The Bookstore App
Data Schema and API

Copyright

© Postgres Professional, 2017-2025

Authors Egor Rogov, Pavel Luzanov, llya Bashtanov, Igor Gnatyuk
Translated by Liudmila Mantrova and Alexander Meleshko

Photo by Oleg Bartunov (Tukuche peak, Nepal)

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.com

Disclaimer

In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

Topics

Bookstore app overview

Data schema design, normalization
Data schema, the final version
Setting up the API

rt"

N

The application (¢

Bookstore

m DB Role

posigres ~

In smnk select buy_book (
book_id=>$1

result
Title In stock [

Store

101 Famous Poems. Alexander S. Pushkin, lvan A. Bunin, William 0
Shakespeare

select * fr alog ($1, $2, $3)
[nullnull§

1

Dark Avenues. Ivan A. Bunin 0

B0G6A8EA

Good Omens. Neil Gaiman, Terry Pratchett 0

Romeo and Juliet. William Shakespeare 0

The Tale of Tsar Saltan. Alexander S. Pushkin 24

Three Men in a Boat (To Say Nothing of the... Jerome K. Jerome 0

Travels into Several Remote Nations of the... Jonathan Swift 0

You have bought a book

Books found: 7

The application consists of several parts, which are provided as separate
tabs.

“Store” is a customer Ul for buying books online.

Other tabs represent the employee Ul, which is available only to the
bookstore staff (the admin panel).

“Catalog” is the storekeeper’s Ul which is used for ordering books to the
store and viewing arrivals and sales.

“Books” and “Authors” are the Ul for librarians, where they can register
arrivals.

For training purposes, all this functionality is exposed in a single web page.
If any feature is unavailable because the required object (such as a table or
a function) is missing, the application will report an error. It also displays the
text of all queries sent to the server.

We will start with an empty database and will gradually implement all the
required components by the end of the course.

The source code of the application frontend will not be discussed in this
course, but is available for download:
https://pubaqit.postgrespro.ru/pub/devlapp.qit

https://pubgit.postgrespro.ru/pub/dev1app.git

Application demonstration

This demo shows the Bookstore app as it would look like after completing all practice assignments. The app opens in a separate
browser tab in the course VM:

Opening http://localhost...

student$ xdg-open http://localhost

Books Y

An ER model for high-level design

entities — concepts of the application domain
relationships — connections between entities
attributes — properties of entities and relationships

Book

title
authors
quantity
operations

After taking a look at the application’s Ul and functionality, we need to figure

out its data schema. We will not go into details about database design: itis a
separate branch of knowledge, which is beyond the scope of this course, but
we cannot ignore this topic entirely.

High-level database design often uses the ER model (“Entity—Relationship”).
It deals with entities (concepts of the subject area), their relationships, and
attributes (the properties of entities and relationships). The model allows us
to remain at the logical level, without getting down to data representation at
the physical level (such as its table form).

The first approach to database design is creating a diagram as shown on
this slide: a book is represented as a single big entity, and everything else
becomes its attributes.

Data schema Y

10=11-1
id | title | author | gty | operation
b T T T T T T T T T T T T T T I T T T T I T N P L
1 |/ The Tempest 1| William Shakespeare “lr1e | 411
1 || THE TEMPEST /|i William Shakespeare R e
2 | Romeo and Juliet | william Shakespeare NI
3 | Good Omens !| Terry Pratchett 17 | +7
3 |iGood Omens ‘| Neil Gaiman 'z 1o
7.0
. . or0.7
Some data is duplicated or 77

hard to maintain consistency
hard to perform updates
hard to write queries

Clearly, this approach cannot be correct. It may be not quite obvious in the
diagram itself, but let’s try to project this diagram onto database tables.
There are several ways to do it. One of them is shown on the slide: the table
corresponds to the entity, and table columns represent the attributes of this
entity.

This diagram is a good illustration that some data ends up duplicated (as
highlighted on the slide). Data duplication may lead to problems with
consistency, the very thing a database system is supposed to ensure.

For example, each of the two rows related to book 3 must list the total
guantity (7 items). How should purchases be recorded, then? Some rows
will need to be added to record the purchase operations. And then the
guantity in all the duplicated rows will need to be reduced from 7 to 6. But
what if an error leads to data discrepancy between these rows? How can we
define a constraint to make sure the values stay in sync?

