

SQL

Functions and Procedures

17

Copyright
© Postgres Professional, 2017–2025
Authors Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Igor Gnatyuk
Translated by Liudmila Mantrova and Alexander Meleshko
Photo by Oleg Bartunov (Tukuche peak, Nepal)

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.com

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

Functions and their specifics in databases

Parameters and return values

Passing arguments in a function call

Volatility categories and query planning

Procedures and their differences from functions

Overloading and polymorphism

3

Functions in databases

The main goal is simplifying development tasks
interface (parameters) and implementation (function body)
abstracting from other tasks when implementing a particular function

Traditional languages PostgreSQL
side global variables whole database
effects (volatility categories)

modules own interface namespaces,
and implementation client and server

challenges overhead hiding the query
related to calls from the planner
(inlining) (inlining, subqueries, views)

The main goal of introducing functions in programming is simplifying
development tasks by decomposing them into smaller subtasks. Such
simplification is possible because you can abstract from the big picture
when thinking of a function. For this purpose, the function provides a precise
interface to the outside world (parameters and the return value).
Its implementation (the function body) can change; the caller does not see
these changes and does not depend on them. This ideal situation can be
messed up by the global state (global variables), and you have to keep in
mind that in the DB context the whole database constitutes such a state.

In traditional programming languages, functions are often grouped into
modules (packages, classes for OOP, etc.), which have their own interface
and implementation. This separation into modules can be more or less
arbitrary. In PostgreSQL, there is a fixed boundary between the client and
the server: the server code deals with the database, while the client code
manages transactions. There are no modules (or packages), only
namespaces.

The only disadvantage of extensive use of functions in traditional languages
is function call overhead. It is sometimes overcome by inlining function code
into the calling program. In databases, the consequences can be more
serious: if some part of the query is moved into a function, the planner stops
seeing the big picture and cannot build a good query plan. In some cases,
PostgreSQL can also perform inlining; alternatively, subqueries or views can
be used.

4

Functions overview

A database object
function declaration is stored in the system catalog

The structure of function declaration
name
parameters
return data type
body

Can be written in various languages, including SQL
the code is stored as a string literal
a function is interpreted when it is called

Is called in the context of an expression

Functions are regular database objects, just like tables or indexes. Function
declarations are stored in the system catalog; that’s why database functions
are called stored functions.

PostgreSQL provides a lot of standard functions. Some of them are listed in
the “Basic data types and functions” handout.

You can also write your own functions in various programming languages.
The information provided in this lecture applies to functions in any
programming language, but we will use SQL in all examples.

Predictably, a function declaration consists of a name, optional parameters,
a return data type, and a body. What may seem unexpected is that the body
is written as a string literal, which contains the code written in the
programming language of your choice. It makes function declarations look
the same regardless of the used programming language. The body string is
stored in the system catalog and is interpreted each time the function is
called. Since PostgreSQL 14, SQL code can be pre-parsed. In this case the
parse result is stored in the system catalog instead of the code itself.
Another way to avoid interpretation is to write a function in the C language,
but we are not going to discuss this approach here.

A function is always called within the context of an expression: In the list of
expressions of the SELECT statement, in the WHERE clause, in CHECK
constraints, etc.

https://postgrespro.com/docs/postgresql/17/sql-createfunction

https://postgrespro.com/docs/postgresql/17/sql-syntax-calling-funcs

https://postgrespro.com/docs/postgresql/17/sql-createfunction
https://postgrespro.com/docs/postgresql/17/sql-syntax-calling-funcs

Functions	without	parameters

Here	is	a	simple	example	of	a	function	with	no	parameters:

=>	CREATE	FUNCTION	hello_world()	--	function	name	and	an	empty	list	of	parameters
RETURNS	text																					--	the	type	of	the	return	value
AS	$$	SELECT	'Hello,	world!';	$$	--	function	body
LANGUAGE	sql;																				--	language	specification

CREATE	FUNCTION

It	is	convenient	to	write	the	body	as	a	dollar-quoted	string,	as	shown	in	the	example	above.	Otherwise,	you	have	to	take	care	of
escaping	quotes,	which	are	sure	to	appear	in	the	function	body.	Compare	the	following	strings:

=>	SELECT	'	SELECT	''Hello,	world!'';	';

									?column?										

		SELECT	'Hello,	world!';	
(1	row)

=>	SELECT	$$	SELECT	'Hello,	world!';	$$;

									?column?										

		SELECT	'Hello,	world!';	
(1	row)

If	required,	dollar	quoting	can	be	nested.	It	is	achieved	by	using	different	text	strings	between	dollars	in	each	pair	of	quotes:

=>	SELECT	$func$	SELECT	$$Hello,	world!$$;	$func$;

										?column?											

		SELECT	$$Hello,	world!$$;	
(1	row)

A	function	is	called	in	the	context	of	an	expression.	For	example:

=>	SELECT	hello_world();	--	empty	brackets	are	mandatory

		hello_world		

	Hello,	world!
(1	row)

Let's	have	a	look	at	how	the	body	of	a	function	is	stored	in	the	system	catalog.

=>	SELECT	proname,	prosrc,	prosqlbody	FROM	pg_proc
WHERE	proname	=	'hello_world'	\gx

-[RECORD	1]-------------------------
proname				|	hello_world
prosrc					|		SELECT	'Hello,	world!';	
prosqlbody	|	

The	function	body	is	stored	as-is	in	a	text	string.

Let’s	go	the	modern	way	and	recreate	the	function	in	accordance	with	the	SQL	standard.	Here,	the	body	of	the	function	will	be	just
RETURN	<expression>	(so-called	unquoted	SQL	function	body):

=>	CREATE	OR	REPLACE	FUNCTION	hello_world()	RETURNS	text
LANGUAGE	sql
RETURN	'Hello,	world!';

CREATE	FUNCTION

Check	the	system	catalog	again:	the	function	body	is	stored	differently	now.

