

Replication

Overview

11

Copyright
© Postgres Professional, 2017, 2018, 2019.
Authors: Egor Rogov, Pavel Luzanov

Use of course materials
Non-commercial use of course materials (presentations, demonstrations)
is permitted without restrictions. Commercial use is possible only with the
written permission of Postgres Professional. Changes to course materials
are prohibited.

Feedback
Send feedback, comments and suggestions to:
edu@postgrespro.ru

Denial of responsibility
In no event shall Postgres Professional be liable to any party for direct,
indirect, special, incidental, or consequential damages, including lost
profit, arising out of the use of course materials. Postgres Professional
disclaims any warranties on course materials. Course materials are
provided on an “as is” basis and Postgres Professional has no obligations
to provide maintenance, support, updates, enhancements, or
modifications.

2

Topics

Replication tasks and types

Physical replication

Logical replication

Replication use cases

3

Replication tasks

Replication
the process of synchronizing multiple copies of a database cluster
on different servers

Tasks
availability the system must maintaine availability

when one (or more) server is down
(performance degradation is possible)

scalability load balancing between servers
to increase throughput

A single database server cannot always meet some requirements.

First, availability. A single physical server is a possible point of failure. If the
server goes down (either due to a failure or for maintenance purposes), the
system becomes inaccessible. Fault tolerance is very similar concept, but is
narrowed down to failures.

Second, performance. If a single server cannot handle the workload, there
are two possibilities: server upgrade or adding new servers and managing
load balancing between them. The former is much simpler, but the latter if
often less expensive.

Thus, it is a question of having several servers working on the same data.
Replication is the process of synchronizing data between these servers.

Note that the database cluster in PostgreSQL refers to the set of databases
inside a single server. This is confusing, as the term is usually refers to a set
of servers.

4

Types of replication

Physical
primary-standby: data flow is unidirectional
WAL shipping or streaming replication
binary compatibility between servers required
entire database cluster is replicated

Logical
publisher-subscriber: bidirectional data flow is possible
requires additional information in WAL (the logical level)
possible between different major versions and architectures
individual tables can be replicated

The two approaches to synchronize data available in PostgreSQL are
physical and logical replication.

During physical replication, servers have assigned roles: primary and
standby. The primary server sends WAL records to the standby (as WAL
files or by replication protocol). The standby server applies these records to
the data files. WAL records are designed to be just binary patches which
can be applied to pages mechanically, without any understanding of their
meaning. Therefore binary compatibility between servers is vital (the same
hardware architecture, the same major version of PostgreSQL). Since the
log is shared between all databases in a cluster, the entire cluster is
replicated.

For logical replication some additional information is added to the log,
allowing the server to «understand» the changes and decode them in terms
of table rows changes. Thus, wal_level = logical is required. For such
replication, binary compatibility is no longer needed. Logical replication uses
the publisher-subscriber model: one server publishes its changes, and
others may subscribe to them. The same server may be both publishing and
subscribing. Logical replication allows to replicate not all changes, but only
those relating to individual tables.

Logical replication is available starting from version 10; earlier versions
should have used the pg_logical extension, or use trigger-based
replication instead.

5

Physical replication

How replication works

WAL delivery methods

Standby usage restrictions

Switchover to standby (and back)

Replication use cases

6

Replication

Physical backup
base backup by the pg_basebackup utility
WAL files: continuous archiving or streaming archive

Continuous recovery
place backup on the standby
create the recovery.conf control file (standby_mode = on)
and start the server

server performs recovery to a consistent state
and continues to apply incoming log records

delivery of WAL records by means of WAL archive or replication protocol

connections (read-only) are accepted immediately after reaching
a consistent state

Setting up physical replication is very similar to setting up a physical backup.
The difference is that the standby server starts up immediately, without
waiting for the primary server to fail, and it doesn't leave recovery mode
(standby_mode = on): it continuously reads all new incoming WAL records
from the primary server and applies them. Thus, the standby is constantly
maintained in an almost-up-to-date state, and in the case of a failure, we
have a ready-to-go server.