Many queries will also become overcomplicated. How can we find the total
number of books? Or get a list of distinct authors?

Thus, such a schema will not work well for relational databases.

Books and operations (<r

Normalization reduces data redundancy

Large entities are split into smaller ones

Book
title
authors
relationship

quantity change

Operation
date

To work with data in a relational database system properly, we need to
eliminate redundancy. This process is called normalization.

You might be familiar with various normal form concepts (first, second, third,
Boyce—Codd, etc.) We are not going to discuss them here; in essence, it is
enough to understand that all this math pursues one and the same goal:
eliminating redundancy.

The way to reduce redundancy is to split a larger entity into smaller ones.
How exactly to split it should be prompted by common sense (which cannot
be replaced by the knowledge of normal forms alone anyway).

In our case, everything is quite straightforward. Let’s start by separating
books and operations. These two entities are connected by a one-to-many
relationship: there can be several operations on each book, but each
operation relates to only one book.

Data schema Y

books
book_id | title | author
1 | The Tempest |{William Shakespeare
2 | Romeo and Juliet |!William Shakespeare
3 |/Good Omens !| Terry Pratchett
3 |iGood Omens '] Neil Gaiman
operations

operation_id | book_id | qty_change date_created
I
I
I
I

2020-07-13
2020-08-25
2020-07-13
2020-07-13

[+10
| -1
I +7
I +4

A WNE

1
1
3
2

At the physical level, this can be represented by two tables: books and
operations.

An operation changes the quantity of books (sell books if negative, order
new books if positive). Note that the book entity has no quantity attribute
anymore. Instead, you get the quantity by adding up all changes made by
operations related to this book. Having an additional quantity attribute would
only create data redundancy again.

This solution might raise some eyebrows at first. Is it really a good idea to
have to calculate the amount every time instead of having a separate field to
guery? The answer is that we can simply create a view that shows the
current amount of books in store. This will not lead to redundancy, because
the view is just another query.

But what about performance? If summing up all changes brings too much
overhead, we can resort to denormalization: add the quantity field to the
books table and ensure its consistency with the operations table. Whether to
do this or not is beyond the scope of this course (it is discussed in the QPT
"Query Performance Tuning" course). Common sense suggests that it's not
required for our bare-bones app, but we will get back to denormalization
when we get to the “Triggers” lecture.

Thus, moving all operations into a separate entity resolves most of the
duplication issues, but not all of them.

Books, authors, operations (¢

Author
Book ‘
il first name
ite ‘ last name
middle name
many-to-many
relationship

quantity change

Operation
date

That's why we have to go deeper: separate books from authors and tie them
by a many-to-many relationship: a book can be written by several authors,
and each author can have more than one book. At the table level, such
relationship can be implemented using an additional intermediate table.

The author’s attributes will be their first, last and middle name. It makes
sense because we may need to work with each of these attributes
separately, for example, to display the author’s last name and initials.

Application schema

=> \c bookstore
You are now connected to database "bookstore" as user "student".

The application schema consists of four tables:

=> \dt
List of relations

Schema | Name | Type | Owner

----------- B R

bookstore | authors | table | student

bookstore | authorship | table | student

bookstore | books | table | student

bookstore | operations | table | student

(4 rows)
Books
=> \d books

Table "bookstore.books"

Column | Type | Collation | Nullable | Default

--------- R ik e i
book id | integer | | not null | generated always as identity
title | text | | not null |
Indexes:

"books pkey" PRIMARY KEY, btree (book id)
Referenced by:

TABLE "authorship" CONSTRAINT "authorship_book_id_fkey" FOREIGN KEY (book id)
REFERENCES books (book id)

TABLE "operations" CONSTRAINT "operations book id fkey" FOREIGN KEY (book id)
REFERENCES books (book id)

We use the following data types here:

® integer;
® text, which is a text string of arbitrary length.

We also use the PRIMARY KEY constraint.

The GENERATED AS IDENTITY clause is used to automatically generate unique values.

GENERATED AS IDENTITY columns take their values from special database objects called sequences. We can obtain the name of the
used sequence as follows:

=> SELECT pg_get_serial_sequence('books', 'book_id');

pg get serial sequence

bookstore.books book id seq
(1 row)

If required, you can also create sequences manually and query them directly:
=> SELECT nextval('books_book_id_seq');

nextval

A sequence is the most efficient way of generating unique IDs. But you should keep in mind that:

e there may be gaps in numbering (since the changes are not transactional);
e the numbers may not increase monotonically (if sessions cache values).

