

Architecture

Buffer Cache and Logging

11

Copyright
© Postgres Professional, 2017, 2018, 2019.
Authors: Egor Rogov, Pavel Luzanov

Use of course materials
Non-commercial use of course materials (presentations, demonstrations)
is permitted without restrictions. Commercial use is possible only with the
written permission of Postgres Professional. Changes to course materials
are prohibited.

Feedback
Send feedback, comments and suggestions to:
edu@postgrespro.ru

Denial of responsibility
In no event shall Postgres Professional be liable to any party for direct,
indirect, special, incidental, or consequential damages, including lost
profit, arising out of the use of course materials. Postgres Professional
disclaims any warranties on course materials. Course materials are
provided on an “as is” basis and Postgres Professional has no obligations
to provide maintenance, support, updates, enhancements, or
modifications.

2

Topics

Buffer cache

Replacement algorithm

Write-Ahead Log

Checkpoint

The processes related to the buffer cache and WAL

3

Buffer cache

Buffers array
data page (8 KB)
additional information

Locks in memory
for shared access

PostgreSQL
postmaster

backend

OS
cache

background processes

shared memory

buffer cache

The buffer cache is used to level the difference between the RAM and disks
speed. It consists of an array of buffers that contain data pages and some
additional information (for example, the file name and the position of the
page inside this file).

The page size is usually 8 KB; size can only be changed when building
PostgreSQL.

Any work with data pages goes through the buffer cache. If any process is
going to work with the page, it first tries to find it in the cache. If the page
does not exist, the process requests the operating system to read this page
and places it in the buffer cache. Please note that the OS can read the page
either from disk (which is slow) or from its own cache (which is fast).

After the page is get to the buffer cache, it can be accessed many times
without the overhead of operating system calls.

The buffer cache, like other shared memory structures, is protected by locks
to control concurrent access. Although locks are implemented effectively,
access to the buffer cache is not nearly as fast as simply accessing RAM.
Therefore, in general, the less data a query reads and modifies, the faster it
will work.

4

Replacement

Least Recently Used
replacement

«dirty» page is written
to disk first

page is replaced
with another page

PostgreSQL
postmaster

backend

OS
cache

background processes

shared memory

buffer cache

The buffer cache size is usually not so large as to fit the entire database.
It is limited by the available RAM, and also the larger the buffer cache, the
greater the overhead. Therefore, when reading the next page into the cache,
sooner or later it turns out that the free buffers are over. In this case, page
replacement is applied.

The replacement algorithm chooses a page in the cache that has recently
been used less frequently than others, and replaces it with a new one. If the
choosen page has been changed, then it must first be written to disk in
order not to lose the changes (the buffer containing the modified page is
called «dirty»).

This is called the Least Recently Used (LRU) algorithm. It ensures that
«hot» data is cached. There are usually not that many hot pages even in a
big database. Large enough buffer cache allows to significantly reduce the
number of calls to the OS (and subsequent disk operations).

5

Write-Ahead Log (WAL)

The problem: in case of a failure, data in RAM that is not
written to disk is lost

The solution: WAL
stream of records describing the operations performed
allows to replay lost operations
records get to the disk before the changed data

Log protects
pages of tables, indexes and other objects
transaction status (xact)

Log does not protect
temporary and unlogged tables

The buffer cache (and other buffers in RAM) increases performance, but
decreases reliability. In the event of a failure in the DBMS, the contents of
the buffer cache is lost. If a crash occurs in the operating system or at the
hardware level, the contents of the OS buffers is also lost (but the operating
system itself copes with this).

PostgreSQL uses write-ahead logging to ensure reliability. When performing
any operation, a record is created containing the minimum necessary
information so that the operation can be performed again. Such a record
must get on the disk (or another non-volatile storage) before the data
modified by the operation will be written (which is why it is called the write-
ahead log).

Log files have traditionally been located in PGDATA/pg_xlog directory;
since version 10, the directory has been renamed to pg_wal.

WAL protects all objects that are handled in RAM buffers: tables, indexes
and other objects, transactions status.

The log does not contain data on temporary tables (such tables are
accessible only to the user who created it and only for the duration of the
session or transaction) and unlogged tables (such tables are no different
from regular tables, except that they are not protected by the log). In case of
a failure, such tables are simply cleared. The meaning of their existence is
that work with them is faster.

6

Performance

Synchronous mode
write and sync on commit
backend

Asynchronous mode
write and sync in background
walwriter

PostgreSQL

backend

OS

WAL

postmaster

background processes

walwriter

shared memory

buffer cache xactwal

cache
transactions

status

fsync

The logging mechanism is more efficient than working directly with a disk
without a buffer cache. First, the size of the log entries is smaller than the
size of the whole page of data. Second, the log is written strictly sequentially
(and usually is read only in case of recovery), which even HDDs do quite
well.

Performance can also be influenced by tuning. If the WAL records are
written immediately (synchronously), then it is guaranteed that the
committed data will not be lost. But writing is a rather expensive operation,
during which the backend process that performs COMMIT has to wait. To
ensure that the log entry is not «stuck» in the operating system cache, the
fsync call is made: PostgreSQL relies on this call to make sure that the
data hit a non-volatile media.

