

PL/pgSQL

Dynamic Commands

17

Copyright
© Postgres Professional, 2017–2025
Authors Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Igor Gnatyuk
Translated by Liudmila Mantrova and Alexander Meleshko
Photo by Oleg Bartunov (Tukuche peak, Nepal)

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.com

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

Objectives

Executing dynamic queries

Constructing dynamic queries

3

Dynamic SQL

The text of an SQL command is constructed at run time

Objectives
provide additional flexibility for an application
construct several specific queries for optimization purposes
instead of using a single query that covers all possible cases

Trade-off
statements cannot be prepared
the risk of SQL injection rises
maintenance gets more complicated

An SQL command is considered dynamic if its text is constructed and then
executed within PL/pgSQL routine blocks or in anonymous blocks.

In most cases, you can do without dynamic commands, but sometimes they
can provide additional flexibility. For example, an application can have a
built-in capability to execute commands provided via system settings.
Instead of being hard-coded by developers, these settings can be tuned by
the support team in production.

When creating reports with a large number of optional parameters, it is
sometimes easier to construct the text of a query at run time for the provided
arguments only, instead of creating a complex query that includes all
possible parameter combinations while developing the application.

The price you pay for using dynamic commands is inability to take
advantage of prepared statements, which are available in PL/pgSQL.
Besides, you have to take care of dynamic commands’ security as they are
vulnerable to SQL injection.

We should also mention that maintenance gets more complicated. In
particular, it will be impossible to scan the source code quickly for
executable commands with tools like grep.

4

EXECUTE operator
runs a text representation of an SQL query
allows using parameters
PL/pgSQL variables do not become implicit parameters

Can be used instead of an SQL query
independently
when opening a cursor
in a loop over a query
in the RETURN QUERY clause

Query execution

To run dynamic commands, PL/pgSQL uses the EXECUTE operator that
launches the SQL operator provided as a text string.

A dynamic query can contain explicit parameters. In the command’s text
representation, parameters are denoted by $1, $2, etc.; their actual values
are provided in the USING clause. Parameters are handled in the same way
as in prepared statements. However, PL/pgSQL variables do not become
implicit parameters, as it happens in the case of regular (as opposed to
dynamic) use of SQL in PL/pgSQL.

The EXECUTE operator can be used on its own (it will simply execute a
dynamic command). It can also be used in loops over queries, when
opening a cursor, or in the RETURN QUERY command: in all these cases,
EXECUTE replaces the SQL operator.

https://postgrespro.com/docs/postgresql/17/plpgsql-statements#PLPGSQL-
STATEMENTS-EXECUTING-DYN

Note that a procedure cannot perform transaction control if it is called by the
EXECUTE operator.

https://postgrespro.com/docs/postgresql/17/plpgsql-statements#PLPGSQL-STATEMENTS-EXECUTING-DYN
https://postgrespro.com/docs/postgresql/17/plpgsql-statements#PLPGSQL-STATEMENTS-EXECUTING-DYN

Executing	dynamic	queries

The	EXECUTE	operator	allows	running	SQL	commands	provided	as	text	strings.

=>	DO	$$
DECLARE
				cmd	CONSTANT	text	:=	'CREATE	TABLE	city_london(
								name	text,	architect	text,	founded	integer
)';
BEGIN
				EXECUTE	cmd;	--	a	table	that	lists	examples	of	contemporary	architecture	in	London
END
$$;

DO

The	INTO	clause	of	the	EXECUTE	operator	enables	saving	a	single	row	of	the	result	(the	first	returned	row)	into	a	variable	of	a
composite	type	or	into	several	scalar	variables.

Like	with	static	commands,	you	can	check	the	result	of	a	dynamic	command	using	GET	DIAGNOSTICS	(but	not	the	FOUND	variable).

=>	DO	$$
DECLARE
				rec	record;
				cnt	bigint;
BEGIN
				EXECUTE	'INSERT	INTO	city_london	(name,	architect,	founded)	VALUES
																	(''The	Shard'',	''Renzo	Piano'',	2009),
																	(''The	Scalpel'',	''Kohn	Pedersen	Fox'',	2018),
																	(''London	Aquatics	Centre'',	''Zaha	Hadid'',	2011),
																	(''30	St	Mary	Axe'',	''Norman	Foster'',	2001),
																	(''London	City	Hall'',	''Norman	Foster'',	2000)
													RETURNING	name,	architect,	founded'
				INTO	rec;
				RAISE	NOTICE	'%',	rec;
				GET	DIAGNOSTICS	cnt	:=	ROW_COUNT;
				RAISE	NOTICE	'Added	rows:	%',	cnt;
END
$$;

NOTICE:		("The	Shard","Renzo	Piano",2009)
NOTICE:		Added	rows:	5
DO

You	can	use	STRICT	to	ensure	that	the	command	processes	only	one	row.

