PL/pgSQL
Arrays

Copyright

© Postgres Professional, 2017-2025

Authors Egor Rogov, Pavel Luzanov, llya Bashtanov, Igor Gnatyuk
Translated by Liudmila Mantrova and Alexander Meleshko

Photo by Oleg Bartunov (Tukuche peak, Nepal)

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.com

Disclaimer

In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

Topics

Arrays and their usage in PL/pgSQL
Loops over array elements

Functions with a variable number of arguments
and polymorphic functions

Array usage in tables

rt"

N

Array types (<r

Array

a set of numbered elements of the same type
one-dimensional, multidimensional

Initialization

usage without an explicit declaration (type_name[])
implicit declaration when creating a base type or a table (_type_name)

Usage

elements as scalar values
array slices

operations on arrays: comparison, inclusion, intersection, concatenation,
usage with ANY or ALL instead of a subquery, etc.

Just like a composite type (a record), an array is not a scalar; it consists of
several elements of another type. But unlike in records, a) all these
elements are of the same type, and b) they are accessed by an integer
index, not by name (here the term index is used in the mathematical sense
of the word, not in the sense of a database index).

An array type does not have to be explicitly declared. When any base type
or a table is created, a new array type is also declared. Its name is the same
as the original type name, but with an underscore in front: _type_name. To
declare an array variable, all you need is to append square brackets to the
name of the element type.

An array is a full-fledged SQL type: you can create table columns of this
type, pass arrays as function arguments, and so on. Array elements can be
used as regular scalar values. Array slices can also be used.

Arrays can be compared and checked for NULL; you can search arrays for
element inclusion and intersection with other arrays, perform concatenation,
etc. Arrays can also be applied in ANY/SOME and ALL constructs, similar to
subqueries.

https://postgrespro.com/docs/postgresql/17/arrays

You can find various array functions in course handouts.

https://postgrespro.com/docs/postgresql/17/arrays

Initializing an array and referencing its elements

Declaring a variable and initializing an array:

=> DO $$
DECLARE
a integer[2]; -- the size is ignored
BEGIN
a := ARRAY[10,20,30];
RAISE NOTICE 'S', aj;
-- by default, one-based indexing is used
RAISE NOTICE 'a[l] = %, al[2] = %, al3] = %', all], al[2], al3];
-- array slice
RAISE NOTICE 'Slice [2:3] = %', a[2:3];
-- assign values to the array slice
al[2:3] := ARRAY[222,333];
-- output the array
RAISE NOTICE 'S%', aj;
END;
$$ LANGUAGE plpgsql;

NOTICE: {10,20,30}

NOTICE: a[l] = 10, a[2] = 20, a[3] = 30
NOTICE: Slice [2:3] = {20,30}

NOTICE: {10,222,333}

DO

A one-dimensional array can be constructed element by element: it will be expanded automatically if required. If you omit some of
the elements, they will receive NULL values.

What will be displayed?
=> DO $$
DECLARE
a integer[];
BEGIN
a[2] := 10;
a[3] := 20;
a[6] := 30;
RAISE NOTICE ‘%', a;
END;

$$ LANGUAGE plpgsql;

NOTICE: [2:6]={10,20,NULL,NULL,30}
DO

Since element numbering begins with a value other than one, the array itself is preceded by a range of element indexes.
We can define a composite type and create an array of this type:
=> CREATE TYPE currency AS (amount numeric, code text);

CREATE TYPE

=> DO $$
DECLARE
c currency[]; -- composite type array
BEGIN
-- assign values to array elements
c[1l].amount := 10; c[1l].code := 'RUB';
c[2].amount := 50; c[2].code := 'KZT';
RAISE NOTICE '%', c;

END
$$ LANGUAGE plpgsql;

NOTICE: {"(10,RUB)","(50,KZT)"}
DO

Another way to construct an array is to use a subquery:

=> DO $$

DECLARE
a integer[];

BEGIN
a := ARRAY(SELECT n FROM generate_series(1,3) n);
RAISE NOTICE '%', a;

END

$$ LANGUAGE plpgsql;

NOTICE: {1,2,3}
DO

You can also do the inverse operation: convert an array into a table:

=> SELECT unnest(ARRAY[1,2,3]);

n WN =

(3 rows)

Fun fact: the IN clause with a list of values is transformed into a search operation over the array:

=> EXPLAIN (costs off)
SELECT * FROM generate_series(1,10) g(id) WHERE id IN (1,2,3);

QUERY PLAN

Function Scan on generate series g
Filter: (id = ANY ('{1,2,3}'::integer[]))
(2 rows)

Arrays and loops (¢

A regular loop over element indexes

array_lower
array_upper

A FOREACH loop over array elements

this approach is easier, but it does not provide access to indexes

To iterate through array elements, you can simply set up an integer FOR
loop using functions that return the minimum and the maximum index of the
array.

