

Administration Tasks

Maintenance

11

Copyright
© Postgres Professional, 2017, 2018, 2019.
Authors: Egor Rogov, Pavel Luzanov

Use of course materials
Non-commercial use of course materials (presentations, demonstrations)
is permitted without restrictions. Commercial use is possible only with the
written permission of Postgres Professional. Changes to course materials
are prohibited.

Feedback
Send feedback, comments and suggestions to:
edu@postgrespro.ru

Denial of responsibility
In no event shall Postgres Professional be liable to any party for direct,
indirect, special, incidental, or consequential damages, including lost
profit, arising out of the use of course materials. Postgres Professional
disclaims any warranties on course materials. Course materials are
provided on an “as is” basis and Postgres Professional has no obligations
to provide maintenance, support, updates, enhancements, or
modifications.

2

Topics

Vacuuming and its tasks

Indexes monitoring and rebuilding

There are many more maintenance tasks, which are considered in other
lessons (for example, setting up of message log or using backups).

3

Vacuuming

Vacuum options

Updating statistics

Updating visibility map and free space map

Transaction ID wraparound and freeze

Cleaning (vacuum) can be executed in different ways and, besides the
actual cleaning of pages from dead row versions, it also performs a number
of other important tasks.

4

Vacuum

VACUUM

VACUUM table single table (and its indexes)
VACUUM all tables in a database
$ vacuumdb wrapper for use in the OS

runs concurrently with other transactions

frequent vacuuming loads I/O subsystem

rare vacuuming leads to high bloat

Vacuuming is needed to get rid of old (dead) tuples which are created when
you change or delete rows, as required by the multiversion concurrency
control (the «Architecture» module). Vacuum cleans up data pages of such
tuples.

Vacuum works concurrently with other transactions, processing files page by
page. Because of this it does not reduce the size of the files (except for the
case when several pages at the end of the file are completely free). Instead,
space is freed up inside the data pages, which can later be used to insert
new tuples.

Vacuuming can be started manually with the VACUUM command, but how
often shall we do it? Running it too often will create unnecessary load on the
system. But running vacuum too rare, with a large volume of changes, the
files may grow significantly in size (became bloated).

https://postgrespro.com/docs/postgresql/11/sql-vacuum

5

Vacuum

Autovacuum background process

autovacuum launcher
autovacuum worker

frequency is adjusted automatically to the frequency of changes

configured by the server parameters

Therefore, the main vacuuming method is a special autovacuum
background process. It dynamically reacts to the rate of changes: the more
active the changes, the more often the table will be processed.

There is an autovacuum launcher daemon in the system, which
schedules the vacuuming and starts up the required number of
autovacuum worker processes running in parallel.

Properly configured autovacuum process should manage to process the
tables in time, avoiding unnecessary bloat.

6

Vacuum

VACUUM FULL

VACUUM FULL table single table (and its indexes)
VACUUM FULL all tables in a database
$ vacuumdb --full wrapper for use in the OS

completely rewrites the table and all its indexes,
reducing file size and minimizing occupied space

acquires an exclusive lock on the table for the duration of operation

TRUNCATE works similarly

With a well-tuned vacuum process, the data files grow by some amount due
to updates between sequential vacuuming. If the files have grown
significantly (for example, due to massive unplanned changes that
autovacuum did not manage to process in time), this can lead not only to
overrun disk space, but also to slow down the system. Then, to shrink the
files, a so-called full vacuum is required.

The VACUUM FULL command completely rewrites the contents of tables
and indexes, minimizing the space occupied. However, this process
acquires an exclusive table lock for the duration of the operation, and
therefore cannot be executed concurrently with other transactions.

By the way, the SQL TRUNCATE command works in a similar way. It
immediately deletes all rows without requiring vacuum after it, unlike
DELETE. But, although TRUNCATE is a transactional command, it acquires
an exclusive lock on the table. Thus, TRUNCATE will be executed only after
all transactions that use the table (even for reading) are completed, and until
the truncating transaction is completed, all access to the table will be
blocked (even for reading).

