

Basic Tools

Installation and Management; psql

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

PostgreSQL installation types

Managing the server

Server log file

Setting up configuration parameters

Using psql

3

Database Cluster and Server

PostgreSQL

database

database
cluster

Let’s start with the main concepts.

PostgreSQL is a program that belongs to the class of database
management systems.

When this program is running, we call it a PostgreSQL server, or server
instance. A server is still a “black box” for us, but soon we’ll learn how it
works.

All data managed by PostgreSQL is stored in databases. A single
PostgreSQL instance can work with several databases at the same time.
This set of databases is called a database cluster. We'll discuss databases
in more detail in lecture “Data organization. Logical structure”.

To sum it up: a database cluster stores data in files; a server or a server
instance is a program that manages the database cluster.

4

Installation

Installation Types
pre-built packages (preferred)
installation from source code
managed databases (cloud services)

Extensions
provide additional features
are installed separately
are shipped with the server as modules and programs (~50 extensions)

The preferable way to install PostgreSQL is via package managers (such as
rpm or dpkg) using pre-built packages. In this case, you get a
comprehensive installation that is easy to support and upgrade. Pre-built
packages are available for most operating systems.

Another option is to build PostgreSQL from source code. It can be
necessary if you would like to use PostgreSQL in a non-standard
configuration or run it on an exotic platform.

Pre-built packages and source code are available at
http://www.postgresql.org/download/

Besides, you can work with cloud-based managed databases that do not
require any installation at all. Such ready-to-use services are provided by all
major cloud platforms (Amazon RDS, Google Cloud SQL, Microsoft Azure),
as well as Yandex.Cloud and Mail.ru Cloud Solutions.

In this course, we are going to use a virtual machine with Xubuntu OS;
PostgreSQL is installed from the package for this OS.

There are a lot of PostgreSQL extensions that add new database
functionality “on the fly,” without modifying the system core. About 50
extensions are included into the PostgreSQL distribution itself.

https://postgrespro.com/docs/postgresql/12/contrib

https://postgrespro.com/docs/postgresql/12/contrib-prog

You can look up the list of available extensions and check if they are already
installed in the pg_available_extensions view.

5

Managing the Server

Server management utility

Primary tasks
start the server
stop the server
reload server configuration

pg_ctlcluster pg_ctl

The main server management tasks are: initializing the database cluster,
starting and stopping the server, reloading configuration parameters, and
a couple of others. To perform these actions, use the pg_ctl utility, which is
provided together with PostgreSQL.

For Ubuntu OS, the package distribution has no direct access to pg_ctl:
it provides the pg_ctlcluster wrapper for this utility. To view reference
documentation for pg_ctlcluster, run the following command:

$ man pg_ctlcluster

For more information about managing the server that can be useful for
DBAs, see:

https://postgrespro.com/docs/postgresql/12/app-pg-ctl

https://postgrespro.com/docs/postgresql/12/runtime

Installation	and	Management

In	the	course	VM,	PostgreSQL	is	installed	from	a	pre-built	package.	Let’s	take	a	look	at	the	installation	directory:

student$	ls	-l	/usr/lib/postgresql/12

total	8
drwxr-xr-x	2	root	root	4096	Sep	27	19:36	bin
drwxr-xr-x	4	root	root	4096	Sep	27	19:37	lib

The	server	is	owned	by	root.

The	database	cluster	is	initialized	automatically	during	the	package	installation	and	is	located	in
/var/lib/postgresql/12/main.

In	the	topics	that	follow,	we	are	going	to	refer	to	this	directory	as	PGDATA,	which	is	the	name	of	the	environment	variable
that	can	be	set	for	use	in	some	server	utilities.

