

PL/pgSQL
Overview and Programming Structures

17

Copyright
© Postgres Professional, 2017–2025
Authors Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Igor Gnatyuk
Translated by Liudmila Mantrova and Alexander Meleshko
Photo by Oleg Bartunov (Tukuche peak, Nepal)

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.com

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

PL/pgSQL history

Block structure and declaration of variables

Anonymous blocks

Routines in PL/pgSQL

Conditional operators and loops

Expression computing

3

PL/pgSQL history

Introduced in PostgreSQL 6.4 in 1998
comes out of the box since PostgreSQL 9.0

Objectives
create a simple language for custom functions and triggers
add control structures to the SQL language
keep the ability to use any custom types, functions, and operators

Inspired by: Oracle PL/SQL, Ada

PL/pgSQL is one of the first procedural languages for PostgreSQL. It first
appeared in 1998 in PostgreSQL 6.4, and since 9.0, it has been installed by
default when a database is created.

PL/pgSQL extends the SQL functionality, providing variables and cursors,
conditional operators, loops, error handling, and other features commonly
seen in procedural languages.

PL/pgSQL is based on the Oracle PL/SQL language, which, in turn, is
derived from a subset of the Ada language, with its roots going back to Algol
and Pascal. Most of the modern programming languages belong to another
branch of the C-like languages, that’s why PL/pgSQL can at first seem
unconventional and excessively verbose (its distinctive feature is using
BEGIN and END keywords instead of curly brackets). However, this syntax
goes perfectly with the SQL syntax.

https://postgrespro.com/docs/postgresql/17/plpgsql-overview

https://postgrespro.com/docs/postgresql/17/plpgsql-overview

4

Block structure

Block label

Declaration of variables
the lifetime of a variable is limited to a block
the visibility scope can be overridden by a nested block, but a variable can
still be referenced by a block label
any SQL types and references to object types (%TYPE) are allowed

Operators
control structures
SQL operators, except for the service ones
nested blocks

Exception handling

PL/pgSQL operators are organized into blocks. A block structure comprises
several components:
● An optional label that can be used to eliminate naming ambiguities.
● An optional section for declaration of local variables and cursors. Any

types defined in SQL are allowed. You can also use the %TYPE construct
to refer to the type of a table column or other object.

● The main execution section that contains operators.
● An optional section for handling exceptions.

You can use both PL/pgSQL commands and most of SQL commands as
operators, so the two languages are integrated almost seamlessly.
Exceptions are SQL service commands, such as VACUUM, which are not
allowed, and transaction control commands, such as COMMIT and
ROLLBACK, which are allowed only in procedures.

Another (nested) PL/pgSQL block can also be used as an operator.

https://postgrespro.com/docs/postgresql/17/plpgsql-structure

https://postgrespro.com/docs/postgresql/17/plpgsql-declarations#PLPGSQL
-DECLARATION-TYPE

https://postgrespro.com/docs/postgresql/17/plpgsql-structure
https://postgrespro.com/docs/postgresql/17/plpgsql-declarations#PLPGSQL-DECLARATION-TYPE
https://postgrespro.com/docs/postgresql/17/plpgsql-declarations#PLPGSQL-DECLARATION-TYPE

5

Anonymous blocks

Ad-hoc execution of procedures
without creating a stored routine
with no parameters
with no return values

The DO operator in the SQL language

You can use PL/pgSQL without creating routines. The PL/pgSQL code can
be written as an anonymous block and executed using the SQL’s DO
command.

This command can be used with various server languages, but if you do not
specify the language explicitly, it will be assumed that PL/pgSQL is used.

The code of anonymous blocks is not saved on the server. Anonymous
blocks do not take arguments or return any values (but there are ways to
circumvent that: for example, by using tables).

https://postgrespro.com/docs/postgresql/16/sql-do

Anonymous	blocks

A	general	structure	of	a	PL/pgSQL	block:

<<label>>
DECLARE
				--	declaration	of	variables
BEGIN
				--	operators
EXCEPTION
				--	error	handling
END	label;

All	sections	except	for	the	operators’	section	are	optional.