If prolonged exclusive lock is undesirable, you can consider a third-party
pg_repack extension https://github.com/reorg/pg_repack, which allows you
to rebuild the table and its indexes on the fly. It still acquires an exclusive
lock, but for a very short period of time.

7

Statistics update

Autovacuum background process
automatically updates statistics (analyze) after significant changes
random sampling is used, size is customizable

ANALYZE
ANALYZE [table]
$ vacuumdb --analyze-only

manually updating statistics

VACUUM
VACUUM ANALYZE [table]
$ vacuumdb --analyze

vacuuming and updating statistics at once

Fresh statistics is vital for the optimizer to generate adequate plans.

The autovacuum background process, in addition to cleaning up dead
tuples, collects and updates statistics on changing data.

If this is not enough, the statistics can be updated manually using an
ANALYZE command or together with vacuum by VACUUM ANALYZE.

When collecting statistics, a random sample of data of a certain size is read.
This allows PostgreSQL to quickly collect statistics even on very large
tables. The result is not 100% accurate, but in most cases there is nothing
to worry about. If necessary, the sample size can be increased.

https://postgrespro.com/docs/postgresql/11/sql-analyze

8

Maps update

Visibility map
bitmap of pages with all-visible tuples in all snapshots
(tracks sufficiently-long-unchanged pages)
visibility is reset after any change on a page, and set automatically
by vacuum
used to optimize vacuum (no need to visit unchanged pages)
and index-only scans

Free space map
tree-like structure to track free space in the pages
updated when inserting new tuples and by vacuum
used to quickly look up a suitable page when inserting new tuples

Visibility map and free space map were discussed in the «Data
Organization» module.

Recall that the visibility map (VM) tracks pages that contain only those row
versions (tuples) that are known to be visible to all transactions. In other
words, there should not be two versions of the same row in the page. These
are the pages that hasn't been changed for a long time for vacuum to clean
up all dead tuples from them.

VM is used to optimize vacuum operation: vacuum does not need to visit
tracked pages, since there is nothing to clean in them. Also VM speeds up
index-only scans.

When any data changes in the page, the visibility bit of this page is reset.
The bit is set automatically when possible during vacuum.

https://postgrespro.com/docs/postgresql/11/storage-vm

A free space map tracks pages that are not completely filled with data.

This a tree-like structure that allows to quickly look up a suitable page when
inserting (and updating, because updating is interpreted as deleting and
inserting) new rows.

The free space map is updated when inserting new tuples (free space
decreases) and by the vacuum removing dead tuples from the pages (free
space increases).

https://postgrespro.com/docs/postgresql/11/storage-fsm

9

Wraparound and freeze

32-bit transaction number
space of numbers is looped
old row versions are «frozen» by autovacuum

As was discussed in the «Architecture» module, PostgreSQL uses
transaction ids to order operations. Transactoin counter is a 32-bits integer,
and in a heavily loaded system it can overflow. But if the counter is reset to
zero (which is called a wraparound), then the ordering of operations will be
broken.

To prevent such a situation, the space of numbers is looped. For any given
transaction, it is considered that one half of the numbers are behind (in the
past), and the other half are ahead (in the future).

Over time we can come across a very old transaction id in xmin field of a
tuple, and we would see the tuple in the future instead of the past.
Therefore, tuples that are already visible in each snapshot are periodically
marked as «frozen». The multiversion visibility rules considers such tuples
to be infinitely old, and no longer looks at the transaction ids.

Freezing is automatically performed by the autovacuum process. Previously,
PostgreSQL had to periodically completely scan tables in search of not-yet-
frozen tuples. In PostgreSQL 9.6 this process was optimized: a freeze map
is added to the visibility map — an extra bit that tracks those pages that
contain only frozen tuples.

If the server stumbles over a non-frozen transaction in the «future» half of
the transaction numbers, it forcibly stops; all running transactions fails. After
that, the administrator must manually start the server and manually perform
vacuum to be able to continue operation.

https://postgrespro.com/docs/postgresql/11/routine-vacuuming.html#vacuum
-for-wraparound

10

Indexes

Index monitoring

Rebuilding indexes

The status of the indexes should be monitored and - when appropriate -
rebuild indexes or delete unnecessary ones.