The	result	of	a	dynamic	query	can	be	processed	in	a	FOR	loop.

=>	DO	$$
DECLARE
				rec	record;
BEGIN
				FOR	rec	IN	EXECUTE	'SELECT	*	FROM	city_london	WHERE	architect	=	''Norman	Foster''	ORDER	BY	founded'
				LOOP
								RAISE	NOTICE	'%',	rec;
				END	LOOP;
END
$$;

NOTICE:		("London	City	Hall","Norman	Foster",2000)
NOTICE:		("30	St	Mary	Axe","Norman	Foster",2001)
DO

Here	is	the	same	example	using	a	cursor:

=>	DO	$$
DECLARE
				cur	refcursor;
				rec	record;
BEGIN
				OPEN	cur	FOR	EXECUTE	'SELECT	*	FROM	city_london	WHERE	architect	=	''Norman	Foster''	ORDER	BY	founded';
				LOOP
								FETCH	cur	INTO	rec;
								EXIT	WHEN	NOT	FOUND;
								RAISE	NOTICE	'%',	rec;
				END	LOOP;
END
$$;

NOTICE:		("London	City	Hall","Norman	Foster",2000)
NOTICE:		("30	St	Mary	Axe","Norman	Foster",2001)
DO

The	RETURN	QUERY	operator	can	also	use	dynamic	queries	to	return	rows	from	functions.	Let's	create	a	function	that	retrieves	all
buildings	constructed	by	a	particular	architect	and	up	to	the	specified	year.	We	will	have	to	use	parameters	for	this	purpose:

=>	CREATE	FUNCTION	sel_london(architect	text,	founded	integer	DEFAULT	NULL)
RETURNS	SETOF	text
AS	$$
DECLARE
				--	parameters	are	numbered:	$1,	$2...
				cmd	text	:=	'
								SELECT	name	FROM	city_london
								WHERE	architect	=	$1	AND	($2	IS	NULL	OR	founded	<=	$2)';
BEGIN
				RETURN	QUERY
								EXECUTE	cmd
								USING	architect,	founded;	--	provide	parameters	in	the	order	of	their	declaration
END
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	SELECT	*	FROM	sel_london('Norman	Foster');

				sel_london				

	30	St	Mary	Axe
	London	City	Hall
(2	rows)

=>	SELECT	*	FROM	sel_london('Norman	Foster',	2000);

				sel_london				

	London	City	Hall
(1	row)

6

Constructing commands

Parameter values binding
USING clause
guarantees protection against SQL injection

Escaping values
identifiers: format('%I'), quote_ident

literals: format('%L'), quote_literal, quote_nullable
SQL injection is impossible if implemented correctly

Regular string functions
concatenation, etc.
risk of SQL injection!

Using the EXECUTE operator makes sense if the command is constructed
dynamically. The previous examples could also do without EXECUTE.

Since the command is represented by a text string, it can be constructed
using regular string functions that perform such operations as concatenation,
etc. This should be done with great care as there is a risk of SQL injection.

If the values are passed as parameters in the USING clause, SQL injection
is technically impossible.

However, it is not always possible to use parameters: you may have to
concatenate specific parts of the query or insert a table name into the query.
In this case, you should escape the values received from an unreliable
source to protect your application against injections.

Identifiers are generated by either the format function with the %l specifier or
the quote_ident function. These functions ensure that identifiers have
valid names by double-quoting them and escaping special characters, if
required.

To insert literals into the command text, you can use either quote_literal
and quote_nullable functions or the format function with the %L specifier.

https://postgrespro.com/docs/postgresql/17/functions-string

https://postgrespro.com/docs/postgresql/17/functions-string

Dealing	with	SQL	injection

Let’s	rewrite	the	function	returning	buildings	and	add	one	more	parameter:	the	name	of	the	city.	The	idea	is	to	allow	this	function
to	access	tables	only	if	their	names	start	with	city_.