=>	SELECT	proname,	prosrc,	left(prosqlbody,	100)	AS	body
FROM	pg_proc
WHERE	proname	=	'hello_world'	\gx

-[RECORD	1]--
proname	|	hello_world
prosrc		|	
body				|	{QUERY	:commandType	1	:querySource	0	:canSetTag	true	:utilityStmt	<>	
:resultRelation	0	:hasAggs	fals

This	time,	the	source	code	is	not	stored	here.	You	can	get	it	with	the	\sf	command:

=>	\sf	hello_world

CREATE	OR	REPLACE	FUNCTION	public.hello_world()
	RETURNS	text
	LANGUAGE	sql
RETURN	'Hello,	world!'::text

If	a	function	body	contains	multiple	SQL	operators,	it	will	return	the	first	row	of	the	last	operator’s	output.	If	the	function	code	is	in
the	SQL	standard	format,	you	will	need	to	use	the	BEGIN	ATOMIC	...	END	construct	to	return	the	whole	block	of	operators:

=>	CREATE	OR	REPLACE	FUNCTION	hello_world()	RETURNS	text
LANGUAGE	sql
BEGIN	ATOMIC
		SELECT	'First	Line';
		SELECT	'Second	Line';
END;

CREATE	FUNCTION

Let’s	call	the	function:

=>	SELECT	hello_world();

	hello_world	

	Second	Line
(1	row)

Note	how	the	SQL	standard-style	syntax	is	different	from	the	regular	single-line	style:

no	AS	construct	with	the	function	code	as	a	text,
the	new	keyword	RETURN	can	be	used	to	return	a	value,
"LANGUAGE	sql"	is	optional,
function	code	is	parsed	and	the	parse	result	is	stored	in	pg_proc.prosqlbody,	while	the	source	code	itself	is	not	stored	in
pg_proc.prosrc,	unlike	with	the	traditional	notation.

Not	only	does	this	confirm	to	the	standard	better,	but	also	improves	compatibility	with	other	SQL	implementations.	Now,	when	a
function	is	called,	its	commands	don’t	need	to	go	through	interpretation	again,	and	the	parsed	function	body	is	used.

Not	all	SQL	operators	can	be	used	in	a	function.	The	following	ones	are	forbidden:

transaction	control	commands	(BEGIN,	COMMIT,	ROLLBACK,	etc.);
service	commands	(such	as	VACUUM	or	CREATE	INDEX).

Here	is	an	example	of	an	invalid	function.	We	have	used	the	void	pseudotype,	which	indicates	that	the	function	returns	nothing.

=>	CREATE	FUNCTION	do_commit()	RETURNS	void
LANGUAGE	sql
BEGIN	ATOMIC	COMMIT;	END;

ERROR:		COMMIT	is	not	yet	supported	in	unquoted	SQL	function	body

You	can	use	procedures	to	manage	transactions;	we	will	cover	this	topic	later	in	this	lecture.

Functions	with	input	parameters

Here	is	a	function	with	a	single	parameter:

=>	CREATE	FUNCTION	hello(name	text)	--	a	formal	parameter
RETURNS	text
LANGUAGE	sql
RETURN	'Hello,	'	||	name	||	'!';

CREATE	FUNCTION

When	calling	this	function,	we	have	to	specify	the	actual	value	that	corresponds	to	the	formal	parameter:

=>	SELECT	hello('Alice');

					hello					

	Hello,	Alice!
(1	row)

When	specifying	parameter	types,	you	can	add	a	modifier	(such	as	varchar(10)),	but	it	will	be	ignored.

You	can	define	a	function	parameter	without	a	name;	then	the	function	body	will	have	to	refer	to	it	by	its	position	number.	Let’s
delete	this	function	and	create	a	new	one:

=>	DROP	FUNCTION	hello(text);	--	it	is	enough	to	specify	the	parameter	type

DROP	FUNCTION

=>	CREATE	FUNCTION	hello(text)
RETURNS	text
LANGUAGE	sql
RETURN	'Hello,	'	||	$1	||	'!';	--	a	number	instead	of	the	name

CREATE	FUNCTION

=>	SELECT	hello('Alice');

					hello					

	Hello,	Alice!
(1	row)

But	this	approach	is	inconvenient	and	should	be	avoided.

Let’s	delete	and	recreate	the	function	again,	now	adding	two	more	parameters:	a	greeting	and	the	title	of	a	person.

=>	DROP	FUNCTION	hello(text);

DROP	FUNCTION

Here	we	have	used	an	optional	IN	keyword,	which	means	the	input	parameter.	The	DEFAULT	clause	is	used	to	define	the	default
parameter	value:

=>	CREATE	FUNCTION	hello(IN	name	text,	IN	greet	text	DEFAULT	'Dear',	IN	title	text	DEFAULT	'Mr')
RETURNS	text
LANGUAGE	sql
RETURN	'Hello,	'	||	greet	||	'	'	||	title	||	'	'	||	name	||	'!';

CREATE	FUNCTION

=>	SELECT	hello('Alice',	'Charming',	'Mrs');	--	the	second	and	the	third	parameter	are	specified

											hello												

	Hello,	Charming	Mrs	Alice!
(1	row)

Note	that	parameters	with	default	values	must	be	at	the	end	of	the	list.	When	calling	a	function,	if	some	default	parameters	are
omitted	and	use	their	actual	values,	all	following	default-able	parameters	will	also	use	their	default	values,

=>	SELECT	hello('Bob',	'Excellent');	--	only	the	first	parameter	gets	the	default	value

										hello											

	Hello,	Excellent	Mr	Bob!
(1	row)

=>	SELECT	hello('Bob');	--	both	parameters	with	default	values	are	omitted

								hello								

	Hello,	Dear	Mr	Bob!
(1	row)

So	far,	we	have	provided	function	parameters	as	positional	ones,	in	the	order	they	were	specified	in	the	function	declaration.	In
many	standard	functions,	parameter	names	are	not	set,	so	it	is	the	only	way	possible.

But	if	the	formal	parameters	are	named,	you	can	use	these	names	when	providing	their	actual	values.	In	this	case,	parameters	can
be	specified	in	any	order:

=>	SELECT	hello(title	=>	'Dr.',	name	=>	'Alice');

									hello										

	Hello,	Dear	Dr.	Alice!
(1	row)

This	approach	is	convenient	if	the	order	of	parameters	is	not	quite	obvious,	especially	if	there	are	a	lot	of	them.

