

Administration Tasks

Monitoring

11

Copyright
© Postgres Professional, 2017, 2018, 2019.
Authors: Egor Rogov, Pavel Luzanov

Use of course materials
Non-commercial use of course materials (presentations, demonstrations)
is permitted without restrictions. Commercial use is possible only with the
written permission of Postgres Professional. Changes to course materials
are prohibited.

Feedback
Send feedback, comments and suggestions to:
edu@postgrespro.ru

Denial of responsibility
In no event shall Postgres Professional be liable to any party for direct,
indirect, special, incidental, or consequential damages, including lost
profit, arising out of the use of course materials. Postgres Professional
disclaims any warranties on course materials. Course materials are
provided on an “as is” basis and Postgres Professional has no obligations
to provide maintenance, support, updates, enhancements, or
modifications.

2

Topics

Operating system tools

Statistics tracked by the database

Server messages log

External monitoring systems

3

OS tools

Processes
ps (grep postgres)
update_process_title parameter for updating process status

Resources usage
iostat, vmstat, sar, top...

Disk space
df, du, quota...

PostgreSQL is running on top of the operating system and to a certain
extent depends on its settings.

Unix provides many tools for analyzing of overall health and performance.

In particular, you can look at the processes belonging to PostgreSQL. This
is especially useful when the update_process_title server parameter is
enabled (by default) to show the current state in the process name.

To study the usage of system resources (processor, memory, disks) there
are various tools: iostat, vmstat, sar, top, etc.

It is necessary to monitor the size of available disk space. Space occupied
by the database can be viewed both from the database itself (see the «Data
Organization» module), and from the OS (du command). The size of the
available disk space must be viewed in the OS (df command). If disk
quotas are used, they should be taken into account.

In general, the set of tools and approaches can vary widely depending on
the operating system and file system used, so they are not discussed in
detail here.

https://postgrespro.com/docs/postgresql/11/monitoring-ps

https://postgrespro.com/docs/postgresql/11/diskusage

4

Database statistics

Current system activities

Statistics collector process

Additional extensions

There are two main sources of information about what is happening in the
system. The first one is statistical information that is collected by
PostgreSQL and stored inside the database.

5

Current activities

Settings

statistics parameter

current activities and wait events track_activities
for backends and background (enabled by default)
processes

The current activity of all backend processes and (starting from version 10)
background processes is tracked and displayed in the pg_stat_activity
view. More on it we will discuss in the demonstration.

In addition, there are several other views showing the current server activity
(vacuuming, replication, etc).

The possibility to track current activities can be disabled by the parameter
track_activities, but this should not be done.

6

Statistics collection

stats collector process settings

statistics parameter

tables and indexes accesses: track_counts
counts, affected rows (enabled by default

and required for autovacuum)

page accesses track_io_timing
(disabled by default)

user function calls track_functions
(disabled by default)

In addition to showing the current activities, PostgreSQL collects some
statistics.

Statistics is collected by the stats collector background process. The
amount of information collected is controlled by several server parameters,
since the more information is collected, the greater the overhead.

https://postgrespro.com/docs/postgresql/11/monitoring-stats

7

серверный
процесс

серверный
процесс

Architecture

backend stats collector

transaction
statistics

aggregated
statistics

 between transactions

$PGDATA/pg_stat_tmp/
$PGDATA/pg_stat/

aggregated
statistics

statistics snapshot

once in half a second
or less often

at the first call
in the transaction

Each backend process collects the necessary statistics as part of each
transaction performed. This statistic is then passed to the collector process.
The collector receives and aggregates statistics from all backends. Not
more often than once every half second (time is configured when compiling
PostgreSQL), the collector dumps statistics into temporary files in the
$PGDATA/pg_stat_tmp directory (therefore, transferring this directory to
the in-memory file system usually have a positive effect on performance).

When a backend requests information on statistics (through views or
functions), the latest available version of statistics is read into its memory —
this is called a statistics snapshot. Unless explicitly requested, the snapshot
will not be re-read until the end of the transaction to ensure consistency.

Thus, due to delays, the server process does not receive the most recent
statistics, but usually this is not required.

When the server is cleanly stopped, the collector flushes the statistics to
permanent files in the $PGDATA/pg_stat directory. Thus, the statistics is
saved when the server is restarted. Counters resetting occurs at the
administrator command, as well as when restoring the server after a failure.

8

Additional statistics

Extensions included in the PostgreSQL distribution
pg_stat_statements query statistics

pgstattuple row versions statistics

pg_buffercache buffer cache status

Other extensions
pg_stat_plans query plan statistics

pg_stat_kcache CPU and I/O statistics

pg_qualstats predicate statistics

…

There are extensions that allow to collect additional statistics, both included
in the official PostgreSQL distribution as well as external ones.

For example, pg_stat_statements extension stores information about
queries performed by the DBMS; pg_buffercache allows you to look into
the contents of the buffer cache, etc.

9

Messages log

Setting up log entries

Log file rotation

Log analysis

The second important source of information about what is happening on the
server is the messages log.

10

Messages log

Log destination (log_destination = list)

stderr standard error stream
csvlog CSV format (only with logging collector)
syslog syslog daemon
eventlog Windows events log

Logging collector process (logging_collector = on)

enables to collect additional information
never loses a message (unlike syslog)
writes stderr and csvlog to log_directory/log_filename

The server messages log can have different destinations and can be output
in different formats. The main parameter that defines both the destination
and the format is log_destination (you can specify one or several values
separated by commas).