Here is the data stored in the books table:

=> SELECT * FROM books \gx

=L RECORD I J---mmmmmm oo o oo oo
book id | 1

title | The Tale of Tsar Saltan

=L RECORD 2 J---mmmmmmm o s oo o e oo
book_id | 2

title | Romeo and Juliet

S RECORD 3 J---mmmmmm oo oo oo oo
book id | 3

title | Good Omens

S RECORD 4 J---mmmmm e o e s e e e et e e e
book id | 4

title | Dark Avenues

S RECORD 5] -mmmmm oo oo e oo oo oo oo
book id | 5

title | Travels into Several Remote Nations of the World. In Four Parts. By Lemuel
Gulliver, First a Surgeon, and then a Captain of Several Ships

“L RECORD 6 J---m-mmmmmm oo o oo e e e
book _id | 6

title | Three Men in a Boat (To Say Nothing of the Dog)

=L RECORD 7 J--mmmm o s o s s o e e et e e e e oo
book id | 7

title | 101 Famous Poems

Note that book titles can be quite long.

Authors

=> \d authors

Table "bookstore.authors"

Column | Type | Collation | Nullable | Default
------------- L e S T L e
author _id | integer | | not null | generated always as identity
last_name | text | | not null |
first name | text | | not null |
middle name | text | | |
Indexes:

"authors pkey" PRIMARY KEY, btree (author id)
Referenced by:

TABLE "authorship" CONSTRAINT "authorship author id fkey" FOREIGN KEY (author id)
REFERENCES authors(author id)

In this table, we also use the NOT NULL constraint, which means that undefined values are not allowed.

=> SELECT * FROM authors;

author id | last name | first name | middle name
----------- B ik e e il
1 | Pushkin | Alexander | Sergeyevich
2 | Shakespeare | William |
3 | Pratchett | Terry |
4 | Gaiman | Neil |
5 | Bunin | Ivan | Alekseyevich
6 | Swift | Jonathan |
7 | Jerome | Jerome | Klapka
(7 rows)

Note that the middle name might be missing (or defined by an empty string).

The PRIMARY KEY constraint was mentioned in the \d output together with the terms “index” and “btree”.

Btree is the main index type used in databases to speed up search and provide support for constraints (primary key and unique).
Suppose that our bookstore sells books written by a million of different authors with the same last name:

=> BEGIN;

BEGIN

=> INSERT INTO authors(first_name, last_name)
SELECT 'John', 'Wordsmith' FROM generate_series(l, 1_000_000);

INSERT 0 1000000

How long will it take to find an author in such a table?

=> \timing on
Timing is on.
=> SELECT * FROM authors WHERE last_name = 'Pushkin’;

author id | last name | first name | middle name

1 | Pushkin | Alexander | Sergeyevich
(1 row)

Time: 105.677 ms
=> \timing off
Timing is off.

If we ask the optimizer to display the query plan, we will see that Seq Scan is used; it means that the whole table is scanned
sequentially using a Filter to find the required value:

=> EXPLAIN (costs off)
SELECT * FROM authors WHERE last_name = ‘Pushkin';

QUERY PLAN
Seq Scan on authors
Filter: (last name = 'Pushkin'::text)
(2 rows)

And what if we perform the search by an indexed field?
=> \timing on
Timing is on.
=> SELECT * FROM authors WHERE author_id = 1;

author id | last name | first name | middle name

1 | Pushkin | Alexander | Sergeyevich
(1 row)

Time: 0.294 ms

=> \timing off

Timing is off.

The query time has been reduced by an order of magnitude.
And the query plan now contains an index:

=> EXPLAIN (costs off)
SELECT * FROM authors WHERE author_id = 1;

QUERY PLAN

Index Scan using authors pkey on authors
Index Cond: (author id = 1)
(2 rows)

We can also create an index by the last name (and analyze the table to gather up-to-date statistics):
=> ANALYZE authors;

ANALYZE

=> CREATE INDEX ON authors(last_name);

CREATE INDEX

=> EXPLAIN (costs off)
SELECT * FROM authors WHERE last_name = ‘Pushkin';

QUERY PLAN

Index Scan using authors last name idx on authors
Index Cond: (last name = 'Pushkin'::text)
(2 rows)

However, the index is not a universal performance tuning tool. Having an index is usually very useful if the query needs to select
only a small portion of all table rows. But if it is required to read a lot of data, the index will only add overhead, and the optimizer is
smart enough to understand it:

=> EXPLAIN (costs off)
SELECT * FROM authors WHERE last_name = 'Wordsmith';

QUERY PLAN

Seq Scan on authors
Filter: (last name = 'Wordsmith'::text)
(2 rows)

Besides, you have to keep in mind that indexes take extra disk space, and index updates caused by table modifications bring extra
overhead.

