PL/pgSQL
Overview and Programming Structures

Copyright

© Postgres Professional, 2017-2025

Authors Egor Rogov, Pavel Luzanov, llya Bashtanov, Igor Gnatyuk
Translated by Liudmila Mantrova and Alexander Meleshko

Photo by Oleg Bartunov (Tukuche peak, Nepal)

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.com

Disclaimer

In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

Topics

PL/pgSQL history

Block structure and declaration of variables
Anonymous blocks

Routines in PL/pgSQL

Conditional operators and loops

Expression computing

rt"

N

PL/pgSQL history (¢

Introduced in PostgreSQL 6.4 in 1998

comes out of the box since PostgreSQL 9.0

Objectives

create a simple language for custom functions and triggers
add control structures to the SQL language
keep the ability to use any custom types, functions, and operators

Inspired by: Oracle PL/SQL, Ada

PL/pgSQL is one of the first procedural languages for PostgreSQL. It first
appeared in 1998 in PostgreSQL 6.4, and since 9.0, it has been installed by
default when a database is created.

PL/pgSQL extends the SQL functionality, providing variables and cursors,
conditional operators, loops, error handling, and other features commonly
seen in procedural languages.

PL/pgSQL is based on the Oracle PL/SQL language, which, in turn, is
derived from a subset of the Ada language, with its roots going back to Algol
and Pascal. Most of the modern programming languages belong to another
branch of the C-like languages, that's why PL/pgSQL can at first seem
unconventional and excessively verbose (its distinctive feature is using
BEGIN and END keywords instead of curly brackets). However, this syntax
goes perfectly with the SQL syntax.

https://postgrespro.com/docs/postgresqgl/17/plpgsql-overview

https://postgrespro.com/docs/postgresql/17/plpgsql-overview

Block structure Y

Block label

Declaration of variables

the lifetime of a variable is limited to a block

the visibility scope can be overridden by a nested block, but a variable can
still be referenced by a block label

any SQL types and references to object types (%TYPE) are allowed

Operators

control structures
SQL operators, except for the service ones
nested blocks

Exception handling

PL/pgSQL operators are organized into blocks. A block structure comprises
several components:

* An optional label that can be used to eliminate naming ambiguities.

* An optional section for declaration of local variables and cursors. Any
types defined in SQL are allowed. You can also use the % TYPE construct
to refer to the type of a table column or other object.

* The main execution section that contains operators.
* An optional section for handling exceptions.

You can use both PL/pgSQL commands and most of SQL commands as
operators, so the two languages are integrated almost seamlessly.
Exceptions are SQL service commands, such as VACUUM, which are not
allowed, and transaction control commands, such as COMMIT and
ROLLBACK, which are allowed only in procedures.

Another (nested) PL/pgSQL block can also be used as an operator.
https://postgrespro.com/docs/postgresqgl/17/plpgsaql-structure

https://postgrespro.com/docs/postgresql/17/plpgsgl-declarations#PLPGSQL
-DECLARATION-TYPE

https://postgrespro.com/docs/postgresql/17/plpgsql-structure
https://postgrespro.com/docs/postgresql/17/plpgsql-declarations#PLPGSQL-DECLARATION-TYPE
https://postgrespro.com/docs/postgresql/17/plpgsql-declarations#PLPGSQL-DECLARATION-TYPE

Anonymous blocks (¢

Ad-hoc execution of procedures

without creating a stored routine
with no parameters
with no return values

The DO operator in the SQL language

You can use PL/pgSQL without creating routines. The PL/pgSQL code can
be written as an anonymous block and executed using the SQL’'s DO
command.

This command can be used with various server languages, but if you do not
specify the language explicitly, it will be assumed that PL/pgSQL is used.

The code of anonymous blocks is not saved on the server. Anonymous
blocks do not take arguments or return any values (but there are ways to
circumvent that: for example, by using tables).

https://postgrespro.com/docs/postgresqgl/16/sql-do

Anonymous blocks

A general structure of a PL/pgSQL block:

<<label>>
DECLARE
-- declaration of variables
BEGIN
-- operators
EXCEPTION
-- error handling
END label;

o All sections except for the operators’ section are optional.

