

PL/pgSQL

Dynamic Commands

12

Copyright
© Postgres Professional, 2017–2021
Authors: Egor Rogov, Pavel Luzanov
Translated by Liudmila Mantrova

Usage of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed on an unrestricted basis. Commercial use is only possible with prior
written permission of Postgres Professional company. Modification of course
materials is forbidden.

Contact Us
Please send your feedback to: edu@postgrespro.ru

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

2

Agenda

Motivation

Executing dynamic queries

Constructing dynamic queries

3

Dynamic SQL

The text of an SQL command is constructed at run time

Motivation
provide additional flexibility for an application
construct several specific queries for optimization purposes
instead of using a single query that covers all possible cases

Cost
statements cannot be prepared
the risk of SQL injection rises
maintenance gets more complicated

An SQL command is considered dynamic if its text is constructed and then
executed within PL/pgSQL routine blocks or in anonymous blocks.

In most cases, you can do without dynamic commands, but sometimes they
can provide additional flexibility. For example, an application can have a
built-in capability to execute commands provided via system settings.
Instead of being hard-coded by developers, these settings can be tuned by
the support team when the application is running.

When creating reports with a large number of optional parameters, it is
sometimes easier to construct the text of a query at run time for the
specified parameters only, instead of creating a complex query that includes
all possible parameter combinations while developing the application.

The price you pay for using dynamic commands is inability to take
advantage of prepared statements, which are available in PL/pgSQL.
Besides, you have to take care of dynamic commands’ security as they are
vulnerable to SQL injection.

We should also mention that maintenance gets more complicated. In
particular, it will be impossible to find all executable commands in source
code using full-text search.

4

EXECUTE operator

runs a text representation of an SQL query
allows using parameters
PL/pgSQL variables do not become implicit parameters

Can be used instead of an SQL query
independently
when opening a cursor
in a loop over a query
in the RETURN QUERY clause

Executing Dynamic Queries

To run dynamic commands, PL/pgSQL uses the EXECUTE operator that
launches the SQL operator provided as a text string.

A dynamic query can contain explicit parameters. In the command’s text
representation, parameters are denoted by $1, $2, etc.; their actual values
are provided in the USING clause. Parameters are handled in the same
way as in prepared statements (which is covered in lecture “Architecture.
A General Overview of PostgreSQL”). However, PL/pgSQL variables do not
become implicit parameters, as it happens in the case of regular (as
opposed to dynamic) use of SQL in PL/pgSQL.

The EXECUTE operator can be used on its own (it will simply execute
a dynamic command). It can also be used in loops over queries, when
opening a cursor, or in the RETURN QUERY command: in all these cases,
EXECUTE replaces the SQL operator.

https://postgrespro.com/docs/postgresql/12/plpgsql-statements#PLPGSQL-
STATEMENTS-EXECUTING-DYN

Note the following fact: a procedure cannot perform transaction control if it is
called by the EXECUTE operator.

Executing	Dynamic	Queries

The	EXECUTE	operator	allows	running	SQL	commands	provided	as	text	strings.

=>	DO	$$
DECLARE
				cmd	CONSTANT	text	:=	'CREATE	TABLE	city_london(
								name	text,	architect	text,	founded	integer
)';
BEGIN
				EXECUTE	cmd;	--	a	table	that	lists	examples	of	contemporary	architecture	in	London
END;
$$;

DO

The	INTO	clause	of	the	EXECUTE	operator	enables	saving	a	single	row	of	the	result	(the	first	returned	row)	into	a	variable
of	a	composite	type	or	into	several	scalar	variables.

Like	with	static	commands,	you	can	check	the	result	of	a	dynamic	command	using	GET	DIAGNOSTICS	(but	not	the
FOUND	variable).