=>	CREATE	FUNCTION	sel_city(
				city_code	text,
				architect	text,
				founded	integer	DEFAULT	NULL
)
RETURNS	SETOF	text	AS	$$
DECLARE
				cmd	text	:=	'
								SELECT	name	FROM	city_'	||	city_code	||	'
								WHERE	architect	=	$1	AND	($2	IS	NULL	OR	founded	<	$2)';
BEGIN
				RAISE	NOTICE	'%',	cmd;
				RETURN	QUERY
								EXECUTE	cmd
								USING	architect,	founded;
END
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

The	function	works	fine	if	its	parameter	values	are	“correct”:

=>	SELECT	*	FROM	sel_city('london',	'Renzo	Piano');

NOTICE:		
								SELECT	name	FROM	city_london
								WHERE	architect	=	$1	AND	($2	IS	NULL	OR	founded	<	$2)
	sel_city		

	The	Shard
(1	row)

But	a	malicious	user	can	pick	a	value	that	will	change	the	syntactic	structure	of	the	query	and	enable	unauthorized	access	to	data:

=>	SELECT	*	FROM	sel_city('london	WHERE	false
								UNION	ALL
								SELECT	usename	FROM	pg_user
								UNION	ALL
								SELECT	name	FROM	city_london',	'');

NOTICE:		
								SELECT	name	FROM	city_london	WHERE	false
								UNION	ALL
								SELECT	usename	FROM	pg_user
								UNION	ALL
								SELECT	name	FROM	city_london
								WHERE	architect	=	$1	AND	($2	IS	NULL	OR	founded	<	$2)
	sel_city	

	postgres
	student
(2	rows)

When	you	are	using	prepared	statements	or	dynamic	commands	with	parameters,	such	a	situation	is	technically	impossible
because	the	structure	of	the	SQL	query	is	locked	while	the	statement	is	parsed.	An	expression	will	always	remain	an	expression;	it
is	impossible	to	convert	it,	say,	into	a	table	name.

Constructing	a	dynamic	command

It	is	impossible	to	provide	the	names	of	objects	(such	as	tables	or	columns)	as	parameters	of	the	USING	clause	in	a	dynamic
command.	Such	identifiers	must	be	escaped,	so	that	it	is	impossible	to	modify	the	query	structure:

=>	SELECT	format('%I',	'foo'),
										format('%I',	'foo	bar'),
										format('%I',	'foo"bar');

	format	|		format			|			format			
--------+-----------+------------
	foo				|	"foo	bar"	|	"foo""bar"
(1	row)

The	following	function	does	the	same	thing:

=>	SELECT	quote_ident('foo'),
										quote_ident('foo	bar'),
										quote_ident('foo"bar');

	quote_ident	|	quote_ident	|	quote_ident	
-------------+-------------+-------------
	foo									|	"foo	bar"			|	"foo""bar"
(1	row)

Here	is	an	example	of	creating	a	table:

=>	DO	$$
DECLARE
				cmd	CONSTANT	text	:=	'CREATE	TABLE	%I(
								name	text,	architect	text,	founded	integer
)';
BEGIN
				EXECUTE	format(cmd,	'city_paris');	--	a	table	for	Paris
				EXECUTE	format(cmd,	'city_milan');	--	a	table	for	Milan
END
$$;

DO

Instead	of	using	parameters,	you	can	insert	literals	into	a	string.	It	also	requires	escaping,	but	in	a	bit	different	way:

=>	SELECT	format('%L',	'foo	bar'),
										format('%L',	'foo''bar'),
										format('%L',	NULL);

		format			|			format			|	format	
-----------+------------+--------
	'foo	bar'	|	'foo''bar'	|	NULL
(1	row)

The	quote_nullable	function	also	does	the	same	thing:

=>	SELECT	quote_nullable('foo	bar'),
										quote_nullable('foo''bar'),
										quote_nullable(NULL);

	quote_nullable	|	quote_nullable	|	quote_nullable	
----------------+----------------+----------------
	'foo	bar'						|	'foo''bar'					|	NULL
(1	row)

The	quote_literal	function	is	quite	similar,	but	it	does	not	convert	NULL	values	into	literals:

=>	SELECT	quote_literal(NULL);

	quote_literal	

(1	row)

As	an	example,	let's	rewrite	the	function	that	returns	the	list	of	buildings	of	a	particular	city,	so	that	it	does	not	use	any	parameters,
but	still	remains	safe.