If the standby server does not allow client connections, it is called a warm
standby. It is possible to set up a hot standby, which allows connections for
reading data (as soon as the data consistency is restored). Writes on the
standby are not allowed.

Unlike backup, replication does not allow the point-in-time recovery. In other
words, replication cannot be used to correct a user error (although it is
possible to set up replication so that it lags behind the primary for a certain
time).

7

Standby usage restrictions

Allowed
querying the data (select, copy to, cursors)
setting server parameters (set, reset)
transaction management (begin, commit, rollback...)
backups (pg_basebackup)

Not allowed
changing the data (insert, update, delete, truncate, nextval...)
locks that imply a change (select for update...)
DDL commands (create, drop...), including creating temporary tables
maintenance commands (vacuum, analyze, reindex...)
access control (grant, revoke...)
triggers will not fire, advisory locks will not work

In the hot standby mode no changes to the data are allowed. This includes
not only INSERT, UPDATE, DELETE, TRUNCATE statements, but also
sequences, locks, DDL commands, maintenance commands (such as
VACUUM and ANALYZE), access control commands.

A standby server can perform requests for reading data (such as SELECT).
Setting the server parameters and transaction control commands will also
work. For example, you can start a (read-only) transaction with the required
isolation level.

In addition, the standby can be used for making backups (of course, taking
into account the possible lag from the primary).

8

Streaming replication

primary server

 WAL files

select, insert
update, delete

standby server

wal sender wal receiver

continuous
recovery

feedback

There are two ways to deliver logs from primary to standby. The most widely
used one is streaming replication.

In this case, the standby connects to the primary through the replication
protocol and reads a stream of WAL records. This ensures minimal lag (and
even zero lag in case of synchronous replication mode).

A subtle point is that vaccuming on the primary server can remove the row
versions that are needed for the snapshots on the stanby. The affected
query on the standy will be canceled. This problem is solved by setting up
the standby to send feedback to the primary through the replication protocol.
In this case, the primary knows what tuples are needed for the snapshots on
the stanby and postpone vacuuming them.

9

WAL archive

archive_command

WAL archive

select, insert
update, delete

alternative
WAL delivery

route

wal sender wal receiver

primary server

 WAL files

standby server

When using streaming replication, there is a danger that the primary server
will delete the not-yet-delivered WAL file. To be safe, either replication slot or
WAL archive must be used. The latter is often maintained anyway to satisfy
the backup policy.

If the standby fails to get the next log record by the replication protocol, it
will try to read it from the archive using the restore_command from
recovery.conf file.

Generally speaking, replication can be set up without streaming replication,
using the WAL archive alone. But in this case:

- the standby will lag behind the primary for the time of filling the WAL file;

- the primary won't know anything about the existence of the standby (no
feedback is possible), so vacuum can delete the tuples required on the
standby (standby can delay applying conflicting records, but it is not clear
how long should be the timeout).

10

Switching to standby

Switchover

scheduled shutdown of the primary server for maintenance
manual mode

Failover
failover to standby due to primary server failure
manual mode,
can be automated using third-party clusterware

There may be different reasons for switching to the standby server.

In case of the need for some maintenance work on the primary server
(upgrading, patching etc.) the scheduled switchover is performed. In case of
a primary server failure, it is necessary to failover to the standby server as
quickly as possible in order to maximize availability (and minimize the
downtime).

Even in the case of a failure, only manual failover is possible since
PostgreSQL does not have embedded clusterware (which should monitor
the status of the servers and initiate the failover).

11

Failover

select, insert
update, delete

wal sender wal receiver

primary server standby server

 WAL files

Failover illustrated.

Replication is configured between the primary and the standby servers.

12

Failover

select, insert
update, delete

 WAL files

fromer primary server
new primary server

(former standby)

 WAL files

In case the primary server fails (or when it is down for the maintenance), the
stanby is promoted to become a new primary.

Of course, there must be a way to redirect clients to the new server; this is
done by third-party tools.