=>	DO	$$
DECLARE
				rec	record;
				cnt	bigint;
BEGIN
				EXECUTE	'INSERT	INTO	city_london	(name,	architect,	founded)	VALUES
																	(''The	Shard'',	''Renzo	Piano'',	2009),
																	(''30	St	Mary	Axe'',	''Norman	Foster'',	2001),
																	(''London	City	Hall'',	''Norman	Foster'',	2000)
													RETURNING	name,	architect,	founded'
				INTO	rec;
				RAISE	NOTICE	'%',	rec;
				GET	DIAGNOSTICS	cnt	=	ROW_COUNT;
				RAISE	NOTICE	'Added	rows:	%',	cnt;
END;
$$;

NOTICE:		("The	Shard","Renzo	Piano",2009)
NOTICE:		Added	rows:	3
DO

The	result	of	a	dynamic	query	can	be	processed	in	a	FOR	loop.

=>	DO	$$
DECLARE
				rec	record;
BEGIN
				FOR	rec	IN	EXECUTE	'SELECT	*	FROM	city_london	ORDER	BY	founded'
				LOOP
								RAISE	NOTICE	'%',	rec;
				END	LOOP;
END;
$$;

NOTICE:		("London	City	Hall","Norman	Foster",2000)
NOTICE:		("30	St	Mary	Axe","Norman	Foster",2001)
NOTICE:		("The	Shard","Renzo	Piano",2009)
DO

Here	is	the	same	example	using	a	cursor:

=>	DO	$$
DECLARE
				cur	refcursor;
				rec	record;
BEGIN
				OPEN	cur	FOR	EXECUTE	'SELECT	*	FROM	city_london	ORDER	BY	founded';
				LOOP
								FETCH	cur	INTO	rec;
								EXIT	WHEN	NOT	FOUND;
								RAISE	NOTICE	'%',	rec;
				END	LOOP;
END;
$$;

NOTICE:		("London	City	Hall","Norman	Foster",2000)
NOTICE:		("30	St	Mary	Axe","Norman	Foster",2001)
NOTICE:		("The	Shard","Renzo	Piano",2009)
DO

The	RETURN	QUERY	operator	can	also	use	dynamic	queries	to	return	rows	from	functions.	Let's	create	a	function	that
retrieves	all	buildings	constructed	by	a	particular	architect,	possibly	in	the	specified	year.	We	will	have	to	use	parameters
for	this	purpose:

=>	CREATE	FUNCTION	sel_london(architect	text,	founded	integer	DEFAULT	NULL)
RETURNS	SETOF	text
AS	$$
DECLARE
				--	parameters	are	numbered:	$1,	$2...
				cmd	text	:=	'
								SELECT	name	FROM	city_london
								WHERE	architect	=	$1	AND	($2	IS	NULL	OR	founded	=	$2)';
BEGIN
				RETURN	QUERY
								EXECUTE	cmd
								USING	architect,	founded;	--	provide	parameters	in	the	order	of	their	declaration
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	SELECT	*	FROM	sel_london('Norman	Foster');

				sel_london				

	30	St	Mary	Axe
	London	City	Hall
(2	rows)

=>	SELECT	*	FROM	sel_london('Norman	Foster',	2000);

				sel_london				

	London	City	Hall
(1	row)

6

Constructing Commands

Substituting parameter values
USING clause

guarantees protection against SQL injection

Escaping values
identifiers: format('%I'), quote_ident

literals: format('%L'), quote_literal, quote_nullable
SQL injection is impossible in the case of correct use

Regular string functions
concatenation, etc.
there is a risk of SQL injection!

Using the EXECUTE operator makes sense if the command is constructed
dynamically. The previous examples could also do without EXECUTE.

Since the command is represented by a text string, it can be constructed
using regular string functions that perform such operations as
concatenation, etc. But it should be done with great care as there is a risk of
SQL injection.

If the values are passes as parameters in the USING clause, SQL injection
is technically impossible.

However, it is not always possible to use parameters: you may have to
concatenate specific parts of the query or insert a table name into the query.
In this case, you should escape the values received from an unreliable
source to protect your application against injections.