=>	CREATE	OR	REPLACE	FUNCTION	sel_city(
				city_code	text,
				architect	text,
				founded	integer	DEFAULT	NULL
)
RETURNS	SETOF	text
AS	$$
DECLARE
				cmd	text	:=	'
								SELECT	name	FROM	%I
								WHERE	architect	=	%L	AND	(%L	IS	NULL	OR	founded	<	%L::integer)';
BEGIN
				RETURN	QUERY	EXECUTE	format(
								cmd,	'city_'||city_code,	architect,	founded,	founded
);
END
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

Note	that	we	perform	two	extra	type	casting	operations:	first,	the	integer	parameter	is	converted	into	a	string,	and	then	it	is	cast
back	to	integer	at	run	time	(this	can	be	avoided	with	USING	parameters):

=>	SELECT	*	FROM	sel_city('london',	'Renzo	Piano',	2009);

	sel_city	

(0	rows)

An	attempt	to	pass	an	invalid	value	will	not	succeed:

=>	SELECT	*	FROM	sel_city('london	WHERE	false
								UNION	ALL
								SELECT	usename	FROM	pg_user
								UNION	ALL
								SELECT	name	FROM	city_london',	'');

NOTICE:		identifier	"city_london	WHERE	false
								UNION	ALL
								SELECT	usename	FROM	pg_user
								UNION	ALL
								SELECT	name	FROM	city_london"	will	be	truncated	to	"city_london	WHERE	false
								UNION	ALL
								SELECT	usenam"
ERROR:		relation	"city_london	WHERE	false
								UNION	ALL
								SELECT	usenam"	does	not	exist
LINE	2:									SELECT	name	FROM	"city_london	WHERE	false
																																	^
QUERY:		
								SELECT	name	FROM	"city_london	WHERE	false
								UNION	ALL
								SELECT	usename	FROM	pg_user
								UNION	ALL
								SELECT	name	FROM	city_london"
								WHERE	architect	=	''	AND	(NULL	IS	NULL	OR	founded	<	NULL::integer)
CONTEXT:		PL/pgSQL	function	sel_city(text,text,integer)	line	7	at	RETURN	QUERY

8

Takeaways

Dynamic commands provide additional flexibility

Constructing separate queries for different arguments can
improve performance

Dynamic commands are not suitable for short, frequently used
queries

Maintenance gets more complicated

9

Practice

1. Modify the get_catalog function so that the query
to the catalog_v view is constructed dynamically and takes
into account only those fields that are filled out in the search
form of the Store tab.
Make sure that your implementation is protected against SQL
injection.
Check your function in the application.

1. Suppose we have to generate the following query if these conditions are
met: the “In stock” option is selected in the search form, but “Book Title” and
“Author” fields are empty.
SELECT ... FROM catalog_v WHERE onhand_qty > 0;

You should keep in mind that this implementation will not necessarily speed
up search, but it will certainly be harder to maintain. Avoid such solutions in
production environments unless you have a solid reason to use this
technique. To learn more about query performance tuning, check out the
QPT course.

Task	1.	The	get_catalog	function

=>	CREATE	OR	REPLACE	FUNCTION	get_catalog(
				author_name	text,
				book_title	text,
				in_stock	boolean
)
RETURNS	TABLE(book_id	integer,	display_name	text,	onhand_qty	integer)
AS	$$
DECLARE
				title_cond	text	:=	'';
				author_cond	text	:=	'';
				qty_cond	text	:=	'';
				cmd	text;
BEGIN
				IF	book_title	!=	''	THEN
								title_cond	:=	format(
												'	AND	cv.title	ILIKE	%L',	'%'||book_title||'%'
);
				END	IF;
				IF	author_name	!=	''	THEN
								author_cond	:=	format(
												'	AND	cv.authors	ILIKE	%L',	'%'||author_name||'%'
);
				END	IF;
				IF	in_stock	THEN
								qty_cond	:=	'	AND	cv.onhand_qty	>	0';
				END	IF;
				cmd	:=	'SELECT	cv.book_id,	
															cv.display_name,
															cv.onhand_qty
								FROM			catalog_v	cv
								WHERE		true'
								||	title_cond	||	author_cond	||	qty_cond	||	'
								ORDER	BY	display_name';
				RAISE	NOTICE	'%',	cmd;
				RETURN	QUERY	EXECUTE	cmd;
END
$$	STABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