But there is also a specialized loop: FOREACH. In this case, a loop variable
iterates through the elements, not their indexes. That's why the variable
must be of the same type as the array elements (as always, if the elements

are records, you can replace a single composite variable with several scalar
ones).

https://postgrespro.com/docs/postgresqgl/17/plpgsql-control-structures#PLP
GSOL-FOREACH-ARRAY

https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLPGSQL-FOREACH-ARRAY
https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLPGSQL-FOREACH-ARRAY

Arrays and loops

You can set up a loop that iterates through index values of array elements. The second parameter of the array_lower and
array_upper functions defines the array dimension (1 denotes a one-dimensional array).

=> DO $$
DECLARE
a integer[] := ARRAY[10,20,30];
BEGIN
FOR i IN array_lower(a,l)..array_upper(a,1l) LOOP
RAISE NOTICE 'a[%] = %', i, al[il;

END LOOP;
END
$$ LANGUAGE plpgsql;
NOTICE: a[l] = 10
NOTICE: a[2] = 20
NOTICE: a[3] = 30

DO

If you do not need to know index values, it’s easier to iterate directly though the elements:

=> DO $$
DECLARE
a integer[] := ARRAY[10,20,30];
X integer;
BEGIN
FOREACH x IN ARRAY a LOOP
RAISE NOTICE 'S', Xx;
END LOOP;
END
$$ LANGUAGE plpgsql;

NOTICE: 10
NOTICE: 20
NOTICE: 30
DO

Arrays and routines (¢

Routines with a variable number of arguments

all optional arguments must be of the same type
optional arguments are passed to the routine as an array
the last parameter array is defined by the VARIADIC mode

Polymorphic routines
support arguments of various types;
the actual type is defined at run time

can use additional polymorphic pseudotypes anyarray, anynonarray,
anycompatiblearray and anycompatiblenonarrray

can have a variable number of arguments

Using arrays, you can create routines (functions and procedures) with a
variable number of arguments.

While parameters with default values have to be explicitly specified in
routine declaration, optional arguments can be passed with no limit: they are
provided as an array. Consequently, all of them must be of the same type
(or a compatible one, if anycompatible or anycompatiblearray is used).

The last parameter in routine declaration must be marked as VARIADIC; it
must be of an array type.

https://postgrespro.com/docs/postagresql/17/xfunc-sgl#EXFUNC-SQL-VARIAD
IC-FUNCTIONS

We have already mentioned polymorphic routines that can accept
arguments of various types. Routine declaration uses a special polymorphic
pseudotype, while the actual type is defined at run time based on the types
of the passed arguments.

There are special polymorphic types anyarray and anycompatiblearray (and
anynonarray and anycompatiblenonarrray for non-arrays).

These types can be used when passing a variable number of arguments via
a VARIADIC parameter.

https://postgrespro.com/docs/postgresql/17/xfunc-sql#XFUNC-SQL-POLYM
ORPHIC-FUNCTIONS

https://postgrespro.com/docs/postgresql/17/xfunc-sql#XFUNC-SQL-VARIADIC-FUNCTIONS
https://postgrespro.com/docs/postgresql/17/xfunc-sql#XFUNC-SQL-VARIADIC-FUNCTIONS
https://postgrespro.com/docs/postgresql/17/xfunc-sql#XFUNC-SQL-POLYMORPHIC-FUNCTIONS
https://postgrespro.com/docs/postgresql/17/xfunc-sql#XFUNC-SQL-POLYMORPHIC-FUNCTIONS

Arrays and routines

When discussing polymorphism and overloading as part of the “SQL. Functions and Procedures” lecture, we created the maximum
function to compare three numbers and find the greatest one. Now let’s generalize this function, so that it can be used with an
arbitrary number of arguments. For this purpose, we’ll declare a single VARIADIC parameter:

=> CREATE FUNCTION maximum(VARIADIC a integer[]) RETURNS integer
AS $$
DECLARE
X integer;
maxsofar integer;
BEGIN
FOREACH x IN ARRAY a LOOP
IF x IS NOT NULL AND (maxsofar IS NULL OR x > maxsofar) THEN
maxsofar := x;
END IF;
END LOOP;
RETURN maxsofar;
END
$$ IMMUTABLE LANGUAGE plpgsql;

CREATE FUNCTION
Let’s try it out:
=> SELECT maximum(12, 65, 47);

maximum

65
(1 row)

=> SELECT maximum(12, 65, 47, null, 87, 24);

maximum

87
(1 row)

=> SELECT maximum(null, null);

maximum

To complete this illustration, we can make this function polymorphic as well, so that it takes any data type (which supports
comparison operators, of course).

=> DROP FUNCTION maximum(integer[]);

DROP FUNCTION

e Polymorphic types anyarray and anyelement must match each other: anyarray = anyelement[];
e The variable must be of the same type as the array element. But it cannot be declared as anyelement: it must have an actual
type. The %TYPE construct helps us out here.

=> CREATE FUNCTION maximum(VARIADIC a anycompatiblearray, maxsofar OUT anycompatible)
AS $%
DECLARE
x maxsofar%TYPE;
BEGIN
FOREACH x IN ARRAY a LOOP
IF x IS NOT NULL AND (maxsofar IS NULL OR x > maxsofar) THEN
maxsofar := x;
END IF;
END LOOP;
END
$$ IMMUTABLE LANGUAGE plpgsql;

CREATE FUNCTION
Let’s check the result:

=> SELECT maximum(12, 65, 47);

maximum

65
(1 row)

=> SELECT maximum(12.1, 65.3, 47.6);

maximum

=> SELECT maximum(12, 65.3, 15e2, 3.14);

maximum

Now our function is almost completely analogous to the greatest expression provided in SQL.

(d
An array or a table? (~f
1| ... | {A} compact representation
2| ...| {8B,c,D} no joins required
3 ... {AC} convenient in simple cases

separate tables:
many to many relationship

a universal solution

WL A~wWIN (R

o O W >

N
wWlw| N[N N R
<
AW N

A traditional relational approach assumes that a table stores atomic values
(first normal form). The SQL language has no tools for peeking into
composite values.

That's why a traditional approach relies on creating an additional table
connected to the main one by a many-to-many relationship.

Nevertheless, we can create a table with a column of an array type.
PostgreSQL offers a rich set of array functions; the search for an array
element can be sped up using special indexes (covered in the DEV2
course).

This approach can be convenient: we get a concise representation that
does not require any joins. For example, arrays are extensively used in
PostgreSQL system catalog.

The choice of approach depends on the goals and the operations required.
Consider the example in the demo.

An array or a table?

Imagine that we are designing a database for writing a blog. The blog contains some posts, and we would like to tag them.
The traditional approach is to create a separate table for tags. For example:

=> CREATE TABLE posts(
post_id integer PRIMARY KEY,
message text

)i

CREATE TABLE

=> CREATE TABLE tags(
tag_id integer PRIMARY KEY,
name text

);
CREATE TABLE
Let’s connect posts and tags by a many-to-many relationship via an additional table:

=> CREATE TABLE posts_tags(
post_id integer REFERENCES posts(post_id),
tag_id integer REFERENCES tags(tag_id)

)i

CREATE TABLE
Let’s fill our tables with text data:

=> INSERT INTO posts(post_id,message) VALUES
(1, 'I set my password to “incorrect”.'),
(2, 'Your future is whatever you make it, so make it a good one.');

INSERT 0 2

=> INSERT INTO tags(tag_id,name) VALUES
(1, 'my past and thoughts'), (2, 'technology'), (3, 'family');

INSERT 0 3

=> INSERT INTO posts_tags(post_id,tag_id) VALUES
(1,1), (1,2), (2,1), (2,3);

INSERT 0 4
Now we can display posts and tags:

=> SELECT p.message, t.name

FROM posts p
JOIN posts_tags pt ON pt.post_id = p.post_id
JOIN tags t ON t.tag_id = pt.tag_id

ORDER BY p.post_id, t.name;