Identifiers are generated by either the format function with the %l specifier
or the quote_ident function. These functions ensure that identifiers have
valid names by double-quoting them and escaping special characters, if
required.

To insert literals into the command text, you can use either
quote_literal and quote_nullable functions or the format function
with the %L specifier.

https://postgrespro.com/docs/postgresql/12/functions-string

Dealing	with	SQL	Injection

Let’s	rewrite	the	function	returning	buildings	and	add	one	more	parameter:	the	name	of	the	city.	The	idea	is	to	allow	this
function	to	access	tables	only	if	their	names	start	with	“city_”.

=>	CREATE	FUNCTION	sel_city(
				city_code	text,
				architect	text,
				founded	integer	DEFAULT	NULL
)
RETURNS	SETOF	text	AS	$$
DECLARE
				cmd	text	:=	'
								SELECT	name	FROM	city_'	||	city_code	||	'
								WHERE	architect	=	$1	AND	($2	IS	NULL	OR	founded	=	$2)';
BEGIN
				RAISE	NOTICE	'%',	cmd;
				RETURN	QUERY
								EXECUTE	cmd
								USING	architect,	founded;
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

The	function	works	fine	if	its	parameter	values	are	“correct”:

=>	SELECT	*	FROM	sel_city('london',	'Renzo	Piano');

NOTICE:		
								SELECT	name	FROM	city_london
								WHERE	architect	=	$1	AND	($2	IS	NULL	OR	founded	=	$2)
	sel_city		

	The	Shard
(1	row)

But	a	malicious	user	can	pick	a	value	that	will	change	the	syntactic	structure	of	the	query	and	enable	unauthorized	access
to	data:

=>	SELECT	*	FROM	sel_city('london	WHERE	false
								UNION	ALL
								SELECT	usename	FROM	pg_user
								UNION	ALL
								SELECT	name	FROM	city_london',	'');

NOTICE:		
								SELECT	name	FROM	city_london	WHERE	false
								UNION	ALL
								SELECT	usename	FROM	pg_user
								UNION	ALL
								SELECT	name	FROM	city_london
								WHERE	architect	=	$1	AND	($2	IS	NULL	OR	founded	=	$2)
	sel_city	

	student
	postgres
	employee
	buyer
(4	rows)

When	you	are	using	prepared	statements	or	dynamic	commands	with	parameters,	such	a	situation	is	technically	impossible
because	the	structure	of	the	SQL	query	is	locked	while	the	statement	is	parsed.	An	expression	will	always	remain	an
expression;	it	is	impossible	to	convert	it,	say,	into	a	table	name.

Constructing	a	Dynamic	Command

It	is	impossible	to	provide	the	names	of	objects	(such	as	tables	or	columns)	as	parameters	of	the	USING	clause	in	a
dynamic	command.	Such	identifiers	must	be	escaped,	so	that	it	is	impossible	to	modify	the	query	structure:

=>	SELECT	format('%I',	'foo'),
										format('%I',	'foo	bar'),
										format('%I',	'foo"bar');

	format	|		format			|			format			
--------+-----------+------------
	foo				|	"foo	bar"	|	"foo""bar"
(1	row)

The	following	function	does	the	same	thing:

=>	SELECT	quote_ident('foo'),
										quote_ident('foo	bar'),
										quote_ident('foo"bar');

	quote_ident	|	quote_ident	|	quote_ident	
-------------+-------------+-------------
	foo									|	"foo	bar"			|	"foo""bar"
(1	row)

Here	is	an	example	of	creating	a	table:

=>	DO	$$
DECLARE
				cmd	CONSTANT	text	:=	'CREATE	TABLE	%I(
								name	text,	architect	text,	founded	integer
)';
BEGIN
				EXECUTE	format(cmd,	'city_paris');	--	a	table	for	Paris
				EXECUTE	format(cmd,	'city_milan');	--	a	table	for	Milan
END;
$$;

