_qty_trigger
AFTER	INSERT	ON	operations
FOR	EACH	ROW
EXECUTE	FUNCTION	update_onhand_qty();

CREATE	TRIGGER

Done.

=>	COMMIT;

COMMIT

Now	the	books.onhand_qty	column	is	being	updated,	but	the	catalog_v	view	still	calls	a	function	to	calculate	the	number	of
books.	Although	the	syntax	used	for	function	access	in	the	initial	query	is	the	same	as	that	for	the	field	access,	the	query
has	been	stored	in	a	different	form:

=>	\d+	catalog_v

																												View	"bookstore.catalog_v"
				Column				|		Type			|	Collation	|	Nullable	|	Default	|	Storage		|	Description	
--------------+---------+-----------+----------+---------+----------+-------------
	book_id						|	integer	|											|										|									|	plain				|	
	title								|	text				|											|										|									|	extended	|	
	onhand_qty			|	integer	|											|										|									|	plain				|	
	display_name	|	text				|											|										|									|	extended	|	
	authors						|	text				|											|										|									|	extended	|	
View	definition:
	SELECT	b.book_id,
				b.title,
				onhand_qty(b.*)	AS	onhand_qty,
				book_name(b.book_id,	b.title)	AS	display_name,
				authors(b.*)	AS	authors
			FROM	books	b
		ORDER	BY	(book_name(b.book_id,	b.title));
Triggers:
				update_catalog_trigger	INSTEAD	OF	UPDATE	ON	catalog_v	FOR	EACH	ROW	EXECUTE	FUNCTION	update_catalog()

Let’s	replace	the	view:

=>	CREATE	OR	REPLACE	VIEW	catalog_v	AS
SELECT	b.book_id,
							b.title,
							b.onhand_qty,
							book_name(b.book_id,	b.title)	AS	display_name,
							b.authors
FROM			books	b
ORDER	BY	display_name;

CREATE	VIEW

Now	the	function	can	be	deleted.

=>	DROP	FUNCTION	onhand_qty(books);

DROP	FUNCTION

Let’s	run	a	small	check:

=>	SELECT	*	FROM	catalog_v	WHERE	book_id	=	1	\gx

-[RECORD	1]+--
book_id						|	1
title								|	The	Tale	of	Tsar	Saltan
onhand_qty			|	19
display_name	|	The	Tale	of	Tsar	Saltan.	Alexander	S.	Pushkin
authors						|	Alexander	Sergeyevich	Pushkin

=>	INSERT	INTO	operations(book_id,	qty_change)	VALUES	(1,+10);

INSERT	0	1

=>	SELECT	*	FROM	catalog_v	WHERE	book_id	=	1	\gx

-[RECORD	1]+--
book_id						|	1
title								|	The	Tale	of	Tsar	Saltan
onhand_qty			|	29
display_name	|	The	Tale	of	Tsar	Saltan.	Alexander	S.	Pushkin
authors						|	Alexander	Sergeyevich	Pushkin

Incorrect	operations	are	aborted:

=>	INSERT	INTO	operations(book_id,	qty_change)	VALUES	(1,-100);

ERROR:		new	row	for	relation	"books"	violates	check	constraint	"books_onhand_qty_check"
DETAIL:		Failing	row	contains	(1,	The	Tale	of	Tsar	Saltan,	-71).
CONTEXT:		SQL	statement	"UPDATE	books
				SET	onhand_qty	=	onhand_qty	+	NEW.qty_change
				WHERE	book_id	=	NEW.book_id"
PL/pgSQL	function	update_onhand_qty()	line	3	at	SQL	statement

18

Practice

1. Create a trigger that increments the counter (the version field)
by 1 each time a row is updated. If a new row is inserted, the
corresponding counter must be set to 1.
Check the implementation.

2. There are two tables: orders (to store orders) and lines
(to keep order lines).
It is required to perform denormalization: automatically update
the total cost of the order in the orders table once the
corresponding lines have changed.

Create the required triggers using transition tables to minimize
the number of update operations.

Task 2. Use the following commands to create tables:

CREATE TABLE orders (
 id int PRIMARY KEY,
 total_amount numeric(20,2) NOT NULL DEFAULT 0
);

CREATE TABLE lines (
 id int PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
 order_id int NOT NULL REFERENCES orders(id),
 amount numeric(20,2) NOT NULL
);

The orders.total_amount column must be calculated automatically as
the sum of lines.amount values for all rows related to the corresponding
order.