The	PGDATA	directory	is	owned	by	the	postgres	user.	Here	is	its	contents:

student$	sudo	ls	-l	/var/lib/postgresql/12/main

total	84
drwx------	8	postgres	postgres	4096	Oct	19	17:00	base
drwx------	2	postgres	postgres	4096	Oct	19	17:00	global
drwx------	2	postgres	postgres	4096	Oct	19	17:00	pg_commit_ts
drwx------	2	postgres	postgres	4096	Oct	19	17:00	pg_dynshmem
drwx------	4	postgres	postgres	4096	Oct	19	17:00	pg_logical
drwx------	4	postgres	postgres	4096	Oct	19	17:00	pg_multixact
drwx------	2	postgres	postgres	4096	Oct	19	17:00	pg_notify
drwx------	2	postgres	postgres	4096	Oct	19	17:00	pg_replslot
drwx------	2	postgres	postgres	4096	Oct	19	17:00	pg_serial
drwx------	2	postgres	postgres	4096	Oct	19	17:00	pg_snapshots
drwx------	2	postgres	postgres	4096	Oct	19	17:00	pg_stat
drwx------	2	postgres	postgres	4096	Oct	19	17:00	pg_stat_tmp
drwx------	2	postgres	postgres	4096	Oct	19	17:00	pg_subtrans
drwx------	2	postgres	postgres	4096	Oct	19	17:00	pg_tblspc
drwx------	2	postgres	postgres	4096	Oct	19	17:00	pg_twophase
-rw-------	1	postgres	postgres				3	Oct	19	17:00	PG_VERSION
drwx------	3	postgres	postgres	4096	Oct	19	17:00	pg_wal
drwx------	2	postgres	postgres	4096	Oct	19	17:00	pg_xact
-rw-------	1	postgres	postgres			88	Oct	19	17:00	postgresql.auto.conf
-rw-------	1	postgres	postgres		130	Oct	19	17:00	postmaster.opts
-rw-------	1	postgres	postgres		108	Oct	19	17:00	postmaster.pid

Package	installation	enables	PostgreSQL	autostart,	so	you	don’t	have	to	launch	PostgreSQL	after	loading	the	operating
system.

To	explicitly	manage	the	server,	you	can	run	the	following	commands	either	on	behalf	of	the	postgres	OS	user,	or	using
sudo:

Stop	the	server:

student$	sudo	pg_ctlcluster	12	main	stop

Start	the	server:

student$	sudo	pg_ctlcluster	12	main	start

Restart	the	server:

student$	sudo	pg_ctlcluster	12	main	restart

Reload	server	configuration:

student$	sudo	pg_ctlcluster	12	main	reload

7

Server Log File

A log file can contain:
server signal messages
user session messages
application messages

You can configure:
log file location
message format
events to log

Database operation is tracked in the server log. It records the information
about starting and stopping the server, as well as various signal messages
about possible issues.

Log files can also contain the information about the executed commands,
their execution time, locks, etc. It can be used for tracing user sessions.

Application developers can direct their own messages to the server log.

PostgreSQL settings enable you to fine-tune the scope and format of logged
error messages.

For example, the CSV output format is convenient for automating log
analysis.

https://postgrespro.com/docs/postgresql/12/runtime-config-logging

Server	Log

The	server	log	is	located	here:

student$	ls	-l	/var/log/postgresql/postgresql-12-main.log

-rw-r-----	1	postgres	adm	1791	Oct	19	17:00	/var/log/postgresql/postgresql-12-main.log

Let’s	take	a	look	at	the	last	lines	in	the	log	file:

student$	tail	-n	10	/var/log/postgresql/postgresql-12-main.log

2021-10-19	17:00:12.887	MSK	[3382]	LOG:		shutting	down
2021-10-19	17:00:12.901	MSK	[3380]	LOG:		database	system	is	shut	down
2021-10-19	17:00:13.103	MSK	[3457]	LOG:		starting	PostgreSQL	12.8	(Ubuntu	12.8-1.pgdg20.04+1)	on	x86_64-pc-linux-gnu,	compiled	by	gcc	(Ubuntu	9.3.0-17ubuntu1~20.04)	9.3.0,	64-bit
2021-10-19	17:00:13.104	MSK	[3457]	LOG:		listening	on	IPv4	address	"127.0.0.1",	port	5432
2021-10-19	17:00:13.107	MSK	[3457]	LOG:		listening	on	Unix	socket	"/var/run/postgresql/.s.PGSQL.5432"
2021-10-19	17:00:13.128	MSK	[3458]	LOG:		database	system	was	shut	down	at	2021-10-19	17:00:12	MSK
2021-10-19	17:00:13.134	MSK	[3457]	LOG:		database	system	is	ready	to	accept	connections
2021-10-19	17:00:15.535	MSK	[3457]	LOG:		received	SIGHUP,	reloading	configuration	files
2021-10-19	17:00:15.597	MSK	[3544]	student@student	ERROR:		database	"tools_overview"	does	not	exist
2021-10-19	17:00:15.597	MSK	[3544]	student@student	STATEMENT:		DROP	DATABASE	tools_overview;

9

Configuration Parameters

For the whole instance:
the main configuration file is postgresql.conf
ALTER SYSTEM creates postgresql.auto.conf

For the current session:
SET/RESET

set_config()

To view the current setting:
SHOW

current_setting()

pg_settings

PostgreSQL server is set up using various configuration parameters. They
define how to manage resource consumption, tune system processes and
user sessions, manage the server log, and handle many other tasks. We will
deal with some of these parameters later in this course. But now it’s
important to figure out how to check and update the current settings.

Server settings are usually defined in configuration files. The main
configuration file is postgresql.conf; it has to be edited manually. Another
configuration file is postgresql.auto.conf; it is updated by the ALTER
SYSTEM command. Parameter values set via ALTER SYSTEM override
those that are defined in postgresql.conf.

Most settings can be changed in user sessions without a server restart.

Different ways of setting and updating parameters are described here:

https://postgrespro.com/docs/postgresql/12/config-setting

Current parameter values are displayed in the pg_settings view:

https://postgrespro.com/docs/postgresql/12/view-pg-settings

Configuration	Parameters

The	main	configuration	file	is	postgresql.conf.	It	is	located	in	the	following	directory:

student$	ls	-l	/etc/postgresql/12/main

total	56
drwxr-xr-x	2	postgres	postgres		4096	Oct	19	17:00	conf.d
-rw-r--r--	1	postgres	postgres			315	Oct	19	17:00	environment
-rw-r--r--	1	postgres	postgres			143	Oct	19	17:00	pg_ctl.conf
-rw-r-----	1	postgres	postgres		4933	Oct	19	17:00	pg_hba.conf
-rw-r-----	1	postgres	postgres		1636	Oct	19	17:00	pg_ident.conf
-rw-r--r--	1	postgres	postgres	27019	Oct	19	17:00	postgresql.conf
-rw-r--r--	1	postgres	postgres			317	Oct	19	17:00	start.conf

Other	configuration	files	are	also	located	in	this	directory.

Let’s	check	the	value	of	the	work_mem	parameter:

=>	SHOW	work_mem;

	work_mem	

	4MB
(1	row)

This	parameter	defines	the	amount	of	memory	that	can	be	used	by	internal	operations	of	sorting	and	building	hash	tables
before	they	start	utilizing	temporary	files	on	disk.

The	default	value	is	4MB,	but	it	is	too	small.	Suppose	we	would	like	to	increase	it	to	16MB	for	the	whole	instance.	There
are	two	ways	to	do	it.