Therefore, there is a delayed (asynchronous) mode. In this case, records
are written by the walwriter background process gradually, with a slight
delay. This somewhat decreases reliability, but greatly increases
performance. Even in this case data consistency after recovery is
guaranteed.

7

Checkpoint

Periodic flushing of all dirty buffers to disk
guarantees that all changes up to the checkpoint start hit the disk
limits the size of the log required for recovery

Recovery
starts from the last completed checkpoint
records are replayed one-by-one to restore data consistency in disk pages

xid
check point check point failure

required log files

recovery start

When PostgreSQL starts after a crash, the server enters a recovery mode.
The disk after a crash is known to contain inconsistent information: data
pages were written in different moments of time and contain data in different
states.

To restore consistency, PostgreSQL reads the write-ahead log and replays
log records one-by-one if the corresponding change is not yet on the disk.
This way, changes of all transactions are restored, except for those whose
commit record did not get into the log.

However, the log volume during server operation can reach gigantic
proportions. It is absolutely impossible to keep the entire log and read it from
the very beginning in case of a failure. Therefore, the DBMS periodically
performs a checkpoint: forcibly flushes all dirty buffers (including the state of
transactions) to disk. This ensures that changes of all pages done before
the checkpoint are on disk.

The checkpoint can take a lot of time, and this is normal. Actually, the
«point» of time we refer to is the beginning of the process. But the
checkpoint is considered to be completed only after all the dirty buffers that
presented at the time of the process start are flushed.

Recovery begins at the nearest completed checkpoint, which allows
PostgreSQL to store only log files written since the last completed
checkpoint. Previous log files are discarded automatically to free up disk
space.

8

WAL-related processes

WAL writer

Checkpointer
flushes all dirty buffers

Background writer
flushes some of dirty buffers

Backends
flush when forced
to replace a dirty buffer

PostgreSQL
postmaster

checkpointer bgwriter

shared memory

backend

OS

buffer cache xactwal

cache

walwriter

Let us return to the illustration and clarify the remaining processes related to
the maintenance of the buffer cache and log.

First, it is a walwriter process that asynchronously writes log records to
disk. In the synchronous mode, the log records are written by the process
that commits the transaction.

Second, the checkpointer process, periodically flushing all dirty buffers to
disk.

Third, the bgwriter (or simply «writer») background process. This process is
similar to the checkpoint process, but it records only part of the dirty buffers,
and those that are likely to be replaced in the nearest future. Thus, when a
backend needs a buffer, it will most likely find it not dirty and will not waste
time to flush the buffer to disk.

And fourth, backend processes that read the data into the buffer cache.
If, despite the work of the checkpoint and background processes, the
backend finds the page to be dirty, the backend will have to write it to disk
itself.

9

Demonstration

 $ psql
 postgres=#

10

Log levels

Minimal
recover from a failure

Replica (by default)

backup and restore
replication: transfer and replay WAL records on another server

Logical
logical replication: information on new, modified, and deleted rows

As already mentioned, the reason for the existing of the log is the need to
protect information from failures due to the loss of the contents of RAM.

However, the log is a mechanism that has turned out to be convenient for
other purposes, if we add more information to it.

The amount of data that goes into the log is determined by the wal_level
parameter.

- At the level of minimal the log provides only recovery from a failure.
Before version 10, this level was set by default.

- At the replica level, information is added to the log, allowing it to be used
for creating and restoring backups (see the «Backup» module) and
replication (the «Replication» module). During replication, log records are
transferred to another server and applied there; this creates and maintains
an exact binary copy (replica) of the primary server.

Before version 9.6, there were two separate levels (archive and
hot_standby), but they were merged into one common level.

- At the logical level, some more information is added that allow for
logical replication, that is replicating table rows instead of page changes
(also discussed in the module «Replication»).

11

Summary

Buffer cache significantly improves performance,
reducing the number of disk operations

Reliability is provided by logging

Log size is limited due to checkpoints

WAL is convenient in many cases:
recovery
backup
replication

12

Practice

1. In the operating system find the processes related to the buffer
cache and WAL.

2. Stop PostgreSQL instance in the fast mode; run it again.
View the server message log.

3. Stop PostgreSQL instance in the immediate mode; run it again.
View the server message log and compare to the previous time.

2. Use the command

pg_ctlcluster 11 alpha stop

In this mode the server terminates all open connections and performs a
checkpoint before shutting down so that consistent data is written to the
disk. Thus, shutdown may take a relatively long time, but at startup the
server will immediately be ready for operation.

3. Use the command

pg_ctlcluster 11 alpha stop -m immediate \
--skip-systemctl-redirect

In this mode the server also terminates open connections, but does not
execute a shutdown checkpoint. This leaves inconsistent data on disk, as
after a failure. Thus, the shutdown occurs quickly, but at startup the server
will have to recover data consistency using the log.