You	can	combine	both	conventions:	provide	some	parameters	by	position	(starting	from	the	first	one)	and	specify	the	rest	by	name:

=>	SELECT	hello('Alice',	title	=>	'Dr.');

									hello										

	Hello,	Dear	Dr.	Alice!
(1	row)

If	the	function	must	return	NULL	when	at	least	one	of	its	input	parameters	is	NULL,	it	can	be	declared	STRICT.	In	this	case,	the
function	body	will	not	be	executed	at	all.

=>	DROP	FUNCTION	hello(text,	text,	text);

DROP	FUNCTION

=>	CREATE	FUNCTION	hello(IN	name	text,	IN	title	text	DEFAULT	'Mr')
RETURNS	text
LANGUAGE	sql	STRICT
RETURN	'Hello,	'	||	title	||	'	'	||	name	||	'!';

CREATE	FUNCTION

=>	SELECT	hello('Alice',	NULL);

	hello	

(1	row)

6

Input and output

Input values
are defined by parameters with IN or INOUT modes

Output value
is defined either by the RETURNS clause
or by parameters with IN or INOUT modes

if both forms are specified, they must be logically equivalent

Formal parameters that have IN or INOUT modes are input parameters.
Their actual values must be specified in the function call (or the default
values must be defined).

There are two ways to define the return value:
● use the RETURNS clause to specify the return data type,
● define output parameters using INOUT or OUT modes.

These two approaches are equivalent. For example, a function with the
RETURNS integer clause and a function with the OUT integer parameter
both return an integer number.

You can combine these two approaches. In this case, the function will also
return one integer number. But note that the types of the output parameters
and the RETURNS clause must not contradict each other.

Thus, unlike in many traditional programming languages, you cannot write a
function that returns one value while passing another value into the OUT
parameter.

Functions	with	output	parameters

An	alternative	way	to	return	a	value	is	to	use	an	output	parameter.

=>	DROP	FUNCTION	hello(text,	text);

DROP	FUNCTION

=>	CREATE	FUNCTION	hello(
				IN	name	text,
				OUT	text	--	you	can	omit	the	parameter	name	if	it	is	not	required
)
LANGUAGE	sql
RETURN	'Hello,	'	||	name	||	'!';

CREATE	FUNCTION

=>	SELECT	hello('Alice');

					hello					

	Hello,	Alice!
(1	row)

The	result	is	the	same.

You	can	use	the	RETURNS	clause	and	the	OUT	parameter	together:	the	result	will	be	the	same	anyway:

=>	DROP	FUNCTION	hello(text);	--	OUT	parameters	are	omitted

DROP	FUNCTION

=>	CREATE	FUNCTION	hello(IN	name	text,	OUT	text)
RETURNS	text
LANGUAGE	sql
RETURN	'Hello,	'	||	name	||	'!';

CREATE	FUNCTION

=>	SELECT	hello('Alice');

					hello					

	Hello,	Alice!
(1	row)

Or	even	use	an	INOUT	parameter:

=>	DROP	FUNCTION	hello(text);

DROP	FUNCTION

=>	CREATE	FUNCTION	hello(INOUT	name	text)
LANGUAGE	sql
RETURN	'Hello,	'	||	name	||	'!';

CREATE	FUNCTION

=>	SELECT	hello('Alice');

					hello					

	Hello,	Alice!
(1	row)

Note	that	the	actual	value	passed	to	the	SQL	function	in	an	INOUT	parameter	is	not	modified:	we	pass	an	input	value,	and	the
output	value	is	returned	as	a	result	(SQL	differs	from	many	other	programming	languages	in	this	respect).	That’s	why	we	can	pass	a
constant,	although	other	languages	would	require	a	variable.

While	the	RETURNS	clause	can	take	only	one	value,	there	can	be	several	output	parameters.	For	example:

=>	DROP	FUNCTION	hello(text);

DROP	FUNCTION

=>	CREATE	FUNCTION	hello(
				IN	name	text,
				OUT	greeting	text,
				OUT	clock	timetz)
LANGUAGE	sql
RETURN	('Hello,	'	||	name	||	'!',	current_time);

CREATE	FUNCTION

Here,	the	expression	after	RETURN	has	to	be	in	parentheses.

=>	SELECT	hello('Alice');

																hello																	

	("Hello,	Alice!",12:44:18.390145+03)
(1	row)

Indeed,	our	function	has	returned	not	just	one	but	several	values	at	once.

We	will	provide	more	details	about	this	feature	and	composite	types	in	the	“SQL.	Composite	Types”	lecture.

8

Volatility categories

Volatile
may return different values for the same input arguments
is used by default

Stable
the return value cannot change within a single SQL operator
the function cannot change the database state

Immutable
the return value cannot change, the function is deterministic
the function cannot change the database state

Each function is mapped to a particular volatility category, which defines the
properties of the return value for the same input arguments.

The volatile category means that the return value can change randomly.
Such functions will be executed each time they are called. If the function is
declared without a category specification, it is assumed to be volatile.

The stable category is used for functions that always return the same value
within a single SQL operator. In particular, such functions cannot change the
state of the database. PostgreSQL could execute such a function only once
during the query and then use the computed value.

The immutable category is even more strict: the return value always
remains the same. Such a function could be executed at the planning stage,
before the query is actually executed.

It does not mean that it happens so all the time, but the planner has the right
to perform such optimizations. In some (simple) cases, the planner makes
its own assumptions about function volatility, regardless of the explicitly
provided category.

https://postgrespro.com/docs/postgresql/17/xfunc-volatility

https://postgrespro.com/docs/postgresql/17/xfunc-volatility

Volatility	categories	and	isolation

In	general,	using	functions	within	queries	does	not	violate	the	isolation	level	of	the	transaction,	but	there	are	two	points	worth
knowing.

First,	volatile	functions	can	cause	data	inconsistency	within	the	query	when	used	at	the	Read	Committed	level.