DO

Instead	of	using	parameters,	you	can	insert	literals	into	a	string.	It	also	requires	escaping,	but	in	a	bit	different	way:

=>	SELECT	format('%L',	'foo	bar'),
										format('%L',	'foo''bar'),
										format('%L',	NULL);

		format			|			format			|	format	
-----------+------------+--------
	'foo	bar'	|	'foo''bar'	|	NULL
(1	row)

The	quote_nullable	function	also	does	the	same	thing:

=>	SELECT	quote_nullable('foo	bar'),
										quote_nullable('foo''bar'),
										quote_nullable(NULL);

	quote_nullable	|	quote_nullable	|	quote_nullable	
----------------+----------------+----------------
	'foo	bar'						|	'foo''bar'					|	NULL
(1	row)

The	quote_literal	function	is	quite	similar,	but	it	does	not	convert	NULL	values	into	literals:

=>	SELECT	quote_literal(NULL);

	quote_literal	

(1	row)

As	an	example,	let's	rewrite	the	function	that	returns	the	list	of	buildings	of	a	particular	city,	so	that	it	does	not	use	any
parameters,	but	still	remains	safe.

=>	CREATE	OR	REPLACE	FUNCTION	sel_city(
				city_code	text,
				architect	text,
				founded	integer	DEFAULT	NULL
)
RETURNS	SETOF	text
AS	$$
DECLARE
				cmd	text	:=	'
								SELECT	name	FROM	%I
								WHERE	architect	=	%L	AND	(%L	IS	NULL	OR	founded	=	%L::integer)';
BEGIN

				RETURN	QUERY	EXECUTE	format(
								cmd,	'city_'||city_code,	architect,	founded,	founded
);
END;
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

Note	that	we	have	to	perform	two	extra	type	casting	operations:	first,	the	integer	variable	is	converted	into	a	string,	and
then	it	is	cast	back	to	integer	at	run	time:

=>	SELECT	*	FROM	sel_city('london',	'Renzo	Piano',	2009);

	sel_city		

	The	Shard
(1	row)

An	attempt	to	pass	an	invalid	value	will	not	succeed:

=>	SELECT	*	FROM	sel_city('london	WHERE	false
								UNION	ALL
								SELECT	usename	FROM	pg_user
								UNION	ALL
								SELECT	name	FROM	city_london',	'');

NOTICE:		identifier	"city_london	WHERE	false
								UNION	ALL
								SELECT	usename	FROM	pg_user
								UNION	ALL
								SELECT	name	FROM	city_london"	will	be	truncated	to	"city_london	WHERE	false
								UNION	ALL
								SELECT	usenam"
ERROR:		relation	"city_london	WHERE	false
								UNION	ALL
								SELECT	usenam"	does	not	exist
LINE	2:									SELECT	name	FROM	"city_london	WHERE	false
																																	^
QUERY:		
								SELECT	name	FROM	"city_london	WHERE	false
								UNION	ALL
								SELECT	usename	FROM	pg_user
								UNION	ALL
								SELECT	name	FROM	city_london"
								WHERE	architect	=	''	AND	(NULL	IS	NULL	OR	founded	=	NULL::integer)
CONTEXT:		PL/pgSQL	function	sel_city(text,text,integer)	line	7	at	RETURN	QUERY

8

Summary

Dynamic commands provide additional flexibility

Constructing separate queries for different parameter values
can improve performance

Dynamic commands are not suitable for short, frequently used
queries

Maintenance gets more complicated

9

Practice

1. Modify the get_catalog function so that the query to the
catalog_v view is constructed dynamically and takes into
account only those fields that are filled out in the search form
of the “Store” tab.

Make sure that your implementation is protected against SQL
injection.
Check your function in the application.

Task 1. Suppose we have to generate the following query if these conditions
are met: the “In stock” option is selected in the search form, but “Book Title”
and “Author” fields are empty.
SELECT ... FROM catalog_v WHERE onhand_qty > 0;

You should keep in mind that this implementation will not necessarily speed
up search, but it will certainly be harder to maintain. Avoid such solutions in
real life unless you have a solid reason to use this technique. To learn more
about query performance tuning, check out the QPT course.