11

Index monitoring

Excessive indexes
not used indexes (monitoring pg_stat_all_indexes.idx_scan),
duplicating or intersecting indexes (queries to pg_index)

problems: change overhead, disk space

solution: removing unnecessary indexes (carefully)

Index bloat
monitoring pg_relation_size()

problems: disk space, reduced performance

solution: rebuilding indexes

Indexes are quite complex structures compared to tables. Under heavy load
of rows deletions and insertions, an index may unreasonably increase in
size.

For example, if we are talking about B-trees, an index page must contains
values in a specified order. When there is no space on a page to insert a
new value, the page is splitted in two, which can never be merged again,
even if all the rows on these pages are deleted. The vacant space is
certainly available for insertion of new rows, but the size of the index won't
reduce.

The administrator must look after the indexes and rebuild them if necessary.

https://wiki.postgresql.org/wiki/Show_database_bloat

https://postgrespro.com/docs/postgresql/11/pgstattuple

12

Rebuilding indexes

REINDEX

REINDEX INDEX index rebuild one index
REINDEX TABLE table rebuild all indexes on the table
REINDEX DATABASE database rebuild all indexes in the database
REINDEX SYSTEM rebuild all indexes

rebuilds the index, minimizing the space occupied
acquires an exclusive lock on the index

VACUUM FULL

rebuilds indexes along with the table
acquires an exclusive lock on the table and the index

Rebuilding can be done with the REINDEX command. It creates a new copy
of the index and replaces the old one with it. However, it acquires an
exclusive lock on the index during its operations, and also blocks writes to
the table. So almost any concurrent work with the table will be suspended.

Indexes are also rebuilt when performing VACUUM FULL, and also with
exclusive locking. In fact, both commands work in the same way, but
REINDEX processes only indexes, leaving the table unchanged.

https://postgrespro.com/docs/postgresql/11/sql-reindex

13

Rebuilding indexes

Rebuild concurrently
CREATE INDEX new ON ... CONCURRENTLY;

DROP INDEX old;

there can be several indexes on the same columns
some index types do not support concurrent build
concurrent index build is not transactional
concurrent index build may fail

Indexes supporting integrity constraints
CREATE UNIQUE INDEX new ON ... CONCURRENTLY;

ALTER TABLE ...
 DROP CONSTRAINT old_constraint,
 ADD CONSTRAINT new_constraint [UNIQUE|PRIMARY KEY]
 USING INDEX new;

An alternative way is to manually rebuild the index in several steps.

First, a new index is created. Normal index build blocks concurrent writes to
the table, so the index should be built in concurrent mode (keyword
CONCURRENTLY).

However, concurrent built takes more time to complete and may fail (due to
internal deadlocks). In the latter case, the index has to be deleted and
rebuilt again. Also note that concurrent built cannot be performed within
a transaction.

Then the old index can be deleted. Or, if the old index supports an integrity
constraint, this constraint is deleted (along with the old index) and a new
constraint is created.

https://postgrespro.com/docs/postgresql/11/sql-createindex

https://postgrespro.com/docs/postgresql/11/sql-altertable

14

Demonstration

 $ psql
 postgres=#

15

Summary

The vacuum process is responsible for many tasks:
cleaning up dead tuples
collecting statistics for the planner
updating visibility map and free space map
freezing tuples

Autovacuum should be enabled and requires configuration

Indexes require monitoring and (sometimes) rebuilding

16

Practice

1. Disable the autovacuum process and make sure it doesn’t work.

2. In a new database create a table with one numeric column and
an index on this table.

3. Insert into the table 100,000 random numbers.

4. Several times change half the rows of the table, controlling at
each step the size of the table and the index.

5. Perform full vacuum of the table.

6. Repeat step 4, running vacuum (normal, not full) after each
change. Compare the results.

7. Re-enable the autovacuum process.

1. Set the autovacuum parameter to off and signal the server to re-read
the settings.

7. Set the autovacuum parameter to on and signal the server to re-read the
settings.