Task	1.	Version	Count

=>	CREATE	DATABASE	plpgsql_triggers;

CREATE	DATABASE

=>	\c	plpgsql_triggers

You	are	now	connected	to	database	"plpgsql_triggers"	as	user	"student".

A	table:

=>	CREATE	TABLE	t(
				id	integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY,
				s	text,
				version	integer
);

CREATE	TABLE

A	trigger	function:

=>	CREATE	OR	REPLACE	FUNCTION	inc_version()	RETURNS	trigger
AS	$$
BEGIN
				IF	TG_OP	=	'INSERT'	THEN
								NEW.version	:=	1;
				ELSE
								NEW.version	:=	OLD.version	+	1;
				END	IF;
				RETURN	NEW;
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

A	trigger:

=>	CREATE	TRIGGER	t_inc_version
BEFORE	INSERT	OR	UPDATE	ON	t
FOR	EACH	ROW	EXECUTE	FUNCTION	inc_version();

CREATE	TRIGGER

The	result:

=>	INSERT	INTO	t(s)	VALUES	('One');

INSERT	0	1

=>	SELECT	*	FROM	t;

	id	|		s		|	version	
----+-----+---------
		1	|	One	|							1
(1	row)

An	explicit	specification	of	version	is	ignored:

=>	INSERT	INTO	t(s,version)	VALUES	('Two',42);

INSERT	0	1

=>	SELECT	*	FROM	t;

	id	|		s		|	version	
----+-----+---------
		1	|	One	|							1
		2	|	Two	|							1
(2	rows)

Let’s	perform	an	update:

=>	UPDATE	t	SET	s	=	lower(s)	WHERE	id	=	1;

UPDATE	1

=>	SELECT	*	FROM	t;

	id	|		s		|	version	
----+-----+---------
		2	|	Two	|							1
		1	|	one	|							2
(2	rows)

The	explicit	specification	is	still	ignored:

=>	UPDATE	t	SET	s	=	lower(s),	version	=	42	WHERE	id	=	2;

UPDATE	1

=>	SELECT	*	FROM	t;

	id	|		s		|	version	
----+-----+---------
		1	|	one	|							2
		2	|	two	|							2
(2	rows)

Task	2.	Calculating	the	Total	Cost	of	Orders	Automatically

Let’s	create	some	tables	with	a	simplified	structure	that	is	sufficient	for	demo	purposes:

=>	CREATE	TABLE	orders	(
				id	integer	PRIMARY	KEY,
				total_amount	numeric(20,2)	NOT	NULL	DEFAULT	0
);

CREATE	TABLE

=>	CREATE	TABLE	lines	(
				id	integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY,
				order_id	integer	NOT	NULL	REFERENCES	orders(id),
				amount	numeric(20,2)	NOT	NULL
);

CREATE	TABLE

A	trigger	function	and	a	trigger	to	process	insertions:

=>	CREATE	FUNCTION	total_amount_ins()	RETURNS	trigger
AS	$$
BEGIN
				WITH	l(order_id,	total_amount)	AS	(
								SELECT	order_id,	sum(amount)
								FROM	new_table
								GROUP	BY	order_id
)
				UPDATE	orders	o
				SET	total_amount	=	o.total_amount	+	l.total_amount
				FROM	l
				WHERE	o.id	=	l.order_id;
				RETURN	NULL;
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

The	FROM	clause	in	the	UPDATE	command	allows	us	to	join	orders	with	a	subquery	on	the	transition	table	and	to	use
subquery	columns	when	calculating	the	total_amount	value.

=>	CREATE	TRIGGER	lines_total_amount_ins
AFTER	INSERT	ON	lines
REFERENCING
				NEW	TABLE	AS	new_table
FOR	EACH	STATEMENT
EXECUTE	FUNCTION	total_amount_ins();

CREATE	TRIGGER

A	trigger	function	and	a	trigger	to	process	updates:

=>	CREATE	FUNCTION	total_amount_upd()	RETURNS	trigger
AS	$$
BEGIN
				WITH	l_tmp(order_id,	amount)	AS	(
								SELECT	order_id,	amount	FROM	new_table
								UNION	ALL
								SELECT	order_id,	-amount	FROM	old_table
),	l(order_id,	total_amount)	AS	(

								SELECT	order_id,	sum(amount)
								FROM	l_tmp
								GROUP	BY	order_id
								HAVING	sum(amount)	<>	0
)
				UPDATE	orders	o
				SET	total_amount	=	o.total_amount	+	l.total_amount
				FROM	l
				WHERE	o.id	=	l.order_id;
				RETURN	NULL;
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

The	HAVING	condition	allows	skipping	changes	that	do	not	affect	the	total	cost	of	the	order.