13

Bring old primary back

select, insert
update, deletewal senderwal receiver

 WAL files

standby server primary server

After the the former primary server is restored, it can be brought back as
a new standby server.

14

Bring old primary back

Cannot simply connect to the new primary server
some WAL records may not reach the standby when the failure occurs

Restore from backup
restore a brand new standby in place of the old primary
may take a lot of time (rsync can help to speedup)

The pg_rewind utility
«rewinds» lost changes by replacing the corresponding pages on disk
with pages from the new primary
there are a number of limitations

In case of data loss (hardware failure, for example), the only option is to
make a completely new standby server from a backup. Otherwise there is a
need to quickly bring the old primary back to the system (now as a standby).

Unfortunately, we cannot simply connect the old primary to the new standby
by replication protocol. This is not guaranteed to work. The reason is that
due to delays in replication, some of the WAL records from the primary
might not reach the standby at the moment of a failure. If such records
remain on the old primary, then applying WAL records from the new primary
will damage the data.

There is always an option to create a completely new standby from a
backup. However, for large databases this process can take a lot of time
(although It can be speed up with rsync utility).

An even faster option is to use the pg_rewind utility
https://postgrespro.com/docs/postgresql/11/app-pgrewind (available from
version 9.5; for 9.3 and 9.4 there is an extension).

The utility identifies WAL records that did not reach the standby (up to the
nearest checkpoint), and finds the data pages affected by those records.
Found pages are replaced with the pages from the new primary server. After
the server is started, it recovers in usual way.

15

high availability
and read-only load balancing

1. Multiple standbys

primary server

 WAL files

select, insert
update, delete

standby server (A)

wal sender

wal receiver

standby server (B)

wal receiver

wal sender

The replication allows the system to be designed so that it meets the
requirements imposed on it. Consider a few typical usecases.

Objective: to ensure high availability and read-only load balancing.

There must be a primary server and several standby servers. Standbys can
be used to perform read-only queries. If the primary server fails, one of
standbys can be promoted with minimal system downtime.

Each standby establishes connection to the primary, which is served by its
own wal writer process and, if necessary, its own replication slot.

Load balancing can be arranged by third-party tools.

16

data storage reliability

2. Synchronous replication

select, insert
update, delete

wal sender

wal receiver

wal receiver

wal sender

no consistency:
changes can be seen
prior to the primary

asynchronous
standby can lag

primary server

 WAL files

synchronous
standby server (A)

asynchronous
standby server (B)

Objective: not to lose any data in case of a failure (that is zero RPO,
Recovery Point Objective).

The solution is to use synchronous replication. In the case of a single server,
a synchronous WAL writing mode (synchronous_commit = on) ensures that
the data will not be lost in case of a failure. The similar holds true for
replication: COMMIT on the primary waits for acknowlegement from the
synchronous standby. If necessary, the parameter can be set on per-
transaction basis.

Note that synchronous replication does not ensure data consistency
between servers: changes may become visible on the primary and on the
standby at different times.

Starting from version 9.6, there may be several synchronous standbys. In
version 10 a quorum-based synchronous mode is available.

On the illustration, standby B is asynchronous and may lag, standby A is
synchronous. When committing changes, the primary server performs the
following:

- creates and flushes the WAL record (thus, the change will not be lost upon
failure);

- waities for acknowlegement from the synchronous standby (thus, the
change will not be lost upon data loss in the primary server);

- changes transaction state in xact buffer (makes the change visible).

Thus, the query on the synchronous standby can see the changes even
earlier than the query on the primary.

17

several standbys with no additional load on the primary

3. Cascading replication

primary server

 WAL files

select, insert
update, delete

standby server (B)

wal sender wal receiver

standby server (A)

wal receiver wal sender

Objective: to have several standbys, with no additional load on the primary
server (both in terms of CPU and memory usage and network throughput).

The requires cascading replication: one standby can transfer WAL records
to another standby, and so on.

There can be no synchronous cascading standbys. However, the feedback
comes back to the primary server from all the downstream standbys.

The standby closest to the primary should be chosen for switchover, as its
lag is known to be minimal.