The	first	option	is	to	modify	postgresql.conf	by	uncommenting	and	editing	the	line	that	defines	this	parameter:

student$	grep	'#work_mem'	/etc/postgresql/12/main/postgresql.conf

#work_mem	=	4MB		 	 	 #	min	64kB

Another	option	is	to	use	an	SQL	command.	Let’s	try	it	out:

=>	ALTER	SYSTEM	SET	work_mem	TO	'16MB';

ALTER	SYSTEM

This	change	does	not	make	it	into	postgresql.conf;	it	gets	registered	in	another	file	(located	in	the	PGDATA	directory):

student$	cat	/var/lib/postgresql/12/main/postgresql.auto.conf

cat:	/var/lib/postgresql/12/main/postgresql.auto.conf:	Permission	denied

For	the	change	to	take	effect,	configuration	files	have	to	be	reloaded.	We	can	either	use	pg_ctlcluster,	or	call	the	following
SQL	function:

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

Let’s	check	that	the	new	value	has	been	applied.	Instead	of	the	SHOW	command,	we	can	use	the	following	query:

=>	SELECT	current_setting('work_mem');

	current_setting	

	16MB
(1	row)

To	restore	the	default	value,	simply	use	RESET	instead	of	the	SET	command	(and	don’t	forget	to	reload	configuration
files):

=>	ALTER	SYSTEM	RESET	work_mem;

ALTER	SYSTEM

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

Most	parameters	can	be	modified	for	the	current	session	on	the	fly.	For	example,	if	we	are	going	to	run	a	query	that	sorts
a	lot	of	data,	we	can	increase	work_mem	for	this	session:

=>	SET	work_mem	=	'64MB';

SET

Let’s	use	another	way	to	check	the	current	setting.	Here	we’ll	query	the	pg_settings	view:

=>	SELECT	name,	setting,	unit	FROM	pg_settings	WHERE	name	=	'work_mem';

			name			|	setting	|	unit	
----------+---------+------
	work_mem	|	65536			|	kB
(1	row)

The	new	value	applies	only	to	the	current	session	(or	to	the	current	transaction	if	SET	LOCAL	was	specified).

11

psql Client

A command-line client for working with PostgreSQL

Shipped together with the database system

Used by DBAs and developers for running scripts
and interacting with the server

There are various third-party clients for PostgreSQL, but their evaluation is
beyond the scope of this course.

We are going to use psql, a command-line client:

- It is the only client shipped with the server.

- The experience of working in psql will be useful to both DBAs and
developers, regardless of which tool they are going to use in the future.

To enable the interactive mode, psql provides built-in support for readline
and pager programs (such as less). Using psql, you can interact with the
operating system, browse through the system catalog, and write scripts to
automate routine tasks.

https://postgrespro.com/docs/postgresql/12/app-psql

Connection

When	starting	psql,	you	have	to	specify	connection	parameters.	The	mandatory	parameters	are:

database	name,	coincides	with	the	username	by	default;
username	(role),	coincides	with	the	name	of	the	current	OS	user	by	default;
host,	local	connection	is	used	by	default;
port,	5432	is	usually	used	by	default.

Parameters	are	specified	like	this:

student$	psql	-d	database	-U	role	-h	host	-p	port

VM	settings	allow	connecting	to	PostgreSQL	without	specifying	any	parameters:

student$	psql	

Let’s	check	the	current	connection:

=>	\conninfo

You	are	connected	to	database	"student"	as	user	"student"	via	socket	in	"/var/run/postgresql"	at	port	"5432".

The	\connect	command	establishes	a	new	connection	from	within	psql.	It	can	be	shortened	to	\c.	Here	we	are	going	to	indicate	an	optional	part	of	the
command	in	square	brackets:	\c[onnect].

Reference	Information

Reference	information	on	psql	is	available	both	in	documentation	and	directly	from	the	command	line.	The	command

student$	psql	--help

explains	how	to	launch	psql.	If	documentation	is	installed,	you	can	also	get	man	page	reference	by	running

student$	man	psql

The	psql	utility	can	run	two	types	of	commands:	SQL	commands	and	its	own	commands	that	start	with	a	backslash,	like	\conninfo.

You	can	get	the	list	of	these	commands	with	their	short	descriptions	from	within	psql:

\h[elp]	displays	the	list	of	SQL	commands	supported	by	the	server	or	the	syntax	of	a	particular	SQL	command	specified	as	its	argument.
\?	displays	the	list	of	psql	commands.

