

PL/pgSQL

Arrays

17

Copyright
© Postgres Professional, 2017–2025
Authors Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Igor Gnatyuk
Translated by Liudmila Mantrova and Alexander Meleshko
Photo by Oleg Bartunov (Tukuche peak, Nepal)

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.com

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

Arrays and their usage in PL/pgSQL

Loops over array elements

Functions with a variable number of arguments
and polymorphic functions

Array usage in tables

3

Array types

Array
a set of numbered elements of the same type
one-dimensional, multidimensional

Initialization
usage without an explicit declaration (type_name[])

implicit declaration when creating a base type or a table (_type_name)

Usage
elements as scalar values
array slices
operations on arrays: comparison, inclusion, intersection, concatenation,
usage with ANY or ALL instead of a subquery, etc.

Just like a composite type (a record), an array is not a scalar; it consists of
several elements of another type. But unlike in records, a) all these
elements are of the same type, and b) they are accessed by an integer
index, not by name (here the term index is used in the mathematical sense
of the word, not in the sense of a database index).

An array type does not have to be explicitly declared. When any base type
or a table is created, a new array type is also declared. Its name is the same
as the original type name, but with an underscore in front: _type_name. To
declare an array variable, all you need is to append square brackets to the
name of the element type.

An array is a full-fledged SQL type: you can create table columns of this
type, pass arrays as function arguments, and so on. Array elements can be
used as regular scalar values. Array slices can also be used.

Arrays can be compared and checked for NULL; you can search arrays for
element inclusion and intersection with other arrays, perform concatenation,
etc. Arrays can also be applied in ANY/SOME and ALL constructs, similar to
subqueries.

https://postgrespro.com/docs/postgresql/17/arrays

You can find various array functions in course handouts.

https://postgrespro.com/docs/postgresql/17/arrays

Initializing	an	array	and	referencing	its	elements

Declaring	a	variable	and	initializing	an	array:

=>	DO	$$
DECLARE
				a	integer[2];	--	the	size	is	ignored
BEGIN
				a	:=	ARRAY[10,20,30];
				RAISE	NOTICE	'%',	a;
				--	by	default,	one-based	indexing	is	used
				RAISE	NOTICE	'a[1]	=	%,	a[2]	=	%,	a[3]	=	%',	a[1],	a[2],	a[3];
				--	array	slice
				RAISE	NOTICE	'Slice	[2:3]	=	%',	a[2:3];
				--	assign	values	to	the	array	slice
				a[2:3]	:=	ARRAY[222,333];
				--	output	the	array
				RAISE	NOTICE	'%',	a;
END;
$$	LANGUAGE	plpgsql;

NOTICE:		{10,20,30}
NOTICE:		a[1]	=	10,	a[2]	=	20,	a[3]	=	30
NOTICE:		Slice	[2:3]	=	{20,30}
NOTICE:		{10,222,333}
DO

A	one-dimensional	array	can	be	constructed	element	by	element:	it	will	be	expanded	automatically	if	required.	If	you	omit	some	of
the	elements,	they	will	receive	NULL	values.

What	will	be	displayed?

=>	DO	$$
DECLARE
				a	integer[];
BEGIN
				a[2]	:=	10;
				a[3]	:=	20;
				a[6]	:=	30;
				RAISE	NOTICE	'%',	a;
END;
$$	LANGUAGE	plpgsql;

NOTICE:		[2:6]={10,20,NULL,NULL,30}
DO

Since	element	numbering	begins	with	a	value	other	than	one,	the	array	itself	is	preceded	by	a	range	of	element	indexes.

