

Data organization

Physical layout

11

Copyright
© Postgres Professional, 2017, 2018, 2019.
Authors: Egor Rogov, Pavel Luzanov

Use of course materials
Non-commercial use of course materials (presentations, demonstrations)
is permitted without restrictions. Commercial use is possible only with the
written permission of Postgres Professional. Changes to course materials
are prohibited.

Feedback
Send feedback, comments and suggestions to:
edu@postgrespro.ru

Denial of responsibility
In no event shall Postgres Professional be liable to any party for direct,
indirect, special, incidental, or consequential damages, including lost
profit, arising out of the use of course materials. Postgres Professional
disclaims any warranties on course materials. Course materials are
provided on an “as is” basis and Postgres Professional has no obligations
to provide maintenance, support, updates, enhancements, or
modifications.

2

Topics

Tablespaces and directories

Files and data pages

Forks: main, visibility map, free space map

TOAST

3

Tablespaces

postgres

pg_catalog public

template1

pg_catalog publicschema

pg_global
tablespace

tablespace

pg_default
tablespace

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject

default
tablespace

default
tablespace

Tablespaces (TS) are used to organize the physical storage of data and
determine the location of the data in the file system.

For example, you can create one TS on slow disks for archived data, and
another on fast disks for hot data.

During cluster initialization, two TSs are created: pg_default and
pg_global.

The same TS can be used by different databases, and one database can
store data in several TSs.

In addition, each database has a so-called «default TS», in which all objects
are created, unless explicitly specified otherwise. The objects of the system
catalog are also stored in the default TS. Initially, the pg_default TS is
used as the «default TS» (thus the name), but you can set another one.

The pg_global TS is special: it stores all cluster-level objects of the
system catalog.

4

Directories, Files, Pages

postgres template1

pg_global
tablespace

tablespace

pg_default
tablespace

таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject таблицатаблицаobject

таблицатаблицаobject

таблицатаблицаobject таблицатаблицаobject

$PGDATA/global/
 ...
 ...
 ...

$PGDATA/base/dboid/
 ...
 NNN
 NNN.1
 NNN.2
 ...

$PGDATA/pg_tblspc/tsoid

/path_to_directory/ver/dboid/
 ...
 ...
 ...

In essence, a tablespace is an indication of the directory in which the data is
located. Standard tablespaces pg_global and pg_default are always
mapped to $PGDATA/global/ and $PGDATA/base/, respectively. When
creating a custom TS, an arbitrary directory is specified; for its own
convenience, PostgreSQL creates a symbolic link to it in the
$PGDATA/pg_tblspc/ directory.

Inside the $PGDATA/base/ directory, the data is further divided into
subdirectories according to databases (this is not required for
$PGDATA/global/, as the data in it refer to the cluster as a whole).

Inside the user TS directory, another nesting level appears: the PostgreSQL
server version. This is done for the convenience of upgrading the server to
another major version.

Objects themselves are stored in files inside these directories, each object is
in separate set of files.

Each file (sometimes called a segment) takes no more than 1 GB, so each
object can correspond to several files. 1 GB limit can be changed when
building the server. It is important to consider the impact of a potentially
large number of files on the file system performance.

All segments are logically divided into pages, usually 8 KB each (the size
can be changed for the entire cluster when building the server). Pages of
different objects (such as tables or indexes) are read from the disk in exactly
the same way through the common buffer cache manager.

https://postgrespro.com/docs/postgresql/11/storage-file-layout

5

Forks

Main
actual data

Visibility map (vm)
pages containing only tuples known to be visible in all snapshots
used to optimize vacuuming and speed up index-only access
exists only for tables

Free space map (fsm)
free space in pages after vacuuming
used when inserting new tuples

Usually each object is represented by several forks. Each fork consists of a
set of files (segments).

The main fork is the actual data: table row versions or index rows.

Visibility map (vm) fork is a bitmap which keeps track of pages that
contain only tuples that are known to be visible in all data snapshots. In
other words, these are pages that have not been changed for sufficiently
long time to be completely vacuumed from non-actual row versions.

The visibility map is used to optimize vacuuming (tracked pages are not
visited by vacuum process) and to speed up index-only access. Versioning
information is stored only for tables, but not for indexes (therefore indexes
do not have a visibility map). Having obtained from the index a pointer to the
row version, PostgreSQL needs to read the table page to check this row
version visibility. But if the index itself already has all the columns necessary
for the query, and at the same time the page is tracked in the visibility map,
then the table page access can be skipped.

Free space map (fsm) fork keeps track of available space within the
pages. Free space is gained by vacuuming dead rows. The map is used
when inserting new row versions to quickly find a suitable page.

6

TOAST

Row version must fit one page
compress some attributes
or move some attributes to an external TOAST table
or move compressed values

TOAST table
pg_toast schema
supported by its own index
large values are broken up into chunks smaller than a page
only read when referring to the large value
separate versioning
works transparently for the application

Any row version must fit entirely in one page, PostgreSQL does not allow a
row version to span multiple pages. For large rows versions, TOAST (The
Oversized Attributes Storage Technique) is used. It involves several
strategies. A large value can be compressed so that the row version fits on a
page. Another approach is to move a large value to a separate TOAST
table. Both approaches can be applied.

For each main table, if necessary, a separate TOAST table is created (and a
special index for it). Such tables and indexes are located in pg_toast
schema and therefore are usually not visible.

The row versions in the TOAST table should also fit on one page, so the
large values are broken up into a number of smaller chunks. PostgreSQL
transparently sticks together these chunks to form the required value for the
application.

TOAST table is used only when referring to the large value. In addition,
TOAST table has its own versioning: for example, if an UPDATE command
does not affect the large attribute, the new row version will link to the same
value in the TOAST table, which saves space.

https://postgrespro.com/docs/postgresql/11/storage-toast

7

Demonstration

 $ psql
 postgres=#

8

Summary

Physically
data is stored in tablespaces (directories)
each object is represented by several forks
each fork consists of one or more files (segments)

Tablespaces are managed by the administrator

Layers, files, and TOAST are PostgreSQL internals

9

Practice

1. Create a new database and connect to it.

2. Create tablespace ts.

3. Create table t in tablespace ts and add a few rows to it.
4. Calculate the volume occupied by the database, table and

tablespaces ts and pg_default.

5. Move the table to the pg_default tablespace.

6. How have the tablespaces volumes changed?

7. Delete tablespace ts.