Let’s	create	a	function	that	returns	the	number	of	rows	in	a	table:

=>	CREATE	TABLE	t(n	integer);

CREATE	TABLE

=>	CREATE	FUNCTION	cnt()	RETURNS	bigint
LANGUAGE	sql	VOLATILE	
RETURN	(SELECT	count(*)	FROM	t);

CREATE	FUNCTION

Now	let’s	call	it	several	times	with	a	delay	and	insert	a	row	into	the	table	in	a	parallel	session.

=>	BEGIN	ISOLATION	LEVEL	READ	COMMITTED;

BEGIN

=>	SELECT	(SELECT	count(*)	FROM	t),	cnt(),	pg_sleep(1)
FROM	generate_series(1,4);

=>	INSERT	INTO	t	VALUES	(1);

INSERT	0	1

	count	|	cnt	|	pg_sleep	
-------+-----+----------
					0	|			0	|	
					0	|			0	|	
					0	|			1	|	
					0	|			1	|	
(4	rows)

=>	END;

COMMIT

It	won’t	happen	at	stricter	isolation	levels,	or	if	the	function	is	stable	or	immutable.

=>	ALTER	FUNCTION	cnt()	STABLE;

ALTER	FUNCTION

=>	TRUNCATE	t;

TRUNCATE	TABLE

=>	BEGIN	ISOLATION	LEVEL	READ	COMMITTED;

BEGIN

=>	SELECT	(SELECT	count(*)	FROM	t),	cnt(),	pg_sleep(1)
FROM	generate_series(1,4);

=>	INSERT	INTO	t	VALUES	(1);

INSERT	0	1

	count	|	cnt	|	pg_sleep	
-------+-----+----------
					0	|			0	|	
					0	|			0	|	
					0	|			0	|	
					0	|			0	|	
(4	rows)

=>	END;

COMMIT

Another	point	is	the	visibility	of	changes	made	by	the	same	transaction.

Volatile	functions	can	see	all	the	changes,	even	those	made	by	the	current	SQL	operator	that	has	not	been	completed	yet.

=>	ALTER	FUNCTION	cnt()	VOLATILE;

ALTER	FUNCTION

=>	TRUNCATE	t;

TRUNCATE	TABLE

=>	INSERT	INTO	t	SELECT	cnt()	FROM	generate_series(1,5);

INSERT	0	5

=>	SELECT	*	FROM	t;

	n	

	0
	1
	2
	3
	4
(5	rows)

It	is	true	for	any	isolation	level.

Stable	and	immutable	functions	see	only	the	changes	performed	by	an	already	completed	operator.

=>	ALTER	FUNCTION	cnt()	STABLE;

ALTER	FUNCTION

=>	TRUNCATE	t;

TRUNCATE	TABLE

=>	INSERT	INTO	t	SELECT	cnt()	FROM	generate_series(1,5);

INSERT	0	5

=>	SELECT	*	FROM	t;

	n	

	0
	0
	0
	0
	0
(5	rows)

Volatility	categories	and	query	planning

Thanks	to	the	volatility	labels	that	provide	additional	information	about	the	function	behavior,	the	optimizer	can	spare	some
function	calls.

To	try	it	out,	let’s	create	a	function	that	returns	a	random	number:

=>	CREATE	FUNCTION	rnd()	RETURNS	float
LANGUAGE	sql	VOLATILE	
RETURN	random();

CREATE	FUNCTION

Let’s	check	the	execution	plan	of	the	following	query:

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	generate_series(1,10)	WHERE	rnd()	>	0.5;

																			QUERY	PLAN																			
--
	Function	Scan	on	generate_series
			Filter:	(random()	>	'0.5'::double	precision)
(2	rows)

The	query	plan	shows	that	the	generate_series	function	is	honestly	called	several	times;	each	result	is	compared	with	a	random
number	and	is	filtered	out,	if	required.

You	can	see	it	for	yourself:

=>	SELECT	*	FROM	generate_series(1,10)	WHERE	rnd()	>	0.5;

	generate_series	

															2
															3
															4
															5
															7
															8
(6	rows)

=>	\g

	generate_series	

															4
															6
															7
															9
														10
(5	rows)

=>	\g

	generate_series	

															1
															3
														10
(3	rows)

=>	\g

	generate_series	

															1
															2
															3
															5
															6
															7
															8
														10
(8	rows)

=>	\g

	generate_series	

															1
															3
															4
															6
															7
															9
														10
(7	rows)

Here,	we	randomly	get	0	to	10	rows.

A	stable	function	will	be	called	only	once,	because	we	have	virtually	specified	that	its	value	cannot	change	within	a	single	operator:

=>	ALTER	FUNCTION	rnd()	STABLE;

ALTER	FUNCTION

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	generate_series(1,10)	WHERE	rnd()	>	0.5;

																						QUERY	PLAN																						
--
	Result
			One-Time	Filter:	(rnd()	>	'0.5'::double	precision)
			->		Function	Scan	on	generate_series
(3	rows)

The	output	will	be	either	0	or	10	rows.

=>	SELECT	*	FROM	generate_series(1,10)	WHERE	rnd()	>	0.5;

	generate_series	

(0	rows)

=>	\g

	generate_series	

(0	rows)

=>	\g

	generate_series	

(0	rows)

=>	\g

	generate_series	

(0	rows)

=>	\g

	generate_series	

(0	rows)

=>	\g

	generate_series	

															1
															2
															3
															4
															5
															6
															7
															8
															9
														10
(10	rows)

=>	\g

	generate_series	

(0	rows)

Finally,	immutable	functions	are	computed	at	the	planning	stage,	so	we	do	not	need	any	filters	during	execution:

=>	ALTER	FUNCTION	rnd()	IMMUTABLE;

ALTER	FUNCTION

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	generate_series(1,10)	WHERE	rnd()	>	0.5;

								QUERY	PLAN								

	Result
			One-Time	Filter:	false
(2	rows)

=>	\g

								QUERY	PLAN								

	Result
			One-Time	Filter:	false
(2	rows)

=>	\g

												QUERY	PLAN												

	Function	Scan	on	generate_series
(1	row)

=>	\g

												QUERY	PLAN												

	Function	Scan	on	generate_series
(1	row)

The	plan	for	immutable	is	random!