We	can	define	a	composite	type	and	create	an	array	of	this	type:

=>	CREATE	TYPE	currency	AS	(amount	numeric,	code	text);

CREATE	TYPE

=>	DO	$$
DECLARE
				c	currency[];		--	composite	type	array
BEGIN
		--	assign	values	to	array	elements
				c[1].amount	:=	10;		c[1].code	:=	'RUB';
				c[2].amount	:=	50;		c[2].code	:=	'KZT';
				RAISE	NOTICE	'%',	c;
END
$$	LANGUAGE	plpgsql;

NOTICE:		{"(10,RUB)","(50,KZT)"}
DO

Another	way	to	construct	an	array	is	to	use	a	subquery:

=>	DO	$$
DECLARE
				a	integer[];
BEGIN
				a	:=	ARRAY(SELECT	n	FROM	generate_series(1,3)	n);
				RAISE	NOTICE	'%',	a;
END
$$	LANGUAGE	plpgsql;

NOTICE:		{1,2,3}
DO

You	can	also	do	the	inverse	operation:	convert	an	array	into	a	table:

=>	SELECT	unnest(ARRAY[1,2,3]);

	unnest	

						1
						2
						3
(3	rows)

Fun	fact:	the	IN	clause	with	a	list	of	values	is	transformed	into	a	search	operation	over	the	array:

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	generate_series(1,10)	g(id)	WHERE	id	IN	(1,2,3);

																	QUERY	PLAN																		

	Function	Scan	on	generate_series	g
			Filter:	(id	=	ANY	('{1,2,3}'::integer[]))
(2	rows)

5

Arrays and loops

A regular loop over element indexes
array_lower
array_upper

A FOREACH loop over array elements
this approach is easier, but it does not provide access to indexes

To iterate through array elements, you can simply set up an integer FOR
loop using functions that return the minimum and the maximum index of the
array.

But there is also a specialized loop: FOREACH. In this case, a loop variable
iterates through the elements, not their indexes. That’s why the variable
must be of the same type as the array elements (as always, if the elements
are records, you can replace a single composite variable with several scalar
ones).

https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLP
GSQL-FOREACH-ARRAY

https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLPGSQL-FOREACH-ARRAY
https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLPGSQL-FOREACH-ARRAY

Arrays	and	loops

You	can	set	up	a	loop	that	iterates	through	index	values	of	array	elements.	The	second	parameter	of	the	array_lower	and
array_upper	functions	defines	the	array	dimension	(1	denotes	a	one-dimensional	array).

=>	DO	$$
DECLARE
				a	integer[]	:=	ARRAY[10,20,30];
BEGIN
				FOR	i	IN	array_lower(a,1)..array_upper(a,1)	LOOP
								RAISE	NOTICE	'a[%]	=	%',	i,	a[i];
				END	LOOP;
END
$$	LANGUAGE	plpgsql;

NOTICE:		a[1]	=	10
NOTICE:		a[2]	=	20
NOTICE:		a[3]	=	30
DO

If	you	do	not	need	to	know	index	values,	it’s	easier	to	iterate	directly	though	the	elements:

=>	DO	$$
DECLARE
				a	integer[]	:=	ARRAY[10,20,30];
				x	integer;
BEGIN
				FOREACH	x	IN	ARRAY	a	LOOP
								RAISE	NOTICE	'%',	x;
				END	LOOP;
END
$$	LANGUAGE	plpgsql;

NOTICE:		10
NOTICE:		20
NOTICE:		30
DO

7

Arrays and routines

Routines with a variable number of arguments
all optional arguments must be of the same type
optional arguments are passed to the routine as an array
the last parameter array is defined by the VARIADIC mode

Polymorphic routines
support arguments of various types;
the actual type is defined at run time
can use additional polymorphic pseudotypes anyarray, anynonarray,
anycompatiblearray and anycompatiblenonarrray
can have a variable number of arguments

Using arrays, you can create routines (functions and procedures) with a
variable number of arguments.

While parameters with default values have to be explicitly specified in
routine declaration, optional arguments can be passed with no limit: they are
provided as an array. Consequently, all of them must be of the same type
(or a compatible one, if anycompatible or anycompatiblearray is used).

The last parameter in routine declaration must be marked as VARIADIC; it
must be of an array type.

https://postgrespro.com/docs/postgresql/17/xfunc-sql#XFUNC-SQL-VARIAD
IC-FUNCTIONS

We have already mentioned polymorphic routines that can accept
arguments of various types. Routine declaration uses a special polymorphic
pseudotype, while the actual type is defined at run time based on the types
of the passed arguments.