Let’s cancel all our changes (including index creation):
=> ROLLBACK;

ROLLBACK

=> ANALYZE authors;

ANALYZE

Authorship

This table implements many-to-many relationship.
=> \d authorship

Table "bookstore.authorship"

Column | Type | Collation | Nullable | Default
----------- B s T T
book id | integer | | not null |
author id | integer | | not null |
seq_num | integer | | not null |
Indexes:

"authorship pkey" PRIMARY KEY, btree (book id, author id)

Foreign-key constraints:
"authorship author id fkey" FOREIGN KEY (author id) REFERENCES authors(author id)
"authorship book id fkey" FOREIGN KEY (book id) REFERENCES books(book id)

In addition to all the previously used constraints, this table also uses FOREIGN KEY, which is a referential integrity constraint.
In fact, this table contains two foreign keys: one of them refers to the books table, and the other refers to the authors table.
The seq_num column defines the order in which multiple authors of the same book should be listed.

Note that we have a composite primary key here.

=> SELECT * FROM authorship;

book id | author _id | seq num

......... e
1| 1| 1
2 | 2 | 1
3 3 2
3 4 | 1
4 | 5 | 1
5| 6 | 1
6 | 7 | 1
7 | 1| 1
7| 5| 2
7 | 2 | 3

(10 rows)

Operations

=> \d operations

Table "bookstore.operations"

Column | Type | Collation | Nullable | Default
-------------- E e L i T
operation id | integer | | not null | generated always as identity
book id | integer | | not null |
gty change | integer | | not null |
date created | date | | not null | CURRENT DATE
Indexes:

"operations pkey" PRIMARY KEY, btree (operation id)
Foreign-key constraints:
"operations book id fkey" FOREIGN KEY (book id) REFERENCES books(book id)

This table uses one more data type: date, which defines the date without timestamp.
For the date_created column, the current date is specified as the default value (using the DEFAULT clause).

=> SELECT * FROM operations;

[
-------------- B L LT T L LT
1] 1| 10 | 2025-04-22
2 | 1| 10 | 2025-04-22
3 1| -1 | 2025-04-22

Apart from the data types used in application tables, we are going to come across the boolean type all the time. For example, the
expressions in WHERE clauses are of the boolean type.

It's important to remember that, unlike traditional programming languages, SQL uses three-valued logic: in addition to true and
false, there is also the NULL value (which can be interpreted as “the value is unknown”).

You will see some other data types in the examples. Check the handout “Basic Data Types and Functions” (datatypes.pdf) for details.

We will also cover some other types that are more complex:

e the composite type, which represents a record similar to a table row (in “SQL. Composite Types”);
e arrays (in “PL/pgSQL. Arrays”).

Designing the API (¢

Tables and triggers

reading data directly from tables (views)
writing data directly to tables (views)
using triggers for changing related tables

the application must be aware of the data model
this approach provides maximum flexibility

hard to maintain consistency

Functions

reading data via table functions
writing data by calling functions

the application is separated from the data model and is limited by API

lots of wrapper functions required
potential performance issues

11

There are several ways to set up an API.

The first option is to allow the application to access and modify database
tables directly. In this case, the application must have the exact knowledge
of the data model. This requirement can be relaxed to some extent by using
views.

Another limitation of this approach is that the application has to follow certain
rules; otherwise, it is very hard to maintain data consistency if you have to
address all possible inappropriate operations at the database level. But this
Is the approach that provides the most flexibility.

Another option is to forbid direct table access from the application and allow
only function calls. Reading data can be performed by table functions (which
return a set of rows). Writing can be performed by calling other functions and
passing the required data to them. In this case, all the necessary
consistency checks can be implemented within functions: the database will
be protected, but the application will be able to use only a limited set of
features that we provide. It requires writing many wrapper functions and can
lead to performance degradation.