Formatting	Output

The	psql	client	can	display	query	results	in	different	output	formats:

a	format	with	aligned	values;
unaligned	format;
expanded	format.

By	default,	the	aligned	output	format	is	used:

=>	SELECT	name,	setting,	unit	FROM	pg_settings	LIMIT	7;

										name											|		setting			|	unit	
-------------------------+------------+------
	allow_system_table_mods	|	off								|	
	application_name								|	psql							|	
	archive_cleanup_command	|												|	
	archive_command									|	(disabled)	|	
	archive_mode												|	off								|	
	archive_timeout									|	0										|	s
	array_nulls													|	on									|	
(7	rows)

In	this	format,	column	headings	and	the	row	count	footer	are	displayed,	and	column	width	is	aligned	by	values.

The	following	psql	commands	are	used	to	switch	between	output	formats:

\a	toggles	between	unaligned	and	aligned	output	formats.
\t	toggles	the	display	of	column	headings	and	row	count	footer.

Let’s	switch	off	the	alignment	and	hide	the	header	and	footer:

=>	\a	\t

Output	format	is	unaligned.
Tuples	only	is	on.

=>	SELECT	name,	setting,	unit	FROM	pg_settings	LIMIT	7;

allow_system_table_mods|off|
application_name|psql|
archive_cleanup_command||
archive_command|(disabled)|
archive_mode|off|
archive_timeout|0|s
array_nulls|on|

=>	\a	\t

Output	format	is	aligned.
Tuples	only	is	off.

This	format	is	hard	to	view,	but	can	be	quite	useful	for	automated	output	processing.

The	expanded	format	is	convenient	if	you	have	to	display	many	columns	for	just	a	couple	of	entries.	To	turn	it	on,	specify	\gx	at	the	end	of	the	command
instead	of	the	semicolon:

=>	SELECT	name,	setting,	unit,	category,	context,	vartype,
				min_val,	max_val,	boot_val,	reset_val
FROM	pg_settings
WHERE	name	=	'work_mem'	\gx

-[RECORD	1]----------------------
name						|	work_mem
setting			|	4096
unit						|	kB
category		|	Resource	Usage	/	Memory
context			|	user
vartype			|	integer
min_val			|	64
max_val			|	2147483647
boot_val		|	4096
reset_val	|	4096

If	the	expanded	format	is	required	on	a	regular	basis	(and	not	just	for	one	command),	you	can	turn	it	on	using	the	\x	toggle.

All	formatting	capabilities	can	be	configured	with	the	\pset	command.

Interacting	with	OS	and	Running	Scripts

Shell	commands	can	be	run	from	within	psql:

=>	\!	pwd

/home/student

You	can	create	an	SQL	query	that	produces	several	other	SQL	queries,	and	write	them	into	a	file	using	the	\o[ut]	command:

=>	\a	\t

Output	format	is	unaligned.
Tuples	only	is	on.

=>	\pset	fieldsep	''

Field	separator	is	"".

=>	\o	dev1_psql.log

=>	SELECT	format('SELECT	%L	AS	tbl,	count(*)	FROM	%I;',	tablename,	tablename)
FROM	pg_tables	LIMIT	3;

Nothing	is	displayed	in	the	terminal.	Let’s	take	a	look	into	the	file:

=>	\!	cat	dev1_psql.log

SELECT	'pg_statistic'	AS	tbl,	count(*)	FROM	pg_statistic;
SELECT	'pg_type'	AS	tbl,	count(*)	FROM	pg_type;
SELECT	'pg_foreign_server'	AS	tbl,	count(*)	FROM	pg_foreign_server;

Let’s	direct	the	output	back	to	the	terminal	and	restore	the	default	formatting.

=>	\o	\t	\a

Tuples	only	is	off.
Output	format	is	aligned.