There are special polymorphic types anyarray and anycompatiblearray (and
anynonarray and anycompatiblenonarrray for non-arrays).

These types can be used when passing a variable number of arguments via
a VARIADIC parameter.

https://postgrespro.com/docs/postgresql/17/xfunc-sql#XFUNC-SQL-POLYM
ORPHIC-FUNCTIONS

https://postgrespro.com/docs/postgresql/17/xfunc-sql#XFUNC-SQL-VARIADIC-FUNCTIONS
https://postgrespro.com/docs/postgresql/17/xfunc-sql#XFUNC-SQL-VARIADIC-FUNCTIONS
https://postgrespro.com/docs/postgresql/17/xfunc-sql#XFUNC-SQL-POLYMORPHIC-FUNCTIONS
https://postgrespro.com/docs/postgresql/17/xfunc-sql#XFUNC-SQL-POLYMORPHIC-FUNCTIONS

Arrays	and	routines

When	discussing	polymorphism	and	overloading	as	part	of	the	“SQL.	Functions	and	Procedures”	lecture,	we	created	the	maximum
function	to	compare	three	numbers	and	find	the	greatest	one.	Now	let’s	generalize	this	function,	so	that	it	can	be	used	with	an
arbitrary	number	of	arguments.	For	this	purpose,	we’ll	declare	a	single	VARIADIC	parameter:

=>	CREATE	FUNCTION	maximum(VARIADIC	a	integer[])	RETURNS	integer
AS	$$
DECLARE
				x	integer;
				maxsofar	integer;
BEGIN
				FOREACH	x	IN	ARRAY	a	LOOP
								IF	x	IS	NOT	NULL	AND	(maxsofar	IS	NULL	OR	x	>	maxsofar)	THEN
												maxsofar	:=	x;
								END	IF;
				END	LOOP;
				RETURN	maxsofar;
END
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	try	it	out:

=>	SELECT	maximum(12,	65,	47);

	maximum	

						65
(1	row)

=>	SELECT	maximum(12,	65,	47,	null,	87,	24);

	maximum	

						87
(1	row)

=>	SELECT	maximum(null,	null);

	maximum	

(1	row)

To	complete	this	illustration,	we	can	make	this	function	polymorphic	as	well,	so	that	it	takes	any	data	type	(which	supports
comparison	operators,	of	course).

=>	DROP	FUNCTION	maximum(integer[]);

DROP	FUNCTION

Polymorphic	types	anyarray	and	anyelement	must	match	each	other:	anyarray	=	anyelement[];
The	variable	must	be	of	the	same	type	as	the	array	element.	But	it	cannot	be	declared	as	anyelement:	it	must	have	an	actual
type.	The	%TYPE	construct	helps	us	out	here.

=>	CREATE	FUNCTION	maximum(VARIADIC	a	anycompatiblearray,	maxsofar	OUT	anycompatible)
AS	$$
DECLARE
				x	maxsofar%TYPE;
BEGIN
				FOREACH	x	IN	ARRAY	a	LOOP
								IF	x	IS	NOT	NULL	AND	(maxsofar	IS	NULL	OR	x	>	maxsofar)	THEN
												maxsofar	:=	x;
								END	IF;
				END	LOOP;
END
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	check	the	result:

=>	SELECT	maximum(12,	65,	47);

	maximum	

						65
(1	row)

=>	SELECT	maximum(12.1,	65.3,	47.6);

	maximum	

				65.3
(1	row)

=>	SELECT	maximum(12,	65.3,	15e2,	3.14);

	maximum	

				1500
(1	row)

Now	our	function	is	almost	completely	analogous	to	the	greatest	expression	provided	in	SQL.

9

An array or a table?

1 ... {A}

2 ... {B,C,D}

3 ... {A,C}

1 ...

2 ...

3 ...

1 1

2 2

2 3

2 4

3 1

3 3

compact representation
no joins required
convenient in simple cases

separate tables:
many to many relationship
a universal solution

1 A ...

2 B ...

3 C ...

4 D ...

A traditional relational approach assumes that a table stores atomic values
(first normal form). The SQL language has no tools for peeking into
composite values.