It	is	the	developer’s	responsibility	to	provide	the	correct	information.

Function	inlining

In	some	(very	simple)	cases,	a	function	can	be	inlined:	the	function	body	written	in	SQL	can	be	inserted	right	into	the	main	SQL
operator	while	the	query	is	being	parsed.	In	this	case,	we	can	save	some	time	on	the	function	call.

Roughly	speaking,	the	following	conditions	should	be	met:

The	function	body	contains	only	one	SELECT	operator.
The	function	does	not	access	any	tables.
There	are	no	subqueries,	grouping	operations,	etc.
There	must	be	only	one	return	value.
The	called	functions	must	not	violate	the	specified	volatility	category.

We	have	already	seen	such	an	example:	the	rnd()	function,	which	is	declared	volatile.

Let’s	take	another	look.

=>	ALTER	FUNCTION	rnd()	VOLATILE;

ALTER	FUNCTION

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	generate_series(1,10)	WHERE	rnd()	>	0.5;

																			QUERY	PLAN																			
--
	Function	Scan	on	generate_series
			Filter:	(random()	>	'0.5'::double	precision)
(2	rows)

The	Filter	does	not	mention	the	rnd()	function,	only	random()	is	present;	it	will	be	called	directly,	without	using	the	rnd()	wrapper.

10

Procedures overview

The same structure of declaration
except for return data type
can return a result via OUT parameters

Is called using the CALL statement

Can manage transactions
except for SQL language

Procedures were first introduced in PostgreSQL 11. The main reason for
their introduction was that functions cannot manage transactions. Functions
are called in the context of some expression which is computed as part of
an already started operator (such as SELECT) in an already started
transaction. It is impossible to complete a transaction and then start a new
one while the operator is being executed.

Procedures are always called by the special CALL operator. If this operator
starts a new transaction (instead of being called from an already started
one), then it is possible to use transaction management commands in the
called procedure.

Unfortunately, procedures written in SQL cannot use COMMIT and
ROLLBACK commands (although those written in accordance with the new
SQL standard may be able to in the future). Therefore, we won’t see an
example of a procedure that manages transactions until we get to the
“PL/pgSQL. Query execution” section.

Some say that the difference between functions and procedures is that a
procedure does not return a result. But it is not true: procedures can also
return a result, if required.

An umbrella term for both functions and procedures is routines. They share
the common namespace.

https://postgrespro.com/docs/postgresql/17/sql-createprocedure

https://postgrespro.com/docs/postgresql/17/sql-call

https://postgrespro.com/docs/postgresql/17/sql-createprocedure
https://postgrespro.com/docs/postgresql/17/sql-call

Procedures	without	parameters

Let’s	start	with	an	example	of	a	simple	procedure	with	no	parameters.

=>	CREATE	PROCEDURE	fill()
AS	$$
				TRUNCATE	t;
				INSERT	INTO	t	SELECT	random(1,100)	FROM	generate_series(1,3);
$$	LANGUAGE	sql;

CREATE	PROCEDURE

To	call	a	procedure,	you	have	to	use	the	CALL	operator:

=>	CALL	fill();

CALL

Take	a	look	at	the	result	in	the	table:

=>	SELECT	*	FROM	t;

	n		

	18
	92
	72
(3	rows)

Let’s	define	the	procedure	again,	now	in	the	SQL	standard	style:

=>	CREATE	OR	REPLACE	PROCEDURE	fill()
LANGUAGE	sql
BEGIN	ATOMIC
				DELETE	FROM	t;		--	TRUNCATE	is	not	yet	supported	in	such	procedures
				INSERT	INTO	t	SELECT	random(1,100)	FROM	generate_series(1,3);
END;

CREATE	PROCEDURE

Check	if	it	works:

=>	CALL	fill();

CALL

=>	SELECT	*	FROM	t;

	n		

	92
	12
	43
(3	rows)

Try	to	commit	a	transaction	within	the	procedure:

=>	CREATE	OR	REPLACE	PROCEDURE	fill()
LANGUAGE	sql
BEGIN	ATOMIC
				DELETE	FROM	t;
				INSERT	INTO	t	SELECT	random(1,100)	FROM	generate_series(1,3);
				COMMIT;
END;

ERROR:		COMMIT	is	not	yet	supported	in	unquoted	SQL	function	body

Note	that	we	get	the	invalid	command	error	as	early	as	at	the	procedure	definition	stage.

Rename	the	table	the	procedure	is	working	with:

=>	ALTER	TABLE	t	RENAME	TO	ta;

ALTER	TABLE

The	call	below	will	not	result	in	an	error.	In	the	procedure	definition	in	the	system	catalog,	the	table	is	specified	not	by	name	but	by
ID,	which	was	obtained	at	procedure	creation.

=>	CALL	fill();

CALL

Similar	behavior	can	be	achieved	with	a	function	that	returns	the	output	of	its	last	operator.	You	can	define	the	return	type	as	void
if	the	function	does	not	return	anything.

Let’s	give	the	table	back	its	previous	name	and	define	the	function:

=>	ALTER	TABLE	ta	RENAME	TO	t;

ALTER	TABLE

=>	CREATE	FUNCTION	fill_avg()	RETURNS	float
LANGUAGE	sql
BEGIN	ATOMIC
				DELETE	FROM	t;
				INSERT	INTO	t	SELECT	random(1,100)	FROM	generate_series(1,	3);
				SELECT	avg(n)	FROM	t;
END;

CREATE	FUNCTION

In	any	case,	a	function	is	always	called	in	the	context	of	some	expression:

=>	SELECT	fill_avg();

	fill_avg	

							58
(1	row)

=>	SELECT	*	FROM	t;

	n		

	48
	35
	91
(3	rows)

Functions	cannot	manage	transactions.	But	SQL	procedures	do	not	support	it	either	(although	procedures	written	in	other
languages	do	provide	such	support).