The	smallest	block	of	PL/pgSQL	code:

=>	DO	$$
BEGIN
				--	there	can	be	no	operators
END
$$;

DO

One	of	the	implementations	of	“Hello,	World!”:

=>	DO	$$
DECLARE
				--	This	is	a	one-line	comment.
				/*	This	is	a	multi-line	comment.
							Each	declaration	is	ended	by	a	semicolon	';'.
							A	semicolon	is	also	placed	after	each	operator.
				*/
				foo	text;
				bar	text	:=	'World';	--	you	can	also	use		=	or	DEFAULT
BEGIN
				foo	:=	'Hello';	--	this	is	an	assignment	operation
				RAISE	NOTICE	'%,	%!',	foo,	bar;	--	message	output
END
$$;

NOTICE:		Hello,	World!
DO

There	must	be	no	semicolon	after	BEGIN!

Variables	can	have	modifiers:

CONSTANT	—	once	a	variable	is	initialized,	its	value	must	not	change;
NOT	NULL	—	undefined	values	are	not	allowed.

=>	DO	$$
DECLARE
				foo	integer	NOT	NULL	:=	0;
				bar	CONSTANT	text	:=	42;
BEGIN
				bar	:=	bar	+	1;	--	error
END
$$;

ERROR:		variable	"bar"	is	declared	CONSTANT
LINE	6:					bar	:=	bar	+	1;	--	error
												^

Here	is	an	example	of	nested	blocks.	A	variable	in	the	inner	block	overrides	the	one	declared	in	the	outer	block,	but	you	can	refer	to
any	of	them	using	labels:

=>	DO	$$
<<outer_block>>
DECLARE
				foo	text	:=	'Hello';
BEGIN
				<<inner_block>>
				DECLARE
								foo	text	:=	'World';
				BEGIN
								RAISE	NOTICE	'%,	%!',	outer_block.foo,	inner_block.foo;
								RAISE	NOTICE	'An	inner	variable,	without	a	label:	%',	foo;
				END	inner_block;
END	outer_block
$$;

NOTICE:		Hello,	World!
NOTICE:		An	inner	variable,	without	a	label:	World
DO

7

PL/pgSQL routines

A routine header is language-agnostic
name, input and output parameters
for functions: the return value and volatility category

Definition: LANGUAGE plpgsql

Returning values
the RETURN operator
assigning values to output parameters (INOUT, OUT)

We have already learned about stored functions and procedures, using the
SQL language as an example. Most of the information related to creation
and management of routines applies to PL/pgSQL routines as well:

● creating, modifying, and deleting routines,
● location in the system catalog (pg_proc),
● parameters,
● return value and volatility categories (for functions),
● overloading and polymorphism,
● etc.

While SQL routines return a value produced by the last SQL operator,
PL/pgSQL routines either have to assign return values to INOUT or OUT
parameters, or use a special RETURN operator (which is available for
functions).

PL/pgSQL	routines

Here	is	an	example	of	a	function	that	returns	a	value	using	the	RETURN	operator:

=>	CREATE	FUNCTION	sqr_in(IN	a	numeric)	RETURNS	numeric
AS	$$
BEGIN
				RETURN	a	*	a;
END
$$	LANGUAGE	plpgsql	IMMUTABLE;

CREATE	FUNCTION

Now	let’s	take	a	look	at	the	same	function	with	the	OUT	parameter.	The	return	value	is	assigned	to	this	parameter:

=>	CREATE	FUNCTION	sqr_out(IN	a	numeric,	OUT	retval	numeric)
AS	$$
BEGIN
				retval	:=	a	*	a;
END
$$	LANGUAGE	plpgsql	IMMUTABLE;

CREATE	FUNCTION

Here	is	the	same	function	with	the	INOUT	parameter.	This	parameter	is	used	for	both	providing	input	values	and	returning	the
function	value:

=>	CREATE	FUNCTION	sqr_inout(INOUT	a	numeric)
AS	$$
BEGIN
				a	:=	a	*	a;
END
$$	LANGUAGE	plpgsql	IMMUTABLE;

CREATE	FUNCTION

=>	SELECT	sqr_in(3),	sqr_out(3),	sqr_inout(3);

	sqr_in	|	sqr_out	|	sqr_inout	
--------+---------+-----------
						9	|							9	|									9
(1	row)

9

Conditional operators

IF
a regular conditional operator

CASE
similar to CASE in the SQL language, but does not return a value

Note: three-valued logic!
the condition must be true; false and NULL are ignored

PL/pgSQL provides two conditional operators: IF and CASE.

The first one is the bread and butter operator available in all languages.

The CASE operator is similar to the SQL one, but does not return a value.
It is not unlike the switch operator in C or Java.

Remember that boolean expressions in SQL (and, consequently, in
PL/pgSQL) can take three values: true, false, and NULL. A condition is
triggered only when it is true, and is not triggered when it is false or
undefined. This is equally applicable to both WHERE conditions in SQL and
conditional operators in PL/pgSQL.

https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLP
GSQL-CONDITIONALS

https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLPGSQL-CONDITIONALS
https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLPGSQL-CONDITIONALS

Conditional	operators

A	generic	form	of	the	IF	operator:

IF	condition	THEN
				--	operators
ELSIF	condition	THEN
				--	operators
ELSE
				--	operators
END	IF;

The	ELSIF	section	can	be	used	several	times,	or	there	can	be	no	such	section	at	all.
There	can	be	no	ELSE	section.
The	operators	corresponding	to	the	first	true	condition	will	be	executed.
If	none	of	the	conditions	is	true,	the	operators	of	the	ELSE	section	are	executed	(if	available).

Consider	an	example	of	a	function	that	uses	a	conditional	operator	for	decoding	an	ISBN-10	number.	The	function	returns	three
values:

=>	CREATE	FUNCTION	decode_isbn(
				IN	isbn	text,
				OUT	country	text,
				OUT	publisher_and_book	text,
				OUT	check_digit	integer
)	AS	$$
DECLARE
				country_len	integer;
BEGIN
				IF	left(isbn,1)::integer	IN	(0,1,2,3,4,5,7)	THEN
								country_len	:=	1;
				ELSIF	left(isbn,2)::integer	BETWEEN	80	AND	94	THEN
								country_len	:=	2;
				ELSIF	left(isbn,3)::integer	BETWEEN	600	AND	649	THEN
								country_len	:=	3;
				ELSIF	left(isbn,3)::integer	BETWEEN	950	AND	993	THEN
								country_len	:=	3;
				ELSIF	left(isbn,4)::integer	BETWEEN	9940	AND	9989	THEN
								country_len	:=	4;
				ELSE
								country_len	:=	5;
				END	IF;
				country	:=	left(isbn,	country_len);
				publisher_and_book	:=	substr(isbn,	country_len+1,	12);
				check_digit	:=	right(isbn,	1);
END
$$	LANGUAGE	plpgsql	IMMUTABLE;

CREATE	FUNCTION

=>	SELECT	*	FROM	decode_isbn('1484268849');

	country	|	publisher_and_book	|	check_digit	
---------+--------------------+-------------
	1							|	484268849										|											9
(1	row)

=>	SELECT	*	FROM	decode_isbn('8845210669');

	country	|	publisher_and_book	|	check_digit	
---------+--------------------+-------------
	88						|	45210669											|											9
(1	row)

A	generic	form	of	the	CASE	operator	(by	condition):

CASE
				WHEN	condition	THEN
								--	operators
				ELSE
								--	operators
END	CASE;

There	can	be	several	WHEN	sections.
There	can	be	no	ELSE	section.
The	operators	corresponding	to	the	first	true	condition	will	be	executed.
If	none	of	the	conditions	is	true,	ELSE	operators	are	executed	(it	is	an	error	to	have	no	ELSE	in	this	case).