In the illustration: there is only one wal sender process on the primary
server; standbys pass WAL records to each other along the chain. The
farther from the primary, the greater the lag may be. Monitoring is
complicated in this case and involves multiple servers.

18

time machine
and point-in-time recovery without backups

4. Delayed replication

select, insert
update, delete

standby server

wal sender wal receiver

playback delay

primary server

 WAL files

Objective: to be able to access the data at some point in the past and, if
necessary, restore the server at that point.

Point-in-time recovery from a backup basically solves the problem, but it
requires some preparatory work and may take a lot of time. And there is no
way to build a snapshot of data as of an arbitrary point in the past in
PostgreSQL.

The task is solved by creating a standby that applies WAL records after
some configurable delay.

Note that clocks have to be synchronized between the servers for this
feature to works properly.

When the standby is promoted, it applies the rest of the WAL records
without any delay.

Feedback generally should not be used this this feature, since the large
delay will cause table bloat on the primary because vacuum will not delete
old tuples required by the standby.

19

Logical replication

Publishers and subscribers

Conflict detection and resolution

Logical replication use cases

Built-in logical replication is available starting from PostgreSQL 10. For
earlier versions, similar functionality is available in the pg_logical
extension.

20

Logical replication

Publisher
decodes data changes from WAL and outputs them row by row
in commit order (only INSERT, UPDATE, DELETE are replicated)
decoding requires wal_level = logical
initial synchronization is possible
always uses logical replication slot

Subscriber
receives and applies changes
no parsing, transformation, or planning required
possibility of conflicts with local data

Logical replication uses the publisher-subscriber model. A publication is
created on one server, which may include a number of tables from a single
database. Another server can create a subscription to this publication and
receive and apply changes.

Only modified rows are replicated. DDL is not replicated, that is, the
destination tables on the subscriber must be created manually. But it is
possible to automatically synchronize tables contents when creating a
subscription.

Technically, the information about the modified rows (which is written to
WAL), is decoded on the publisher and transferred to the subscriber via
replication protocol in a platform-independent format. The logical replication
worker process on a subscriber accepts and applies the changes. To ensure
the reliability of the transmission (no losses and no repetitions), a logical
replication slot (similar to a regular replication slot) is always used.

Changes are applied on low level without executing SQL statements and
taking the associated overhead of parsing and planning, so the load on the
subscriber is lower than on the publisher.

https://postgrespro.com/docs/postgresql/11/logical-replication

21

Logical replication

publisher

select, insert
update, delete

subscriber

wal sender

WAL files

select, insert
update, delete

logical repl.
 worker

works on behalf
of the superuser

WAL files

In the illustratino: the logical replication worker process on the subscriber
server receives information from the publisher and applies it. At the same
time, the server works in the usual way and accepts queries for both reading
and writing.

22

Conflicts

Row identity options
primary key columns (default)
columns of the specified unique index with NOT NULL constraint
all columns
no identity (default for system catalog)

Conflicts (violation of integrity constraints)
replication is suspended until the conflict is resolved manually
either correcting the data
or skip conflicting transaction

Inserting new rows is quite simple. The situation is more complicated with
updates and deletes, in which case the row to be modified must be found.
By default, the primary key columns are used for this, but other options can
be specified: use a unique index or use all columns. You can also refuse to
support replication for some tables at all (by default, the system catalog
tables).

Since the tables on the publisher and on the subscriber can change
independently from each other, a conflict may occur when modifying the
data, that is a violation of integrity constraints. In this case, replication is
suspended until the conflict is manually resolved. You can either correct the
data on the publisher so that a conflict does not occur, or you can skip the
conflicting transaction.

23

1. Consolidation

headquarters server

select, insert
update, delete

regional server

wal sender

regional server

wal sender

select, insert
update, delete

select, insert
update, delete

logical repl.
worker

logical repl.
worker

 WAL files

 WAL files

 WAL files

receiving and consolidating
data from several branches

Consider several usecases for logical replication.

Suppose there are several regional branches, each runs its own
PostgreSQL server. The task is to consolidate part of the data on the HQ
server.