You can also combine these two approaches. For example, you can allow
the application to read data from tables directly, but perform modifications
only by functions.

Customer API N

get_catalog | Lo

A

books authorship authors
book_id book_id author_id
title author_id last_name
seg_num first_name
middle_name

operations
operation_id
book_id < buy_book
gty_change
date_created book purchase

12

In this application, we will try different ways of setting up the interface
(although it's usually better to stick to one approach when developing real
applications).

The store will use API functions:
e get_catalog for looking up books (see “SQL. Composite Types”)
* buy book for making a purchase (see “PL/pgSQL. Query Execution”)

Employee API NS

ordering a book

UPDATE
‘ update_catalog_trigger
Y 57
- books authorship authors =
\ |
")
8 | book_id book_id author_id E
© | title author_id last_name <
T seq_num first_name =
o middle_name T
x A)
S .
o operations add_book add_author
=
O | operation_id adding a book adding an author
® | book_id
o | dty_change
Q. | date_created
o
13

The admin panel is going to retrieve data by accessing the following views
(which we create as part of the practice for this lecture):

e catalog_v for the list of books,
e authors_v for the list of authors,
« operations_V for the list of operations.

Authors will be added using the add_author function (we will create it once
we get to the “PL/pgSQL. Query Execution” lecture). For adding books, we
will implement the add_book function (“PL/pgSQL. Arrays”).

To enable book purchase, we will make the catalog_v view updatable
(“PL/pgSQL. Triggers”).

Views
A view is a named query. For example, you can create a view that displays only those authors who do not have a middle name, as
follows:

=> CREATE VIEW authors_no_middle_name AS
SELECT author_id, first_name, last_name
FROM authors
WHERE nullif(middle_name,'') IS NULL;

CREATE VIEW
Now this view can be used in queries almost like a regular table:

=> SELECT * FROM authors_no_middle_name;

author_id | first_name | Tlast _name
........... T T I,
2 | William | Shakespeare
3 | Terry | Pratchett
4 | Neil | Gaiman
6 | Jonathan | Swift
(4 rows)

In a simple case, other operations can also be applied to a view, for example:
=> UPDATE authors_no_middle_name SET last_name = initcap(last_name);

UPDATE 4

In complex cases, you can use triggers to enable insert, update, and delete operations. We will explain it in the “PL/pgSQL. Triggers”
lecture.

At the planning stage, the view “unfolds”, revealing the base tables:

=> EXPLAIN (costs off)
SELECT * FROM authors_no_middle_name;

QUERY PLAN
Seq Scan on authors
Filter: (NULLIF(middle name, ''::text) IS NULL)
(2 rows)

The application uses three views. They will be very simple at first, but later we’ll move some application logic into them.
The authors view displays a concatenation of the first name, last name, and middle name (if available):
=> SELECT * FROM authors_v;

author_id | display name

1 | Alexander Sergeyevich Pushkin
5 | Ivan Alekseyevich Bunin
7 | Jerome Klapka Jerome
2 | William Shakespeare
3 | Terry Pratchett
4 | Neil Gaiman
6 | Jonathan Swift
(7 rows)

The catalog view displays only the book title for now:

=> SELECT * FROM catalog_v \gx

1o 0

book id | 1

display name | The Tale of Tsar Saltan

S RECORD 2 J--mmmmmmm o e s oo e o e o e e
book_id | 2

display name | Romeo and Juliet

<[RECORD 3 Ja--mcmmmmm oo oo oo
book_id | 3

display name | Good Omens

=L RECORD 4 J4-- o mmmm o s e e e e e e e e e oo
book id | 4

display name | Dark Avenues

[RECORD 5 Ja--mmm oo oo oo oo oo
book id | 5

display name | Travels into Several Remote Nations of the World. In Four Parts.

Gulliver, First a Surgeon, and then a Captain of Several Ships

<] RECORD 6] - = - - == m o mm o e m ot m ot oot ot ot

book_id | 6
display name | Three Men in a Boat (To Say Nothing of the Dog)

1ol T

book id | 7

display name | 101 Famous Poems

The operations view specifies the operation type (arrival or sale):
=> SELECT * FROM operations_v;

book id | op type | qty change | date created

--------- B L T e peppa e
1| Arrival | 10 | 22.04.2025
1| Arrival | 10 | 22.04.2025
1| sale | 1| 22.04.2025

(3 rows)

By Lemuel

Takeaways (~f

Database design is a separate complex topic

theory is important, but it should not take precedence over common sense

Normalized data simplifies the development and facilitates
consistency support

The API can use tables, views, functions, and triggers

15

Practice [/ Y

1. Make sure that you are connected to the bookstore database and
the bookstore schema is the current one.

2. Create books, authors, authorship, and operations tables with all
the necessary constraints, exactly as shown in the demo.