=>	CREATE	TRIGGER	lines_total_amount_upd
AFTER	UPDATE	ON	lines
REFERENCING
				OLD	TABLE	AS	old_table
				NEW	TABLE	AS	new_table
FOR	EACH	STATEMENT
EXECUTE	FUNCTION	total_amount_upd();

CREATE	TRIGGER

A	trigger	function	and	a	trigger	to	process	deletion:

=>	CREATE	FUNCTION	total_amount_del()	RETURNS	trigger
AS	$$
BEGIN
				WITH	l(order_id,	total_amount)	AS	(
								SELECT	order_id,	-sum(amount)
								FROM	old_table
								GROUP	BY	order_id
)
				UPDATE	orders	o
				SET	total_amount	=	o.total_amount	+	l.total_amount
				FROM	l
				WHERE	o.id	=	l.order_id;
				RETURN	NULL;
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	CREATE	TRIGGER	lines_total_amount_del
AFTER	DELETE	ON	lines
REFERENCING
				OLD	TABLE	AS	old_table
FOR	EACH	STATEMENT
EXECUTE	FUNCTION	total_amount_del();

CREATE	TRIGGER

We	have	not	addressed	the	TRUNCATE	operator	yet.	But	a	trigger	for	this	operator	cannot	use	transition	tables.	However,
we	know	that	there	will	be	no	lines	left	after	TRUNCATE	execution,	so	we	can	zero	out	the	cost	of	all	orders.

=>	CREATE	FUNCTION	total_amount_truncate()	RETURNS	trigger
AS	$$
BEGIN
				UPDATE	orders	SET	total_amount	=	0;
				RETURN	NULL;
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	CREATE	TRIGGER	lines_total_amount_truncate
AFTER	TRUNCATE	ON	lines
FOR	EACH	STATEMENT
EXECUTE	FUNCTION	total_amount_truncate();

CREATE	TRIGGER

Additionally,	we	have	to	forbid	changing	the	total_amount	value	manually,	but	this	problem	is	solved	without	using
triggers.

Let’s	check	the	result.

Add	two	new	orders	without	any	lines:

=>	INSERT	INTO	orders	VALUES	(1),	(2);

INSERT	0	2

=>	SELECT	*	FROM	orders	ORDER	BY	id;

	id	|	total_amount	
----+--------------
		1	|									0.00
		2	|									0.00
(2	rows)

Add	lines	for	these	orders:

=>	INSERT	INTO	lines	(order_id,	amount)	VALUES
				(1,100),	(1,100),	(2,500),	(2,500);

INSERT	0	4

=>	SELECT	*	FROM	lines;

	id	|	order_id	|	amount	
----+----------+--------
		1	|								1	|	100.00
		2	|								1	|	100.00
		3	|								2	|	500.00
		4	|								2	|	500.00
(4	rows)

=>	SELECT	*	FROM	orders	ORDER	BY	id;

	id	|	total_amount	
----+--------------
		1	|							200.00
		2	|						1000.00
(2	rows)

Double	the	sum	of	all	lines	of	all	orders:

=>	UPDATE	lines	SET	amount	=	amount	*	2;

UPDATE	4

=>	SELECT	*	FROM	orders	ORDER	BY	id;

	id	|	total_amount	
----+--------------
		1	|							400.00
		2	|						2000.00
(2	rows)

Now	delete	one	line	of	the	first	order:

=>	DELETE	FROM	lines	WHERE	id	=	1;

DELETE	1

=>	SELECT	*	FROM	orders	ORDER	BY	id;

	id	|	total_amount	
----+--------------
		1	|							200.00
		2	|						2000.00
(2	rows)

Truncate	the	lines	table:

=>	TRUNCATE	lines;

TRUNCATE	TABLE

=>	SELECT	*	FROM	orders	ORDER	BY	id;

	id	|	total_amount	
----+--------------
		1	|									0.00
		2	|									0.00
(2	rows)