The smallest block of PL/pgSQL code:

=> DO $$
BEGIN
-- there can be no operators
END
$$;
DO

One of the implementations of “Hello, World!”:

=> DO $$
DECLARE
-- This is a one-line comment.
/* This is a multi-line comment.
Each declaration is ended by a semicolon ';'.
A semicolon is also placed after each operator.

*/
foo text;
bar text := 'World'; -- you can also use = or DEFAULT
BEGIN
foo := 'Hello'; -- this is an assignment operation
RAISE NOTICE '%, %!', foo, bar; -- message output
END
$$;
NOTICE: Hello, World!
DO

o There must be no semicolon after BEGIN!

Variables can have modifiers:

® CONSTANT — once a variable is initialized, its value must not change;
o NOT NULL — undefined values are not allowed.

=> DO $$

DECLARE
foo integer NOT NULL := 0;
bar CONSTANT text := 42;

BEGIN
bar := bar + 1; -- error
END
$$;
ERROR: variable "bar" is declared CONSTANT
LINE 6: bar := bar + 1; -- error

Here is an example of nested blocks. A variable in the inner block overrides the one declared in the outer block, but you can refer to
any of them using labels:

=> DO $%
<<outer_block>>
DECLARE

foo text := 'Hello';

BEGIN

<<inner_block>>
DECLARE
foo text := 'World';
BEGIN
RAISE NOTICE '%, %!', outer_block.foo, inner_block.foo;
RAISE NOTICE 'An inner variable, without a label: %', foo;
END inner_block;

END outer_block

$$;

NOTICE: Hello, World!
NOTICE: An inner variable, without a label: World

DO

PL/pgSQL routines (<r

A routine header is language-agnostic

name, input and output parameters
for functions: the return value and volatility category

Definition: LANGUAGE plpgsql

Returning values

the RETURN operator
assigning values to output parameters (INOUT, OUT)

We have already learned about stored functions and procedures, using the
SQL language as an example. Most of the information related to creation
and management of routines applies to PL/pgSQL routines as well:

* creating, modifying, and deleting routines,

* location in the system catalog (pg_proc),

* parameters,

* return value and volatility categories (for functions),
* overloading and polymorphism,

e etc.

While SQL routines return a value produced by the last SQL operator,
PL/pgSQL routines either have to assign return values to INOUT or OUT
parameters, or use a special RETURN operator (which is available for
functions).

PL/pgSQL routines

Here is an example of a function that returns a value using the RETURN operator:

=> CREATE FUNCTION sqr_in(IN a numeric) RETURNS numeric
AS $$
BEGIN
RETURN a * a;
END
$$ LANGUAGE plpgsql IMMUTABLE;

CREATE FUNCTION
Now let’s take a look at the same function with the OUT parameter. The return value is assigned to this parameter:

=> CREATE FUNCTION sqr_out(IN a numeric, OUT retval numeric)
AS $$
BEGIN
retval := a * a;
END
$$ LANGUAGE plpgsql IMMUTABLE;

CREATE FUNCTION

Here is the same function with the INOUT parameter. This parameter is used for both providing input values and returning the
function value:

=> CREATE FUNCTION sqr_inout(INOUT a numeric)
AS $$
BEGIN
a := a* a;
END
$$ LANGUAGE plpgsql IMMUTABLE;

CREATE FUNCTION
=> SELECT sqr_in(3), sqr_out(3), sqr_inout(3);
sqr_in | sqr_out sqr_inout

9 | 9
(1 row)

Conditional operators g

IF

a regular conditional operator

CASE

similar to CASE in the SQL language, but does not return a value

Note: three-valued logic!

the condition must be true; false and NULL are ignored

PL/pgSQL provides two conditional operators: IF and CASE.
The first one is the bread and butter operator available in all languages.