The value of stderr (the default) prints messages to the standard error
stream in text form. The syslog value sends messages to the syslog
daemon on Unix systems, and the eventlog sends messages to the
Windows event log.

Usually an additional logging collector process is set up. It allows to write
more information because it collects it from all the processes that make up
PostgreSQL. It is designed to never lose a message; as a result, with a
large load it can become a bottleneck.

The message collector is enabled with the logging_collector parameter.
When stderr is set, information is written to the directory specified by the
log_directory parameter in the file specified by the log_filename parameter.

The logging collector also allows to specify the csvlog destination; in this
case, the information will be written in CSV format to a log_filename file with
the .csv extension.

11

Log information

Settings

information parameter

messages of a certain level log_min_messages
long statements execution time log_min_duration_statement
statements execution time log_duration
application name application_name
checkpoints log_checkpoints
connections and disconnections log_(dis)connections
long waits log_lock_waits
text of the executed statements log_statement
temporary files usage log_temp_files
...

A lot of useful information can be output to the server message log. By
default, almost all output is disabled so as not to turn the message log into
a bottleneck for the disk subsystem. The administrator must decide which
information is important, provide the necessary disk space to store it, and
evaluate the impact of the log collecting on the overall system performance.

12

Log files rotation

Using the logging collector
setting parameter
file name mask log_filename
rotation time, mins log_rotation_age
rotation file size, KB log_rotation_size
whether to overwrite files log_truncate_on_rotation = on

combining the file mask and the rotation time, we get different schemes:

'postgresql-%H.log', '1h' 24 files a day
'postgresql-%a.log', '1d' 7 files a week

External tools
for example, 24 files a day with Apache rotatelogs:
pg_ctl start | rotatelogs file_name 3600 -n 24

If you write the log into one file, sooner or later it will grow to a huge size,
which is extremely inconvenient for administration and analysis. Therefore,
one or another logs rotation scheme is usually used.

https://postgrespro.com/docs/postgresql/11/logfile-maintenance

The logging collector has built-in rotation ability that is configured by several
parameters, the main of which are listed on the slide.

The log_filename parameter can specify not just the name, but the mask of
the file name using some special characters for date and time.

The log_rotation_age parameter specifies the time to switch to the next file
in minutes (and log_rotation_size is the size of the file at which to switch to
the next).

Enabling log_truncate_on_rotation overwrites existing files.

Thus, by combining the mask and the switching time, you can get different
rotation schemes.

https://postgrespro.com/docs/postgresql/11/runtime-config-logging.h
tml#RUNTIME-CONFIG-LOGGING-WHERE
Alternatively, you can use external rotation programs, for example
rotatelogs.

13

Log analysis

General-purpose operating system tools
grep, awk...

Specially designed tools
pgBadger — requires certain log settings

You can analyze logs in different ways.

You can search for specific information using OS tools or specially designed
scripts.

The de facto standard for the analysis is PgBadger utility
https://github.com/dalibo/pgbadger. It imposes certain restrictions on the
contents of the log. In particular, messages are allowed only in English.

14

External monitoring

Universal monitoring systems
Zabbix, Munin, Cacti...
cloud services: Okmeter, NewRelic, Datadog...

PostgreSQL monitoring systems
PGObserver
PostgreSQL Workload Analyzer (PoWA)
Open PostgreSQL Monitoring (OPM)
...

In practice, if you take the matter seriously, you need a comprehensive
monitoring system that collects various metrics from both PostgreSQL and
the operating system, stores the history of these metrics, displays them as
graphs, and has warning features when certain metrics go beyond the
established limits, etc.

PostgreSQL itself does not have such a system; it only provides the means
to obtain information about yourself (which we have reviewed). Therefore,
for comprehensive monitoring you need to chose an external system.

There are quite a few universal monitoring systems that have plugins or
agents for PostgreSQL. These include Zabbix, Munin, Cacti, Okmeter,
NewRelic, Datadog and other cloud services.There are systems specifically
targeted at PostgreSQL, such as PGObserver, PoWA, OPM, etc.

Not complete, but representative list of monitoring systems can be found on
page https://wiki.postgresql.org/wiki/Monitoring

15

Demonstration

 $ psql
 postgres=#

16

Summary

Monitoring is aims to track the server activity from both
the operating system and the database perspective

PostgreSQL provides raw data in form of collected statistics
and server messages log

An external system is required for comprehensive monitoring

17

Practice

1. In a new database create a table, insert a few rows into it,
and then delete all the rows.

2. Look at the statistics of table accesses and match the numbers
(n_tup_ins, n_tup_del, n_live_tup, n_dead_tup) with your
activity.

3. Perform a vacuum, check the statistics again and compare with
the previous numbers.

4. Create a deadlock situation for two transactions.

5. See what information is recorded for the deadlock in the server
messages log.

4. Deadlock is a situation in which two (or more) transactions are waiting for
each other. Unlike regular locking, transactions do not have an opportunity
to break out the deadlock and the DBMS is forced to take action: one of the
transactions will be forcibly interrupted so that the others can continue
execution.

The easiest way to reproduce the deadlock is on a table with two rows. The
first transaction changes (and, accordingly, locks) the first row, and the
second transactions changes the second row. Then the first transaction tries
to change the second row and «hangs» on the lock. And then the second
transaction tries to change the first row and also waits for the lock to be
released.