Procedures	with	parameters

Let’s	add	an	input	parameter	that	defines	the	number	of	rows:

=>	DROP	PROCEDURE	fill();

DROP	PROCEDURE

=>	CREATE	PROCEDURE	fill(nrows	integer)
LANGUAGE	sql
BEGIN	ATOMIC
				DELETE	FROM	t;
				INSERT	INTO	t	SELECT	random(1,100)	FROM	generate_series(1,	nrows);
END;

CREATE	PROCEDURE

Just	like	functions,	procedures	allow	passing	arguments	by	position	or	by	name:

=>	CALL	fill(nrows	=>	5);

CALL

=>	SELECT	*	FROM	t;

	n		

		9
	92
	72
	61
	57
(5	rows)

Procedures	can	also	have	OUT	and	INOUT	parameters	that	can	be	used	to	return	a	value.

=>	DROP	PROCEDURE	fill(integer);

DROP	PROCEDURE

=>	CREATE	PROCEDURE	fill(IN	nrows	integer,	OUT	average	float)
LANGUAGE	sql
BEGIN	ATOMIC
				DELETE	FROM	t;
				INSERT	INTO	t	SELECT	random(1,100)	FROM	generate_series(1,	nrows);
				SELECT	avg(a)	FROM	t;	--	like	in	a	function
END;

ERROR:		column	"a"	does	not	exist
LINE	6:					SELECT	avg(a)	FROM	t;	--	like	in	a	function
																							^

Let’s	try	it	out:

=>	CALL	fill(5,	NULL	/*	the	input	parameter	is	not	used	but	has	to	be	specified	*/);

ERROR:		procedure	fill(integer,	unknown)	does	not	exist
LINE	1:	CALL	fill(5,	NULL	/*	the	input	parameter	is	not	used	but	has...
													^
HINT:		No	procedure	matches	the	given	name	and	argument	types.	You	might	need	to	add	
explicit	type	casts.

12

Overloading

Several routines with the same name
routines differ in names and input parameter types

types of the return value and output parameters are ignored
an appropriate routine is selected during execution based on the argument
types

CREATE OR REPLACE command
for new combinations of input parameter types, creates a new overloaded
routine

for existing combinations of input parameter types, changes the
corresponding routine, but not the type of the return value

Overloading is the ability to use one and the same name for several routines
(functions or procedures), which differ in types of IN and INOUT
parameters.

In other words, a routine name and types of its input parameters form a
routine signature. When calling a routine, PostgreSQL finds its version that
corresponds to the passed arguments. If an appropriate routine cannot be
determined unambiguously, a runtime error occurs.

A signature, however, does not include:
● routine type (procedure or function),
● OUT parameter types,
● returned value type.

You have to take overloading into account when executing CREATE OR
REPLACE (FUNCTION or PROCEDURE). If input parameter types differ
from those used by already existing routines, a new overloaded routine will
be created, otherwise a matching existing one will be replaced. Besides,
when an existing routine is replaced with the CREATE OR REPLACE
command, its type, OUT parameter types and return value type may not be
changed, but other properties such as the language can be. In some cases,
this means you must delete the routine and create it anew to replace it.
However, doing so requires you to first delete all dependent objects, such as
views, triggers, and other routines (DROP ROUTINE ... CASCADE).

https://postgrespro.com/docs/postgresql/17/xfunc-overload

https://postgrespro.com/docs/postgresql/17/xfunc-overload

13

Polymorphism

A routine that takes arguments of various types
formal parameters use polymorphic pseudotypes (such as anyelement or
anycompatible)

the actual data type is selected during execution based on the type of the
passed arguments

Instead of having several overloaded routines for different types, it is
sometimes more convenient to create a single routine that takes arguments
of any (or almost any) type.

For this purpose, a special polymorphic pseudotype is used as the formal
parameter type. For now, we will use just two of them — anyelement and
anycompatible — with more to follow in later sections.

A routine defined with polymorphic pesudotypes as input parameters may
take any data type as input. The exact type to be used by the routine is
selected at run time based on the type of the passed argument.

If a routine is defined with multiple polymorphic parameters of the
anyelement type, all passed arguments will be implicitly converted to the
type of the first parameter. On the other hand, if a routine is defined with
multiple polymorphic parameters of the anycompatible type, all passed
arguments will be converted to some common type.

If a function is declared with a polymorphic return value, it must have at
least one polymorphic input parameter. The exact type of the return value is
also defined by the actual type of the passed input argument. For SQL
standard-style routines, there is no way to use polymorphic data types for
arguments.

https://postgrespro.com/docs/postgresql/17/extend-type-system#EXTEND-T
YPES-POLYMORPHIC

https://postgrespro.com/docs/postgresql/17/xfunc-sql#XFUNC-SQL-POLYM
ORPHIC-FUNCTIONS

https://postgrespro.com/docs/postgresql/17/extend-type-system#EXTEND-TYPES-POLYMORPHIC
https://postgrespro.com/docs/postgresql/17/extend-type-system#EXTEND-TYPES-POLYMORPHIC
https://postgrespro.com/docs/postgresql/17/xfunc-sql#XFUNC-SQL-POLYMORPHIC-FUNCTIONS
https://postgrespro.com/docs/postgresql/17/xfunc-sql#XFUNC-SQL-POLYMORPHIC-FUNCTIONS

Overloaded	routines

Overloading	mechanism	is	the	same	for	both	functions	and	procedures.	They	have	a	common	namespace.

As	an	example,	let’s	create	a	function	that	compares	two	integer	numbers	and	returns	the	largest	value.	(There	is	a	similar	SQL
expression	called	greatest,	but	we’ll	write	our	own	function	here.)