The CASE operator is similar to the SQL one, but does not return a value.
It is not unlike the switch operator in C or Java.

Remember that boolean expressions in SQL (and, consequently, in
PL/pgSQL) can take three values: true, false, and NULL. A condition is
triggered only when it is true, and is not triggered when it is false or
undefined. This is equally applicable to both WHERE conditions in SQL and
conditional operators in PL/pgSQL.

https://postgrespro.com/docs/postgresqgl/17/plpgsql-control-structures#PLP
GSOL-CONDITIONALS

https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLPGSQL-CONDITIONALS
https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLPGSQL-CONDITIONALS

Conditional operators

A generic form of the IF operator:

IF condition THEN
-- operators
ELSIF condition THEN
-- operators
ELSE
-- operators
END IF;

The ELSIF section can be used several times, or there can be no such section at all.

There can be no ELSE section.

The operators corresponding to the first true condition will be executed.

If none of the conditions is true, the operators of the ELSE section are executed (if available).

Consider an example of a function that uses a conditional operator for decoding an ISBN-10 number. The function returns three
values:

=> CREATE FUNCTION decode_ishn(
IN isbn text,
OUT country text,
OUT publisher_and_book text,
OUT check_digit integer
) AS $%
DECLARE
country_len integer;
BEGIN
IF left(isbn,1)::integer IN (0,1,2,3,4,5,7) THEN
country_len := 1;
ELSIF left(isbn,2)::integer BETWEEN 80 AND 94 THEN
country_len := 2;
ELSIF left(isbn,3)::integer BETWEEN 600 AND 649 THEN
country_len := 3;
ELSIF left(isbn,3)::integer BETWEEN 950 AND 993 THEN
country_len := 3;
ELSIF left(isbn,4)::integer BETWEEN 9940 AND 9989 THEN
country_len := 4;
ELSE
country_len := 5;
END IF;
country := left(isbn, country_len);
publisher_and_book := substr(isbn, country_len+l, 12);
check_digit := right(isbn, 1);
END
$$ LANGUAGE plpgsql IMMUTABLE;

CREATE FUNCTION
=> SELECT * FROM decode_isbn('1484268849"');

country | publisher and book | check digit
_________ g S
1 | 484268849 [9

=> SELECT * FROM decode_isbn('8845210669"');

country | publisher and book | check digit

A generic form of the CASE operator (by condition):

CASE
WHEN condition THEN
-- operators
ELSE
-- operators

END CASE;

There can be several WHEN sections.

There can be no ELSE section.

The operators corresponding to the first true condition will be executed.

If none of the conditions is true, ELSE operators are executed (it is an error to have no ELSE in this case).

Usage example:

=> DO $$
DECLARE
country text := (decode_isbn('1484268849')).country;
BEGIN
CASE
WHEN country IN ('0','1"') THEN
RAISE NOTICE '% — English-speaking area', country;
WHEN country = '7' THEN
RAISE NOTICE '% — Russia', country;
WHEN country = '88"' THEN
RAISE NOTICE ' — Italy', country;

ELSE
RAISE NOTICE '% — Other', country;
END CASE;
END
$$;
NOTICE: 1 — English-speaking area
DO

A generic form of the CASE operator (by expression):

CASE expression
WHEN value, ... THEN
-- operators
ELSE
-- operators
END CASE;

There can be several WHEN sections.

There can be no ELSE section.

The operators corresponding to the first true condition “expression = value” will be executed.

If none of the conditions is true, ELSE operators are executed (it is an error to have no ELSE in this case).

If conditions are similar, this form of the CASE operator can turn out to be shorter:

=> DO $$
DECLARE
country text := (decode_isbn('8845210669')).country;
BEGIN
CASE country
WHEN '0', '1' THEN
RAISE NOTICE '% — English-speaking area', country;
WHEN ‘7' THEN
RAISE NOTICE '% — Russia', country;
WHEN '88' THEN
RAISE NOTICE '% — Italy', country;
ELSE
RAISE NOTICE '%s — Other', country;
END CASE;
END
$$;

NOTICE: 88 — Italy
DO

Loops Ng

A FOR loop over a range of integers
A WHILE loop with a precondition

An infinite loop

A loop can have its own label, just like any block

Loop controls

exit a loop (EXIT)
initiate a new iteration (CONTINUE)

11

For repeated execution of a set of operators, PL/pgSQL offers several types
of loops:

« aFOR loop over a range of integers,
* a WHILE loop with a precondition,
e an infinite loop.