That’s why a traditional approach relies on creating an additional table
connected to the main one by a many-to-many relationship.

Nevertheless, we can create a table with a column of an array type.
PostgreSQL offers a rich set of array functions; the search for an array
element can be sped up using special indexes (covered in the DEV2
course).

This approach can be convenient: we get a concise representation that
does not require any joins. For example, arrays are extensively used in
PostgreSQL system catalog.

The choice of approach depends on the goals and the operations required.
Consider the example in the demo.

An	array	or	a	table?

Imagine	that	we	are	designing	a	database	for	writing	a	blog.	The	blog	contains	some	posts,	and	we	would	like	to	tag	them.

The	traditional	approach	is	to	create	a	separate	table	for	tags.	For	example:

=>	CREATE	TABLE	posts(
				post_id	integer	PRIMARY	KEY,
				message	text
);

CREATE	TABLE

=>	CREATE	TABLE	tags(
				tag_id	integer	PRIMARY	KEY,
				name	text
);

CREATE	TABLE

Let’s	connect	posts	and	tags	by	a	many-to-many	relationship	via	an	additional	table:

=>	CREATE	TABLE	posts_tags(
				post_id	integer	REFERENCES	posts(post_id),
				tag_id	integer	REFERENCES	tags(tag_id)
);

CREATE	TABLE

Let’s	fill	our	tables	with	text	data:

=>	INSERT	INTO	posts(post_id,message)	VALUES
				(1,	'I	set	my	password	to	“incorrect”.'),
				(2,	'Your	future	is	whatever	you	make	it,	so	make	it	a	good	one.');

INSERT	0	2

=>	INSERT	INTO	tags(tag_id,name)	VALUES
				(1,	'my	past	and	thoughts'),	(2,	'technology'),	(3,	'family');

INSERT	0	3

=>	INSERT	INTO	posts_tags(post_id,tag_id)	VALUES
				(1,1),	(1,2),	(2,1),	(2,3);

INSERT	0	4

Now	we	can	display	posts	and	tags:

=>	SELECT	p.message,	t.name
FROM	posts	p
					JOIN	posts_tags	pt	ON	pt.post_id	=	p.post_id
					JOIN	tags	t	ON	t.tag_id	=	pt.tag_id
ORDER	BY	p.post_id,	t.name;

																											message																											|									name									
---+----------------------
	I	set	my	password	to	“incorrect”.																											|	my	past	and	thoughts
	I	set	my	password	to	“incorrect”.																											|	technology
	Your	future	is	whatever	you	make	it,	so	make	it	a	good	one.	|	family
	Your	future	is	whatever	you	make	it,	so	make	it	a	good	one.	|	my	past	and	thoughts
(4	rows)

Or	we	can	do	it	a	bit	differently	to	get	an	array	of	tags.	We	are	going	to	use	an	aggregate	function	for	this	purpose:

=>	SELECT	p.message,	array_agg(t.name	ORDER	BY	t.name)	tags
FROM	posts	p
				JOIN	posts_tags	pt	ON	pt.post_id	=	p.post_id
				JOIN	tags	t	ON	t.tag_id	=	pt.tag_id
GROUP	BY	p.post_id
ORDER	BY	p.post_id;

																											message																											|																tags								
									
---+----------------------------

	I	set	my	password	to	“incorrect”.																											|	{"my	past	and	
thoughts",technology}
	Your	future	is	whatever	you	make	it,	so	make	it	a	good	one.	|	{family,"my	past	and	
thoughts"}
(2	rows)

We	can	find	all	posts	with	a	particular	tag:

=>	SELECT	p.message
FROM	posts	p
				JOIN	posts_tags	pt	ON	pt.post_id	=	p.post_id
				JOIN	tags	t	ON	t.tag_id	=	pt.tag_id
WHERE	t.name	=	'my	past	and	thoughts'
ORDER	BY	p.post_id;

																											message																											

	I	set	my	password	to	“incorrect”.
	Your	future	is	whatever	you	make	it,	so	make	it	a	good	one.
(2	rows)

We	may	also	need	to	find	all	the	unique	tags,	and	it	is	really	easy:

=>	SELECT	t.name
FROM	tags	t
ORDER	BY	t.name;

									name									

	family
	my	past	and	thoughts
	technology
(3	rows)

Now	let’s	try	another	approach	to	this	task.	Suppose	the	tags	are	stored	as	a	text	array	right	inside	the	table	with	posts.