The publications of the necessary data are created on the regional servers.
The HQ server subscribes to these publications. The obtained data can be
processed using triggers on the side of the HQ server (for example, to
transform the data to a unified format).

The same scheme, deployed «inside out», allows to transfer reference
information from the HQ server to regional ones.

Technical aspect: since replication is based on the WAL, lags in replication
(for example due to network problems) may lead to increased space usage
and performance problems on the publisher.

From the business logic point of view, there are many other features that
require a comprehensive study. In some cases it may be easier to transfer
data in batches once a certain time interval.

In the illustration: on the HQ server there are two processes for receiving
logs, one for each subscription.

24

2. Server upgrade

major upgrade with minimal or no downtime

old server

select, insert
update, delete

new server

 WAL files

10.0 11.0

Objective: the upgrade the PostgreSQL server to the other major release
with minimal or no downtime.

(Note that the most commonly used way to upgrade is to use the
pg_upgrade utility, which is out of scope of this course.)

Since there is no binary compatibility between major versions, physical
replication does not help. However, logical replication can be used to
replicate changes.

As usual, third-party tools are required to redirect clients between servers.
Required downtime is determined by this operation.

First, a new server is created using the target PostgreSQL version.

25

2. Server upgrade

major upgrade with minimal or no downtime

select, insert
update, delete

wal sender logical repl.
worker

10.0 11.0
initial

synchronization

old server new server

 WAL files

Then the logical replication of all necessary databases is configured and the
data is synchronized. This is possible due to the fact that logical replication
does not require binary compatibility between servers.

26

2. Server upgrade

major upgrade with minimal or no downtime

11.0

select, insert
update, delete

WAL files

new server

After that, the clients are redirected to the new server, and the old server is
turned off.

In fact, the process of upgrading using logical replication is much more
complex and faces considerable difficulties. It is discussed in some detail in
the DBA2 course.

27

several read-write servers

3. Multimaster configuration

primary server primary server

select, insert
update, delete

select, insert
update, delete

 WAL files

wal sender

logical repl.
worker

logical repl.
worker

wal sender

 WAL files

Objective: several read-write servers. Such configuration won't provide
neither write scalability nor consistency, but it increases reliability and
availability and makes application development easier (no need to
distinguish between read-write and read-only nodes). It also allows to build
geographically distributed systems.

The application system should be designed to avoid conflicts when
changing data in the same tables. For example, ensure that different servers
work with different key ranges.

The multimaster system built on logical replication does not provide global
distributed transactions and hence doesn't guarantees data consistency
between servers. Even synchronous replication guarantees reliability but
non consistency. Also there are no means for automating failovers, adding
or removing servers from the system etc: these tasks requires some third-
party tools.

In the illustration: in the multimaster configuration, each server creates a
publication and a subscription. There is a bidirectional data flow between the
servers.

Note that PostgreSQL 11 still is not capable of bidirectional replication, but
sooner or later this feature should appear in the kernel (see the
pg_logical extension
https://www.2ndquadrant.com/en/resources/pglogical/ and BDR
https://www.2ndquadrant.com/en/resources/bdr/).

28

Demonstration

 $ psql
 postgres=#

29

Summary

Replication is based on the transfer of WAL records
to another server and replaying them

WAL files or replication protocol

Physical replication maintains an exact copy of the entire
database cluster

unidirectional
requires binary compatibility

Logical replication sends the changes made to the individual
tables rows

multidirectional
no binary compatibility required

30

Practice

1. Configure physical streaming replication between two servers
in synchronous mode.

2. Check that replication works. Make sure that commit does not
complete when the standby server is stopped.

3. Promote the standby server.

4. Create two tables on both servers.

5. Configure logical replication of the first table from one server
to another, and the second in the opposite direction.

6. Check that replication works.

1. This requires the following parameters to be set on the primary:

- synchronous_commit = on,

- synchronous_standby_names = 'replica',

and on the standby server add «application_name=replica» to the
primary_conninfo parameter in the recovery.conf file.