=>	CREATE	FUNCTION	maximum(a	integer,	b	integer)	RETURNS	integer
LANGUAGE	sql
RETURN	CASE	WHEN	a	>	b	THEN	a	ELSE	b	END;

CREATE	FUNCTION

Let’s	check	the	result:

=>	SELECT	maximum(10,	20);

	maximum	

						20
(1	row)

Suppose	we	decided	to	create	a	similar	function	for	three	numbers.	Thanks	to	overloading,	we	do	not	need	to	invent	a	new	name:

=>	CREATE	FUNCTION	maximum(a	integer,	b	integer,	c	integer)
RETURNS	integer
LANGUAGE	sql
RETURN	CASE
									WHEN	a	>	b	THEN	maximum(a,	c)
									ELSE	maximum(b,	c)
							END;

CREATE	FUNCTION

Now	we	have	two	functions	with	the	same	name	but	a	different	number	of	parameters:

=>	\df	maximum

																														List	of	functions
	Schema	|		Name			|	Result	data	type	|							Argument	data	types							|	Type	
--------+---------+------------------+---------------------------------+------
	public	|	maximum	|	integer										|	a	integer,	b	integer												|	func
	public	|	maximum	|	integer										|	a	integer,	b	integer,	c	integer	|	func
(2	rows)

And	both	of	them	work:

=>	SELECT	maximum(10,	20),	maximum(10,	20,	30);

	maximum	|	maximum	
---------+---------
						20	|						30
(1	row)

The	CREATE	OR	REPLACE	command	enables	you	to	create	a	routine	or	replace	an	existing	one	without	deleting	it.	Since	a	function
with	such	a	signature	already	exists,	it	will	be	replaced:

=>	CREATE	OR	REPLACE	FUNCTION	maximum(a	integer,	b	integer,	c	integer)
RETURNS	integer
LANGUAGE	sql
RETURN	CASE
									WHEN	a	>	b	THEN
											CASE	WHEN	a	>	c	THEN	a	ELSE	c	END
									ELSE
											CASE	WHEN	b	>	c	THEN	b	ELSE	c	END
									END;

CREATE	FUNCTION

Let	our	function	support	not	only	integers	but	also	real	numbers.	How	can	we	implement	it?	We	could	define	one	more	function	as
follows:

=>	CREATE	FUNCTION	maximum(a	real,	b	real)	RETURNS	real
LANGUAGE	sql
RETURN	CASE	WHEN	a	>	b	THEN	a	ELSE	b	END;

CREATE	FUNCTION

Now	we	have	three	functions	with	the	same	name:

=>	\df	maximum

																														List	of	functions
	Schema	|		Name			|	Result	data	type	|							Argument	data	types							|	Type	
--------+---------+------------------+---------------------------------+------
	public	|	maximum	|	integer										|	a	integer,	b	integer												|	func
	public	|	maximum	|	integer										|	a	integer,	b	integer,	c	integer	|	func
	public	|	maximum	|	real													|	a	real,	b	real																		|	func
(3	rows)

Two	of	them	have	the	same	number	of	parameters,	which	differ	in	types:

=>	SELECT	maximum(10,	20),	maximum(1.1,	2.2);

	maximum	|	maximum	
---------+---------
						20	|					2.2
(1	row)

If	a	routine	is	overloaded	multiple	times,	you	can	output	information	on	specific	overloads	in	\df	by	specifying	parameter	types:

=>	\df	maximum	real

																								List	of	functions
	Schema	|		Name			|	Result	data	type	|	Argument	data	types	|	Type	
--------+---------+------------------+---------------------+------
	public	|	maximum	|	real													|	a	real,	b	real						|	func
(1	row)

Then	we	would	have	to	define	separate	functions	with	exactly	the	same	body	for	all	other	data	types,	and	repeat	it	for	three
parameters.

Polymorphic	routines

We	can	use	the	polymorphic	types	anyelement	and	anycompatible.	These	are	pseudotypes,	and	when	a	function	is	called	and
interpreted,	they	are	substituted	with	actual	argument	types.	Naturally,	if	a	routine	is	defined	in	SQL	standard	style,	its	code	is
parsed	at	creation,	preventing	the	use	of	pseudotypes.

Let’s	delete	all	the	three	functions	that	we	have	created...

=>	DROP	FUNCTION	maximum(integer,	integer);

DROP	FUNCTION

=>	DROP	FUNCTION	maximum(integer,	integer,	integer);

DROP	FUNCTION

=>	DROP	FUNCTION	maximum(real,	real);

DROP	FUNCTION

...and	then	create	a	new	one:

=>	CREATE	FUNCTION	maximum(a	anyelement,	b	anyelement)
RETURNS	anyelement
AS	$$
				SELECT	CASE	WHEN	a	>	b	THEN	a	ELSE	b	END;
$$	LANGUAGE	sql;

CREATE	FUNCTION

This	function	should	accept	any	data	type	(but	will	work	only	with	those	types	for	which	the	“greater	than”	operator	is	defined).

Will	it	work?

=>	SELECT	maximum('A',	'B');

ERROR:		could	not	determine	polymorphic	type	because	input	has	type	unknown

Unfortunately	not.	In	this	case,	string	literals	can	be	of	the	char,	varchar,	or	text	type;	the	exact	type	is	unknown.	But	we	can	use
explicit	type	casting:

=>	SELECT	maximum('A'::text,	'B'::text);

	maximum	

	B
(1	row)

Here	is	another	example	with	a	different	type:

=>	SELECT	maximum(now(),	now()	+	interval	'1	day');

												maximum												

	2025-04-23	12:45:10.988263+03
(1	row)

The	type	of	the	result	value	will	always	be	the	same	as	the	parameter	type.

But	we	could	go	further	and	make	polymorphic	routines	take	not	just	the	same	types	but	compatible	ones:	those	that	can	be
implicitly	converted	into	each	other.	This	is	where	the	polymorphic	pseudotype	anycompatible	comes	in.

Let’s	recreate	our	function:

=>	DROP	FUNCTION	maximum;

DROP	FUNCTION

=>	CREATE	FUNCTION	maximum(a	anycompatible,	b	anycompatible)
RETURNS	anycompatible
AS	$$
				SELECT	CASE	WHEN	a	>	b	THEN	a	ELSE	b	END;
$$	LANGUAGE	sql;

CREATE	FUNCTION

Try	the	literals	again:

=>	SELECT	maximum('A',	'B');

	maximum	

	B
(1	row)

It	works!