=>	DROP	TABLE	posts_tags;

DROP	TABLE

=>	DROP	TABLE	tags;

DROP	TABLE

=>	ALTER	TABLE	posts	ADD	COLUMN	tags	text[];

ALTER	TABLE

There	are	no	tag	IDs,	but	we	don’t	really	need	them.

=>	UPDATE	posts	SET	tags	=	'{"my	past	and	thoughts","technology"}'
WHERE	post_id	=	1;

UPDATE	1

=>	UPDATE	posts	SET	tags	=	'{"my	past	and	thoughts","family"}'
WHERE	post_id	=	2;

UPDATE	1

Now	it’s	easier	to	display	all	posts:

=>	SELECT	p.message,	p.tags
FROM	posts	p
ORDER	BY	p.post_id;

																											message																											|																tags								
									
---+----------------------------

	I	set	my	password	to	“incorrect”.																											|	{"my	past	and	
thoughts",technology}
	Your	future	is	whatever	you	make	it,	so	make	it	a	good	one.	|	{"my	past	and	
thoughts",family}
(2	rows)

It	is	also	easy	to	find	all	posts	with	the	same	tag	(using	the	intersection	operator	&&).

This	operation	can	be	sped	up	using	GIN	index,	and	the	query	won’t	require	searching	through	the	whole	table	of	posts.

=>	SELECT	p.message
FROM	posts	p
WHERE	p.tags	&&	'{"my	past	and	thoughts"}'
ORDER	BY	p.post_id;

																											message																											

	I	set	my	password	to	“incorrect”.
	Your	future	is	whatever	you	make	it,	so	make	it	a	good	one.
(2	rows)

But	it	is	quite	hard	to	get	the	list	of	all	tags.	It	requires	unnesting	all	the	tag	arrays	into	a	big	table,	and	the	search	for	unique	values
in	this	table	is	quite	resource-intensive.

=>	SELECT	DISTINCT	unnest(p.tags)	AS	name
FROM	posts	p;

									name									

	family
	technology
	my	past	and	thoughts
(3	rows)

We	can	clearly	see	data	duplication	here.

Thus,	both	approaches	have	the	right	to	be	applied.

In	simple	cases,	arrays	look	more	straightforward	and	work	well.

In	more	complex	scenarios	(imagine	that	we	would	like	to	store	the	date	of	tag	creation	together	with	its	name,	or	we	need	to	use
check	constraints),	the	traditional	approach	becomes	more	preferable.

11

Takeaways

An array consists of numbered elements of the same data type

An array column is an alternative to a separate table: it offers
convenient operations on arrays and index support

Arrays enable you to create functions with a variable number of
arguments

12

Practice

1. Create a function add_book for adding a new book.

The function must take two arguments: the name of the book and
an array of author IDs. It must return the ID of the added book.

Check that the application now allows adding books.

1.
FUNCTION add_book(title text, authors integer[])
RETURNS integer

Task	1.	The	add_book	function

=>	CREATE	FUNCTION	add_book(title	text,	authors	integer[])
RETURNS	integer
AS	$$
DECLARE
				book_id	integer;
				id	integer;
				seq_num	integer	:=	1;
BEGIN
				INSERT	INTO	books(title)
								VALUES(title)
								RETURNING	books.book_id	INTO	book_id;
				FOREACH	id	IN	ARRAY	authors	LOOP
								INSERT	INTO	authorship(book_id,	author_id,	seq_num)
												VALUES	(book_id,	id,	seq_num);
								seq_num	:=	seq_num	+	1;
				END	LOOP;
				RETURN	book_id;
END
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