Aloop is a type of a block; it can have its own label. You can additionally
control loop execution by initiating a new iteration or exiting the loop.

https://postgrespro.com/docs/postgresql/17/plpgsgl-control-structures#PLP
GSQL-CONTROL-STRUCTURES-LOOPS

In addition to working with integer ranges, FOR loops can iterate through
guery results and arrays. Such FOR loops will be discussed later on.

https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLPGSQL-CONTROL-STRUCTURES-LOOPS

Loops

In PL/pgSQL, all loops have the same structure:

LOOP
-- operators
END LOOP;

It can be extended by a header that defines the exit condition for the loop.

A FOR loop over a range is executed while the loop counter goes over the values from bottom to top. Each iteration increases the
counter by 1 (but the increment can be changed in the optional BY clause).

FOR name IN bottom .. top BY increment
LOOP

-- operators
END LOOP;

e The variable used as a counter is declared implicitly and exists only within the LOOP — END LOOP block.

If REVERSE is specified, the counter value is reduced with each iteration, and the top and bottom of the loop have to be swapped:

FOR name IN REVERSE top .. bottom BY increment
LOOP

-- operators
END LOOP;

An example of using a FOR loop is a function that reverses a string:

=> CREATE FUNCTION reverse_for (line text) RETURNS text
AS $$
DECLARE
line_length CONSTANT int := length(line);
retval text := '';
BEGIN
FOR i IN 1 .. line_length
LOOP
retval := substr(line, i, 1) || retval;
END LOOP;
RETURN retval;
END
$$ LANGUAGE plpgsql IMMUTABLE STRICT;

CREATE FUNCTION

As you might remember, a STRICT function returns NULL right away if at least one of the input parameters is undefined. The
function body is not executed in this case.

A WHILE loop is executed while the condition is true:

WHILE condition
LOOP

-- operators
END LOOP;

Here is the same function that reverses a string using a WHILE loop:

=> CREATE FUNCTION reverse_while (line text) RETURNS text
AS $$
DECLARE
line_length CONSTANT int := length(line);
iint := 1;
retval text := '';
BEGIN
WHILE i <= line_length
LOOP
retval := substr(line, i, 1) || retval;
i:=1+1;
END LOOP;
RETURN retval;
END
$$ LANGUAGE plpgsql IMMUTABLE STRICT;

CREATE FUNCTION

A LOOP without a header runs infinitely. To terminate it, use the EXIT operator.

EXIT label WHEN condition;

o The label is optional; if it is not specified, the innermost loop will be terminated.
e The WHEN condition is also optional; if it is not specified, the loop is exited unconditionally.

LOOP usage example:

=> CREATE FUNCTION reverse_loop (line text) RETURNS text
AS $$
DECLARE
line_length CONSTANT int := length(reverse_loop.line);
iint :=1;
retval text := '';
BEGIN
<<main_loop>>
LOOP
EXIT main_loop WHEN i > line_length;
retval := substr(reverse_loop.line, i,1) || retval;
i:=1+1;
END LOOP;
RETURN retval;
END
$$ LANGUAGE plpgsql IMMUTABLE STRICT;

CREATE FUNCTION

e The function body is placed into an implicit block, with the function name used as the block label. So you can access
parameters using the “function_name.parameter” notation.

Let's make sure that all functions work correctly:

=> SELECT reverse_for('AMBULANCE') as "for",
reverse_while('AMBULANCE') as "while",
reverse_loop('AMBULANCE') as "loop";

for | while | Tloop
___________ e m e e e e e e e a o
ECNALUBMA | ECNALUBMA | ECNALUBMA
(1 row)

Note: PostgreSQL has a built-in reverse function.