Usage	example:

=>	DO	$$
DECLARE
				country	text	:=	(decode_isbn('1484268849')).country;
BEGIN
				CASE
								WHEN	country	IN	('0','1')	THEN
												RAISE	NOTICE	'%	—	English-speaking	area',	country;
								WHEN	country	=	'7'	THEN
												RAISE	NOTICE	'%	—	Russia',	country;
								WHEN	country	=	'88'	THEN
												RAISE	NOTICE	'%	—	Italy',	country;
								ELSE
												RAISE	NOTICE	'%	—	Other',	country;
				END	CASE;
END
$$;

NOTICE:		1	—	English-speaking	area
DO

A	generic	form	of	the	CASE	operator	(by	expression):

CASE	expression
				WHEN	value,	...	THEN
								--	operators
				ELSE
								--	operators
END	CASE;

There	can	be	several	WHEN	sections.
There	can	be	no	ELSE	section.
The	operators	corresponding	to	the	first	true	condition	“expression	=	value”	will	be	executed.
If	none	of	the	conditions	is	true,	ELSE	operators	are	executed	(it	is	an	error	to	have	no	ELSE	in	this	case).

If	conditions	are	similar,	this	form	of	the	CASE	operator	can	turn	out	to	be	shorter:

=>	DO	$$
DECLARE
				country	text	:=	(decode_isbn('8845210669')).country;
BEGIN
				CASE	country
								WHEN	'0',	'1'	THEN
												RAISE	NOTICE	'%	—	English-speaking	area',	country;
								WHEN	'7'	THEN
												RAISE	NOTICE	'%	—	Russia',	country;
								WHEN	'88'	THEN
												RAISE	NOTICE	'%	—	Italy',	country;
								ELSE
												RAISE	NOTICE	'%	—	Other',	country;
				END	CASE;
END
$$;

NOTICE:		88	—	Italy
DO

11

Loops

A FOR loop over a range of integers

A WHILE loop with a precondition

An infinite loop

A loop can have its own label, just like any block

Loop controls
exit a loop (EXIT)
initiate a new iteration (CONTINUE)

For repeated execution of a set of operators, PL/pgSQL offers several types
of loops:
● a FOR loop over a range of integers,
● a WHILE loop with a precondition,
● an infinite loop.

A loop is a type of a block; it can have its own label. You can additionally
control loop execution by initiating a new iteration or exiting the loop.

https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLP
GSQL-CONTROL-STRUCTURES-LOOPS

In addition to working with integer ranges, FOR loops can iterate through
query results and arrays. Such FOR loops will be discussed later on.

https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLPGSQL-CONTROL-STRUCTURES-LOOPS
https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLPGSQL-CONTROL-STRUCTURES-LOOPS

Loops

In	PL/pgSQL,	all	loops	have	the	same	structure:

LOOP
				--	operators
END	LOOP;

It	can	be	extended	by	a	header	that	defines	the	exit	condition	for	the	loop.

A	FOR	loop	over	a	range	is	executed	while	the	loop	counter	goes	over	the	values	from	bottom	to	top.	Each	iteration	increases	the
counter	by	1	(but	the	increment	can	be	changed	in	the	optional	BY	clause).

FOR	name	IN	bottom	..	top	BY	increment
LOOP
				--	operators
END	LOOP;

The	variable	used	as	a	counter	is	declared	implicitly	and	exists	only	within	the	LOOP	—	END	LOOP	block.

If	REVERSE	is	specified,	the	counter	value	is	reduced	with	each	iteration,	and	the	top	and	bottom	of	the	loop	have	to	be	swapped:

FOR	name	IN	REVERSE	top	..	bottom	BY	increment
LOOP
				--	operators
END	LOOP;

An	example	of	using	a	FOR	loop	is	a	function	that	reverses	a	string:

=>	CREATE	FUNCTION	reverse_for	(line	text)	RETURNS	text
AS	$$
DECLARE
				line_length	CONSTANT	int	:=	length(line);
				retval	text	:=	'';
BEGIN
				FOR	i	IN	1	..	line_length
				LOOP
								retval	:=	substr(line,	i,	1)	||	retval;
				END	LOOP;
				RETURN	retval;
END
$$	LANGUAGE	plpgsql	IMMUTABLE	STRICT;

CREATE	FUNCTION

As	you	might	remember,	a	STRICT	function	returns	NULL	right	away	if	at	least	one	of	the	input	parameters	is	undefined.	The
function	body	is	not	executed	in	this	case.