But	if	the	types	are	neither	the	same	nor	compatible,	we	get	an	error:

=>	SELECT	maximum(1,	'A');

ERROR:		invalid	input	syntax	for	type	integer:	"A"
LINE	1:	SELECT	maximum(1,	'A');
																										^

In	this	example,	such	a	requirement	looks	quite	natural,	but	it	may	turn	out	to	be	inconvenient	in	some	other	cases.

Now	let’s	create	a	function	with	three	parameters,	so	that	the	third	parameter	is	optional.

=>	CREATE	FUNCTION	maximum(
				a	anycompatible,	
				b	anycompatible,	
				c	anycompatible	DEFAULT	NULL
)	RETURNS	anycompatible	
AS	$$
SELECT	CASE
								WHEN	c	IS	NULL	THEN
												x
								ELSE
												CASE	WHEN	x	>	c	THEN	x	ELSE	c	END
				END
FROM	(
				SELECT	CASE	WHEN	a	>	b	THEN	a	ELSE	b	END
)	max2(x);
$$	LANGUAGE	sql;

CREATE	FUNCTION

=>	SELECT	maximum(10,	11.21,	3e3);

	maximum	

				3000
(1	row)

It	works.	And	what	about	the	following	query?

=>	SELECT	maximum(10,	11.21);

ERROR:		function	maximum(integer,	numeric)	is	not	unique
LINE	1:	SELECT	maximum(10,	11.21);
															^
HINT:		Could	not	choose	a	best	candidate	function.	You	might	need	to	add	explicit	type	
casts.

A	conflict	occurs	between	two	overloaded	functions:

=>	\df	maximum

																																																		List	of	functions
	Schema	|		Name			|	Result	data	type	|																											Argument	data	types						
																					|	Type	
--------+---------+------------------+--
---------------------+------
	public	|	maximum	|	anycompatible				|	a	anycompatible,	b	anycompatible																			
																					|	func
	public	|	maximum	|	anycompatible				|	a	anycompatible,	b	anycompatible,	c	anycompatible	
DEFAULT	NULL::unknown	|	func
(2	rows)

It’s	impossible	to	understand	whether	we	meant	to	run	the	function	with	two	parameters,	or	simply	omitted	the	third	one.

This	conflict	can	be	easily	resolved:	let’s	delete	the	first	function	as	it	is	no	longer	required.

=>	DROP	FUNCTION	maximum(anycompatible,	anycompatible);

DROP	FUNCTION

=>	SELECT	maximum(10,	11.21),	maximum(10,	11.21,	3e3);	

	maximum	|	maximum	
---------+---------
			11.21	|				3000
(1	row)

Now	everything	works	fine.	Once	we	get	to	the	“PL/pgSQL.	Arrays”	lecture,	we	will	also	learn	how	to	define	routines	with	an
arbitrary	number	of	parameters.

15

Takeaways

You can create your own routines (functions and procedures)

Routines can be written in various languages, including SQL

Routines support overloading and polymorphism

Functions volatility categories affect optimization opportunities

An SQL function can sometimes be inlined

Unlike functions, procedures are called using the CALL
operator and can manage transactions

16

Practice

1. Create a function author_name to construct author names. The
function takes three parameters (last_name, first_name, and
middle_name) and returns the full name, with the middle name
abbreviated to its initial.

Use this function in the authors_v view.

2. Create a function book_name to construct book titles. The
function takes two parameters (book ID and the title) and returns
a concatenation of the book title and the list of authors, ordered
by seq_num. The name of each author is produced by the
author_name function.

Use this function in the catalog_v view.

Check the changes in the application.

Reminder: all the required functions are listed in the “Basic data types and
functions” handout.

1. FUNCTION author_name(
 last_name text, first_name text, middle_name text
)
RETURNS text

For example: author_name('Alexander','Sergeyevich', 'Pushkin')→
→ 'Alexander S. Pushkin'

3. FUNCTION book_name(book_id integer, title text)
RETURNS text

For example: book_name(3,'Good Omens') →
→ 'Good Omens. Terry Pratchett, Neil Gaiman'

Stored functions can be edited directly. For example, psql provides the \ef
command that opens the function body in an editor and saves the changes
in the database.

You should avoid using this capability (or at least do not overuse it). A
properly set up development process requires that all the code is stored in
files under version control. If a function has to be changed, the file is
modified and executed (using psql or an IDE). Function modifications made
directly in the database can be easily lost. (In fact, setting up development
processes is much more complex, but we are not going to cover it in this
course.)

Task	1.	The	author_name	function

=>	CREATE	FUNCTION	author_name(
				last_name	text,
				first_name	text,
				middle_name	text
)	RETURNS	text
LANGUAGE	sql	IMMUTABLE	
RETURN	first_name	||
							CASE	WHEN	middle_name	!=	''	--	NOT	NULL	is	implied
											THEN	'	'	||	left(middle_name,	1)	||	'.'
											ELSE	''
							END	||	'	'	||
							last_name;

CREATE	FUNCTION

Volatility	category:	immutable.	The	function	always	returns	the	same	value	given	the	same	input	arguments.

=>	CREATE	OR	REPLACE	VIEW	authors_v	AS
SELECT	a.author_id,
							author_name(a.last_name,	a.first_name,	a.middle_name)	AS	display_name
FROM			authors	a
ORDER	BY	display_name;

CREATE	VIEW

Task	2.	The	book_name	function

=>	CREATE	FUNCTION	book_name(book_id	integer,	title	text)
RETURNS	text
LANGUAGE	sql	STABLE	
RETURN	(
SELECT	title	||	'.	'	||
							string_agg(
											author_name(a.last_name,	a.first_name,	a.middle_name),	',	'
											ORDER	BY	ash.seq_num
)
FROM			authors	a
							JOIN	authorship	ash	ON	a.author_id	=	ash.author_id
WHERE		ash.book_id	=	book_name.book_id
);

CREATE	FUNCTION

Volatility	category:	stable.	The	function	returns	the	same	value	given	the	same	input	arguments,	but	only	within	a	single	SQL	query.

=>	CREATE	OR	REPLACE	VIEW	catalog_v	AS
SELECT	b.book_id,
							book_name(b.book_id,	b.title)	AS	display_name
FROM			books	b
ORDER	BY	display_name;

CREATE	VIEW