It is sometimes useful to apply the CONTINUE operator, which starts a new iteration of the loop:

=> DO $$
DECLARE
s integer := 0;
BEGIN
FOR i IN 1 .. 100
LOOP
S 1= s + 1i;
CONTINUE WHEN mod(i, 10) != 0;
RAISE NOTICE 'i =%, s = %', 1, s;
END LOOP;
END
$%;
NOTICE: i = 10, s =55
NOTICE: i = 20, s = 210
NOTICE: i = 30, s = 465
NOTICE: 1 = 40, s = 820
NOTICE: i = 50, s = 1275
NOTICE: i = 60, s = 1830
NOTICE: i = 70, s = 2485
NOTICE: i = 80, s = 3240
NOTICE: 1i = 90, s = 4095
NOTICE: i = 100, s = 5050

DO

Expression computing (¢

Any expression is computed in the context of SQL

an expression is automatically converted into a query
the query is prepared
PL/pgSQL variables are substituted as parameters

Features

you can use all SQL capabilities, including subqueries

the execution speed is lower although the parsed query (and sometimes the
query plan) is cached

naming ambiguities are an issue

13

All expressions in PL/pgSQL code are computed as SQL database queries.
The interpreter builds the query by preparing a SELECT <expr> statement
and puts parameters in place of PL/pgSQL variables. A prepared statement
Is parsed once, and its parse tree is cached. When the statement is
executed, specific values are bound to the parameters, and planning is
redone (if PostgreSQL has the query plan cached, this step may be
skipped).

While executing SQL queries impacts PL/pgSQL performance, it ensures
close integration with SQL. In fact, expressions can leverage any SQL
functionality without limitations, including calling built-in or custom functions,
running subqueries, etc.

Starting with PostgreSQL 14, the execution of simple expressions (at least
those that do not query any tables) has been optimized: such expressions
are processed by the server's parser directly, without using the planner at

all.

https://postarespro.com/docs/postgresql/17/plpgsqgl-expressions

https://postgrespro.com/docs/postgresql/17/plpgsql-expressions

Computing expressions

Any PL/pgSQL expression is computed using the SQL engine. Thus, PL/pgSQL provides exactly the same features as SQL. For
example, since SQL allows using CASE, the same construct will also work in PL/pgSQL code (as an expression; it should not be
confused with the CASE ... END CASE operator, which is available only in PL/pgSQL):

=> D0 $$
BEGIN
RAISE NOTICE 'S', CASE 2+2 WHEN 4 THEN 'Everything is OK' END;
END
$$;

NOTICE: Everything is OK
DO

You can also use subqueries in expressions:

=> DO $%
BEGIN
RAISE NOTICE '%', (
SELECT code
FROM (VALUES (1, 'One'), (2, 'Two')) t(id, code)

WHERE id = 1
);
END
$$;
NOTICE: One
DO

Another PL/pgSQL expression computation example: how many string reverse functions did we have in total?

=> DO $$

DECLARE
s integer;

BEGIN
s := count(*) FROM pg_proc WHERE proname LIKE 'reverse%';
RAISE NOTICE 'Total "reverse" functions : %', s;

END

$$;

NOTICE: Total "reverse" functions : 4
DO

Takeaways (<r

PL/pgSQL is an easy-to-use language that comes with the
system by default, integrated with SQL

Managing routines in PL/pgSQL is similar to other languages
DO is an SQL command for executing anonymous blocks
PL/pgSQL variables can use any SQL types

PL/pgSQL supports regular control structures, such as
conditional operators and loops

15

Practice Y

1. Modify the book_name function, so that the length of the return
value does not exceed 47 characters.
If the book title gets truncated, it must be concluded with an
ellipsis.

Check your implementation in SQL and in the application. Add
more books with long titles if required.

2. Modify the book_name function again, so that an excessively
long title gets cut off at the end of a full word.

Check the implementation.