Your future is whatever you make it, so make it a good one.
Your future is whatever you make it, so make it a good one.
(4 rows)

family
my past and thoughts

message | name
___ e
I set my password to “incorrect”. | my past and thoughts
I set my password to “incorrect”. | technology
I
I

Or we can do it a bit differently to get an array of tags. We are going to use an aggregate function for this purpose:

=> SELECT p.message, array_agg(t.name ORDER BY t.name) tags
FROM posts p
JOIN posts_tags pt ON pt.post_id = p.post_id
JOIN tags t ON t.tag_id = pt.tag_id
GROUP BY p.post_id
ORDER BY p.post_id;

message tags

___ L
I set my password to “incorrect”. | {"my past and
thoughts", technology}

Your future is whatever you make it, so make it a good one. | {family,"my past and
thoughts"}

(2 rows)

We can find all posts with a particular tag:

=> SELECT p.message

FROM posts p
JOIN posts_tags pt ON pt.post_id = p.post_id
JOIN tags t ON t.tag_id = pt.tag_id

WHERE t.name = 'my past and thoughts'

ORDER BY p.post_id;

message

I set my password to “incorrect”.
Your future is whatever you make it, so make it a good one.
(2 rows)

We may also need to find all the unique tags, and it is really easy:

=> SELECT t.name
FROM tags t
ORDER BY t.name;

family

my past and thoughts
technology

(3 rows)

Now let’s try another approach to this task. Suppose the tags are stored as a text array right inside the table with posts.
=> DROP TABLE posts_tags;

DROP TABLE

=> DROP TABLE tags;

DROP TABLE

=> ALTER TABLE posts ADD COLUMN tags text[];

ALTER TABLE

There are no tag IDs, but we don’t really need them.

=> UPDATE posts SET tags = '{"my past and thoughts","technology"}'
WHERE post_id = 1;

UPDATE 1

=> UPDATE posts SET tags = '{"my past and thoughts","family"}'
WHERE post_id = 2;

UPDATE 1
Now it’s easier to display all posts:

=> SELECT p.message, p.tags
FROM posts p
ORDER BY p.post_id;

message tags

I set my password to “incorrect”. | {"my past and
thoughts", technology}

Your future is whatever you make it, so make it a good one. | {"my past and
thoughts", family}

(2 rows)

It is also easy to find all posts with the same tag (using the intersection operator &&).
This operation can be sped up using GIN index, and the query won’t require searching through the whole table of posts.

=> SELECT p.message

FROM posts p

WHERE p.tags && '{"my past and thoughts"}'
ORDER BY p.post_id;

message

I set my password to “incorrect”.
Your future is whatever you make it, so make it a good one.
(2 rows)

But it is quite hard to get the list of all tags. It requires unnesting all the tag arrays into a big table, and the search for unique values
in this table is quite resource-intensive.

=> SELECT DISTINCT unnest(p.tags) AS name
FROM posts p;

family

technology

my past and thoughts
(3 rows)

We can clearly see data duplication here.

Thus, both approaches have the right to be applied.
In simple cases, arrays look more straightforward and work well.

In more complex scenarios (imagine that we would like to store the date of tag creation together with its name, or we need to use
check constraints), the traditional approach becomes more preferable.

Takeaways (<r

An array consists of numbered elements of the same data type

An array column is an alternative to a separate table: it offers
convenient operations on arrays and index support

Arrays enable you to create functions with a variable number of
arguments

11

Practice [Y

1. Create a function add_book for adding a new book.

The function must take two arguments: the name of the book and
an array of author IDs. It must return the ID of the added book.

Check that the application now allows adding books.

12

1.

FUNCTION add_book(title text, authors integer[])
RETURNS integer

Task 1. The add_book function

=> CREATE FUNCTION add_book(title text, authors integer[])
RETURNS integer
AS $$
DECLARE
book_id integer;
id integer;
seq_num integer := 1;
BEGIN
INSERT INTO books(title)
VALUES (title)
RETURNING books.book_id INTO book_id;
FOREACH id IN ARRAY authors LOOP
INSERT INTO authorship(book_id, author_id, seq_num)
VALUES (book_id, id, seq_num);
seq_num := seq_num + 1;
END LOOP;
RETURN book_id;
END
$$ VOLATILE LANGUAGE plpgsql;

CREATE FUNCTION