Now	run	these	commands	from	a	file	using	\i[nclude]:

=>	\i	dev1_psql.log

					tbl						|	count	
--------------+-------
	pg_statistic	|			422
(1	row)

			tbl			|	count	
---------+-------
	pg_type	|			406
(1	row)

								tbl								|	count	
-------------------+-------
	pg_foreign_server	|					0
(1	row)

Note	that	you	can	achieve	the	same	result	in	a	single	step	using	the	\gexec	command:

=>	SELECT	format('SELECT	%L	AS	tbl,	count(*)	FROM	%I;',	tablename,	tablename)
FROM	pg_tables	LIMIT	3	\gexec

					tbl						|	count	
--------------+-------
	pg_statistic	|			422
(1	row)

			tbl			|	count	
---------+-------
	pg_type	|			406
(1	row)

								tbl								|	count	
-------------------+-------
	pg_foreign_server	|					0
(1	row)

Here	are	some	other	ways	to	run	commands	from	a	file:

psql	<	filename
psql	-f	filename
psql	-c	'command'	(works	for	a	single	command	only)

psql	Variables

Just	like	shell,	psql	provides	its	own	variables.

Let’s	set	a	variable:

=>	\set	TEST	Hi!

To	display	the	assigned	value,	put	a	colon	before	the	variable	name:

=>	\echo	:TEST

Hi!

You	can	unset	the	variable	value	as	follows:

=>	\unset	TEST

=>	\echo	:TEST

:TEST

Variables	can	be	used	for	things	like	storing	the	text	of	frequently	used	queries.	Here	is	a	query	that	returns	top	five	biggest	tables:

=>	\set	top5	'SELECT	tablename,	pg_total_relation_size(schemaname||''.''||tablename)	AS	bytes	FROM	pg_tables	ORDER	BY	bytes	DESC	LIMIT	5;'

To	run	the	query,	it	is	enough	to	enter:

=>	:top5

			tablename				|		bytes		
----------------+---------
	pg_depend						|	1130496
	pg_proc								|	1015808
	pg_attribute			|		688128
	pg_rewrite					|		679936
	pg_description	|		573440
(5	rows)

It	is	convenient	to	add	the	command	that	assigns	the	top5	variable	into	the	.psqlrc	startup	file	located	in	the	user’s	home	directory.	The	commands
written	in	.psqlrc	will	be	run	automatically	each	time	psql	is	started.

You	can	assign	a	query	result	to	a	variable	using	\gset:

=>	SELECT	current_setting('work_mem')	AS	current_work_mem	\gset

=>	\echo	work_mem	value:	:current_work_mem

work_mem	value:	4MB

When	run	without	parameters,	\set	returns	values	of	all	variables,	including	the	built-in	ones.	To	get	help	on	built-in	variables	only,	run:

\?	variables

13

Summary

Installing PostgreSQL from pre-built packages is the preferred
installation type

Pre-packaged distributions bring some OS specifics that you
should know:

how to start and stop the server
where configuration files are located
where to find the server log

psql is a client application for working with PostgreSQL

14

Practice

1. Set the work_mem parameter to 8 MB in the postgresql.conf file.
Reload the server configuration and check that the changes have
come into effect.

2. Create a file called ddl.sql. In this file, write the CREATE TABLE
command that creates an arbitrary table.
Create another file called populate.sql; it should contain some
commands that insert rows into this table.
Start psql, run both scripts, and check that the table is created and
contains the specified rows.

3. Find today’s entries in the log file.

To do practical assignments, you have to log in to the operating system on
behalf of the student user (the password is student).

Start psql in the terminal by typing psql, without parameters. The connection
will be established with the default settings.

student:~$ psql

It is convenient to have separate databases for tasks that are related to
different topics. Let's create one:

student/student=# CREATE DATABASE tools_overview;
CREATE DATABASE

student/student=# \c tools_overview
You are now connected to database "tools_overview" as
user "student".

student/tools_overview=#

Task 1. You can use any text editor. The virtual machine provides
mousepad, gedit, vim, nano.