16

1. For example:

Travels into Several Remote Nations of the World. In Four Parts.
By Lemuel Gulliver, First a Surgeon, and then a Captain of Several
Ships -

- Travels into Several Remote Nations of the W...
Here are some cases that are worth checking for:

* The title length is less than 47 characters (should not change).

* The title length is exactly 47 characters (should not change).

* The title length is 48 characters (four characters have to be truncated

because three dots will be added).

It is recommended to implement and debug a separate function for
truncation, and then use it in book_name. It is useful for other reasons as
well:

* It may come in handy somewhere else.

« Each function will perform exactly one task.

2. For example:

Travels into Several Remote Nations of the World. In Four Parts.
By Lemuel Gulliver, First a Surgeon, and then a Captain of Several
Ships -

- Travels into Several Remote Nations of the...

Will your implementation work properly if the title consists of a single long
word without spaces?

Task 1. Truncating book titles

Let’s create a more general function that accepts the following parameters: the string to truncate, the maximum length, and the
suffix to be used in case of truncation. It won’t complicate the code and will allow us to do without magic numbers.

=> CREATE FUNCTION shorten(
s text,
max_len integer DEFAULT 47,
suffix text DEFAULT '...'
)
RETURNS text AS $$
DECLARE
suffix_len integer := length(suffix);
BEGIN
RETURN CASE WHEN length(s) > max_len
THEN left(s, max_len - suffix_len) || suffix
ELSE s
END;
END
$$ IMMUTABLE LANGUAGE plpgsql;

CREATE FUNCTION
Let’s check the result:

=> SELECT shorten(
'Travels into Several Remote Nations of the World. In Four Parts. '
'By Lemuel Gulliver, First a Surgeon, and then a Captain of Several Ships'

shorten
Travels into Several Remote Nations of the W...
(1 row)

=> SELECT shorten(
'Travels into Several Remote Nations of the World. In Four Parts. '

'By Lemuel Gulliver, First a Surgeon, and then a Captain of Several Ships’,
34

)i

shorten
Travels into Several Remote Nat...
(1 row)

Let’s use the created function:

=> CREATE OR REPLACE FUNCTION book_name(book_id integer, title text)
RETURNS text

STABLE LANGUAGE sql

BEGIN ATOMIC

SELECT shorten(book_name.title) ||

CASE WHEN (right(shorten(book_name.title), 3) != '...")
THEN '. '::text
ELSE ' '

END ||

string_agg(
author_name(a.last_name, a.first_name, a.middle_name), ', '
ORDER BY ash.seq_num
)
FROM authors a
JOIN authorship ash ON a.author_id = ash.author_id
WHERE ash.book_id = book_name.book_id;
END;

CREATE FUNCTION

Task 2. Truncating book titles by full words

=> CREATE OR REPLACE FUNCTION shorten(
s text,
max_len integer DEFAULT 47,
suffix text DEFAULT '...'

)
RETURNS text

AS $$
DECLARE
suffix_len integer := length(suffix);
short text := suffix;
BEGIN
IF length(s) < max_len THEN
RETURN s;
END IF;
FOR pos in 1 .. least(max_len-suffix_len+1, length(s))
LOOP
IF substr(s,pos-1,1) != "' ' AND substr(s,pos,1) = ' ' THEN
short := left(s, pos-1) || suffix;
END IF;
END LOOP;
RETURN short;
END

$$ IMMUTABLE LANGUAGE plpgsql;
CREATE FUNCTION
Let’s check the result:

=> SELECT shorten(
'Travels into Several Remote Nations of the World. In Four Parts. '
'By Lemuel Gulliver, First a Surgeon, and then a Captain of Several Ships'

shorten
Travels into Several Remote Nations of the...
(1 row)

=> SELECT shorten(
'Travels into Several Remote Nations of the World. In Four Parts. '

'By Lemuel Gulliver, First a Surgeon, and then a Captain of Several Ships',
34

)i

shorten

Travels into Several Remote...
(1 row)