Task	1.	The	get_catalog	Function

=>	CREATE	OR	REPLACE	FUNCTION	get_catalog(
				author_name	text,
				book_title	text,
				in_stock	boolean
)
RETURNS	TABLE(book_id	integer,	display_name	text,	onhand_qty	integer)
AS	$$
DECLARE
				title_cond	text	:=	'';
				author_cond	text	:=	'';
				qty_cond	text	:=	'';
BEGIN
				IF	book_title	!=	''	THEN
								title_cond	:=	format(
												'	AND	cv.title	ILIKE	%L',	'%'||book_title||'%'
);
				END	IF;
				IF	author_name	!=	''	THEN
								author_cond	:=	format(
												'	AND	cv.authors	ILIKE	%L',	'%'||author_name||'%'
);
				END	IF;
				IF	in_stock	THEN
								qty_cond	:=	'	AND	cv.onhand_qty	>	0';
				END	IF;
				RETURN	QUERY	EXECUTE	'
								SELECT	cv.book_id,
															cv.display_name,
															cv.onhand_qty
								FROM			catalog_v	cv
								WHERE		true'
								||	title_cond	||	author_cond	||	qty_cond	||	'
								ORDER	BY	display_name';
END;
$$	STABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

10

Practice

1. Create a function that returns the matrix report on functions
available in the database.

The columns must contain names of function owners, the rows
must provide schema names, while the fields must show the
number of functions that belong to a particular owner in a
particular schema.

What statement should you write to invoke this function?

Task 1. Here is a possible output:
 schema total postgres student ...
 information_schema 12 12 0
 pg_catalog 2811 2811 0
 public 3 0 3
 ...

The number of columns returned by a query is unknown in advance. So it is
required to construct a query and then execute it dynamically. The query text
can be as follows:

SELECT pronamespace::regnamespace::text AS schema,
 COUNT(*) AS total
 ,SUM(CASE WHEN proowner = 10 THEN 1 ELSE 0 END) postgres
 ,SUM(CASE WHEN proowner = 16384 THEN 1 ELSE 0 END) student
FROM pg_proc
GROUP BY pronamespace::regnamespace
ORDER BY schema

The highlighted lines are a dynamic part that has to be constructed by a
separate query. The start and the end of the query are static.

The proowner column has the oid type. To get the name of the owner, you
can use the following construct: proowner::regrole::text.

Task	1.	Getting	a	Matrix	Report

=>	CREATE	DATABASE	plpgsql_dynamic;

CREATE	DATABASE

=>	\c	plpgsql_dynamic

You	are	now	connected	to	database	"plpgsql_dynamic"	as	user	"student".

An	auxiliary	function	for	constructing	the	text	of	dynamic	queries:

=>	CREATE	FUNCTION	form_query()	RETURNS	text
AS	$$
DECLARE
				query_text	text;
				columns	text	:=	'';
				r	record;
BEGIN
				--	A	static	part	of	the	query
				--	The	first	two	columns:	the	name	of	the	schema	and	the	total	number	of	functions	in	this	schema
				query_text	:=
$query$
SELECT	pronamespace::regnamespace::text	AS	schema
				,	count(*)	AS	total{{columns}}
FROM	pg_proc
GROUP	BY	pronamespace::regnamespace
ORDER	BY	schema
$query$;

				--	A	dynamic	part	of	the	query
				--	Getting	the	list	of	function	owners,	each	in	a	separate	column
				FOR	r	IN	SELECT	DISTINCT	proowner	AS	owner	FROM	pg_proc	ORDER	BY	1
				LOOP
								columns	:=	columns	||	format(
												E'\n					,	sum(CASE	WHEN	proowner	=	%s	THEN	1	ELSE	0	END)	AS	%I',
												r.owner,
												r.owner::regrole
);
				END	LOOP;