3. Insert data about several books into the tables.
Check the result by running some queries.

4. In the bookstore schema, create authors_v, catalog_v, and
operations_v views, so that they look exactly like shown in the
demo.

Check that the application now shows the data in “Books”,
“Authors”, and “Catalog” tabs.

16

1. Use current_database() and current_schema() functions.
2. Use the demonstrated output of psgl’'s \d commands as a reference.
3. You can use the data shown in the demo, or come up with your own data.

4. Try writing queries to the base tables that return the same results as the
gueries to views shown in the demo. Then save these queries as views.

After completing the assignments, make sure to compare your queries with
those in the provided keys. Make corrections if necessary.

Task 1. Database and schema

=> SELECT current_database(), current_schema();

current_database | current_schema
__________________ e
bookstore | bookstore

(1 row)

Task 2. Tables

Authors:

=> CREATE TABLE authors(
author_id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
last_name text NOT NULL,
first_name text NOT NULL,
middle_name text
)i

CREATE TABLE
Books:

=> CREATE TABLE books(
book_id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
title text NOT NULL

);

CREATE TABLE
Authorship:

=> CREATE TABLE authorship(
book_id integer REFERENCES books,
author_id integer REFERENCES authors,
seq_num integer NOT NULL,
PRIMARY KEY (book_id,author_id)

)i

CREATE TABLE
Operations:

=> CREATE TABLE operations(
operation_id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
book_id integer NOT NULL REFERENCES books,
qty_change integer NOT NULL,
date_created date NOT NULL DEFAULT current_date
)i

CREATE TABLE

Task 3. Data

Authors:

=> INSERT INTO authors(last_name, first_name, middle_name)
VALUES
('Pushkin', 'Alexander', 'Sergeyevich'),
('Shakespeare', 'William', NULL),
('Pratchett', 'Terry', NULL),
('Gaiman', 'Neil', NULL),

('Bunin', 'Ivan', 'Alekseyevich'),

('Swift', 'Jonathan', NULL),

('Jerome', 'Jerome', 'Klapka');
INSERT 0 7

Books:

=> INSERT INTO books(title)
VALUES
('The Tale of Tsar Saltan'),
(*Romeo and Juliet'),
('Good Omens'),

('Dark Avenues'),

('Travels into Several Remote Nations of the World. In Four Parts.
'By Lemuel Gulliver, First a Surgeon, and then a Captain of Several Ships'),

('Three Men in a Boat (To Say Nothing of the Dog)'),

('101 Famous Poems');

INSERT 0 7

Authorship:

=> INSERT INTO authorship(book_id, author_id, seq_num)

VALUES
(1' 1' 1)'
(2' 2’ 1)’
(3I 3’ 2)’
(3' 4’ 1)’
(4, 5, 1),
(5' 6' 1)'
(6' 7’ 1)’
(7I 1’ 1)’
(7' 5’ 2)’
(7, 2, 3);

INSERT 0 10

Operations:

=> INSERT INTO operations(book_id, qty_change)
VALUES

(1, 10),

(1, 10),

(11 '1);

INSERT 0 3

Task 4. Views

Authors View:

=> CREATE VIEW authors_v AS

SELECT a.author_id,
a.first_name ||
coalesce(' ' || nullif(a.middle_name, '*), *') || " ' ||
a.last_name AS display_name

FROM authors a;

CREATE VIEW
Catalog View:

=> CREATE VIEW catalog_v AS
SELECT b.book_id,

b.title AS display_name
FROM books b;

CREATE VIEW
Operations View:

=> CREATE VIEW operations_v AS
SELECT book_id,
CASE
WHEN qty_change > 0 THEN ‘'Arrival’
ELSE 'Sale’
END op_type,
abs (qty_change) qty_change,
to_char(date_created, 'DD.MM.YYYY') date_created
FROM operations
ORDER BY operation_id;

CREATE VIEW