Note: if you launch an editor from the GUI environment instead of the
terminal, it will be started on behalf of the student OS user.

Task	1.	Configuration	Parameters

Add	the	following	line	to	the	end	of	the	configuration	file:

student$	echo	'work_mem	=	8MB'	|	sudo	tee	-a	/etc/postgresql/12/main/postgresql.conf

work_mem	=	8MB

You	can	do	it	in	any	text	editor.

Reload	the	server	configuration:

student$	sudo	pg_ctlcluster	12	main	reload

Check	the	result:

student$	psql	

=>	SELECT	current_setting('work_mem')	AS	work_mem;

	work_mem	

	8MB
(1	row)

Task	2.	Running	Scripts	in	psql

In	the	ddl.sql	file,	write	a	command	that	creates	a	table	with	PostgreSQL	keywords	(you	can	use	any	text	editor):

student$	cat	>ddl.sql	<<EOF
CREATE	TABLE	keywords	(
word	text,
category	text,
description	text
);
EOF

In	the	populate.sql	file,	write	commands	that	fill	the	keywords	table:

student$	cat	>populate.sql	<<EOF
INSERT	INTO	keywords
SELECT	*	FROM	pg_get_keywords();
EOF

Create	a	database	and	connect	to	this	database:

=>	CREATE	DATABASE	tools_overview;

CREATE	DATABASE

=>	\c	tools_overview

You	are	now	connected	to	database	"tools_overview"	as	user	"student".

Run	the	scripts	and	check	the	table	entries:

=>	\i	ddl.sql

CREATE	TABLE

=>	\i	populate.sql

INSERT	0	442

=>	SELECT	*	FROM	keywords	LIMIT	10;

			word				|	category	|	description	
-----------+----------+-------------
	abort					|	U								|	unreserved
	absolute		|	U								|	unreserved
	access				|	U								|	unreserved
	action				|	U								|	unreserved
	add							|	U								|	unreserved
	admin					|	U								|	unreserved
	after					|	U								|	unreserved
	aggregate	|	U								|	unreserved
	all							|	R								|	reserved
	also						|	U								|	unreserved
(10	rows)

Task	3.	Viewing	the	Log	File

You	can	open	the	log	in	any	text	editor.	Each	log	entry	starts	with	the	date	(this	is	the	default	setting	in	package
installations)	and	can	take	several	lines.	Today’s	entries	will	appear	at	the	end	of	the	file.

student$	tail	/var/log/postgresql/postgresql-12-main.log

2021-10-19	17:04:37.604	MSK	[31255]	bob@access_overview	CONTEXT:		SQL	function	"foo"	statement	1
2021-10-19	17:04:37.604	MSK	[31255]	bob@access_overview	STATEMENT:		SELECT	foo();
2021-10-19	17:04:37.976	MSK	[31255]	bob@access_overview	ERROR:		permission	denied	for	function	foo
2021-10-19	17:04:37.976	MSK	[31255]	bob@access_overview	STATEMENT:		SELECT	foo();
2021-10-19	17:04:38.339	MSK	[31255]	bob@access_overview	ERROR:		permission	denied	for	function	baz
2021-10-19	17:04:38.339	MSK	[31255]	bob@access_overview	STATEMENT:		SELECT	baz();
2021-10-19	17:05:00.786	MSK	[34215]	student@student	ERROR:		database	"tools_overview"	does	not	exist
2021-10-19	17:05:00.786	MSK	[34215]	student@student	STATEMENT:		DROP	DATABASE	tools_overview;
2021-10-19	17:05:00.969	MSK	[7687]	LOG:		received	SIGHUP,	reloading	configuration	files
2021-10-19	17:05:00.972	MSK	[7687]	LOG:		parameter	"work_mem"	changed	to	"8MB"