				RETURN	replace(query_text,	'{{columns}}',	columns);
END;
$$	STABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

The	final	query	text:

=>	SELECT	form_query();

																													form_query																														

																																																																				+
	SELECT	pronamespace::regnamespace::text	AS	schema																		+
					,	count(*)	AS	total																																												+
						,	sum(CASE	WHEN	proowner	=	10	THEN	1	ELSE	0	END)	AS	postgres		+
						,	sum(CASE	WHEN	proowner	=	16384	THEN	1	ELSE	0	END)	AS	student+
	FROM	pg_proc																																																							+
	GROUP	BY	pronamespace::regnamespace																																+
	ORDER	BY	schema																																																				+
	
(1	row)

Now	let’s	create	a	function	for	generating	a	matrix	report:

=>	CREATE	FUNCTION	matrix()	RETURNS	SETOF	record
AS	$$
BEGIN
				RETURN	QUERY	EXECUTE	form_query();
END;
$$	STABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

If	we	simply	execute	this	query,	we	will	get	an	error	as	the	structure	of	the	returned	rows	is	not	specified:

=>	SELECT	*	FROM	matrix();

ERROR:		a	column	definition	list	is	required	for	functions	returning	"record"
LINE	1:	SELECT	*	FROM	matrix();
																						^

It	is	an	important	limitation	of	using	functions	that	return	an	arbitrary	result.	We	must	know	the	structure	of	the	record	to
be	returned	and	specify	it	at	the	time	of	the	function	call.

In	general,	the	structure	of	the	returned	record	can	be	unknown.	But	in	the	case	of	our	matrix	report,	we	can	run	one
more	query	and	see	how	to	call	the	matrix	function	correctly.

Let’s	prepare	a	query	text:

=>	CREATE	FUNCTION	matrix_call()	RETURNS	text
AS	$$
DECLARE
				cmd	text;
				r	record;
BEGIN
				cmd	:=	'SELECT	*	FROM	matrix()	AS	m(
								schema	text,	total	bigint';

				FOR	r	IN	SELECT	DISTINCT	proowner	AS	owner	FROM	pg_proc	ORDER	BY	1
				LOOP
								cmd	:=	cmd	||	format(',	%I	bigint',	r.owner::regrole::text);
				END	LOOP;
				cmd	:=	cmd	||	E'\n)';

				RAISE	NOTICE	'%',	cmd;
				RETURN	cmd;
END;
$$	STABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Now	we	can	get	the	structure	of	the	matrix	report	in	the	first	query,	and	then	construct	this	report	in	the	second	query
(and	it	will	be	done	in	a	single	psql	command):

=>	BEGIN	ISOLATION	LEVEL	REPEATABLE	READ;

BEGIN

=>	SELECT	matrix_call()	\gexec

NOTICE:		SELECT	*	FROM	matrix()	AS	m(
								schema	text,	total	bigint,	postgres	bigint,	student	bigint
)
							schema							|	total	|	postgres	|	student	
--------------------+-------+----------+---------
	information_schema	|				12	|							12	|							0
	pg_catalog									|		2948	|					2948	|							0
	public													|					3	|								0	|							3
(3	rows)

=>	COMMIT;

COMMIT

The	matrix	report	is	built	correctly.

The	Repeatable	Read	isolation	level	ensures	that	the	report	is	built	even	if	a	function	with	a	new	owner	is	added
between	the	two	queries.
The	query	returned	by	the	form_query	function	could	also	be	run	directly.	But	we	still	have	to	get	the	list	of	the
returned	columns	in	the	client	application.	The	matrix_call	function	shows	how	to	do	it	using	an	additional	query.

There	is	one	more	possible	solution:	instead	of	returning	a	set	of	records	of	arbitrary	structure,	we	could	return	a	set	of
rows	of	a	semistructured	type	(such	as	JSON	or	XML).	These	types	are	covered	in	the	DEV2	course.