A	WHILE	loop	is	executed	while	the	condition	is	true:

WHILE	condition
LOOP
				--	operators
END	LOOP;

Here	is	the	same	function	that	reverses	a	string	using	a	WHILE	loop:

=>	CREATE	FUNCTION	reverse_while	(line	text)	RETURNS	text
AS	$$
DECLARE
				line_length	CONSTANT	int	:=	length(line);
				i	int	:=	1;
				retval	text	:=	'';
BEGIN
				WHILE	i	<=	line_length
				LOOP
								retval	:=	substr(line,	i,	1)	||	retval;
								i	:=	i	+	1;
				END	LOOP;
				RETURN	retval;
END
$$	LANGUAGE	plpgsql	IMMUTABLE	STRICT;

CREATE	FUNCTION

A	LOOP	without	a	header	runs	infinitely.	To	terminate	it,	use	the	EXIT	operator.

EXIT	label	WHEN	condition;

The	label	is	optional;	if	it	is	not	specified,	the	innermost	loop	will	be	terminated.
The	WHEN	condition	is	also	optional;	if	it	is	not	specified,	the	loop	is	exited	unconditionally.

LOOP	usage	example:

=>	CREATE	FUNCTION	reverse_loop	(line	text)	RETURNS	text
AS	$$
DECLARE
				line_length	CONSTANT	int	:=	length(reverse_loop.line);
				i	int	:=	1;
				retval	text	:=	'';
BEGIN
				<<main_loop>>
				LOOP
								EXIT	main_loop	WHEN	i	>	line_length;
								retval	:=	substr(reverse_loop.line,	i,1)	||	retval;
								i	:=	i	+	1;
				END	LOOP;
				RETURN	retval;
END
$$	LANGUAGE	plpgsql	IMMUTABLE	STRICT;

CREATE	FUNCTION

The	function	body	is	placed	into	an	implicit	block,	with	the	function	name	used	as	the	block	label.	So	you	can	access
parameters	using	the	“function_name.parameter”	notation.

Let's	make	sure	that	all	functions	work	correctly:

=>	SELECT	reverse_for('AMBULANCE')	as	"for",
										reverse_while('AMBULANCE')	as	"while",
										reverse_loop('AMBULANCE')	as	"loop";

				for				|			while			|			loop				
-----------+-----------+-----------
	ECNALUBMA	|	ECNALUBMA	|	ECNALUBMA
(1	row)

Note:	PostgreSQL	has	a	built-in	reverse	function.

It	is	sometimes	useful	to	apply	the	CONTINUE	operator,	which	starts	a	new	iteration	of	the	loop:

=>	DO	$$
DECLARE
				s	integer	:=	0;
BEGIN
				FOR	i	IN	1	..	100
				LOOP
								s	:=	s	+	i;
								CONTINUE	WHEN	mod(i,	10)	!=	0;
								RAISE	NOTICE	'i	=	%,	s	=	%',	i,	s;
				END	LOOP;
END
$$;

NOTICE:		i	=	10,	s	=	55
NOTICE:		i	=	20,	s	=	210
NOTICE:		i	=	30,	s	=	465
NOTICE:		i	=	40,	s	=	820
NOTICE:		i	=	50,	s	=	1275
NOTICE:		i	=	60,	s	=	1830
NOTICE:		i	=	70,	s	=	2485
NOTICE:		i	=	80,	s	=	3240
NOTICE:		i	=	90,	s	=	4095
NOTICE:		i	=	100,	s	=	5050
DO

13

Expression computing

Any expression is computed in the context of SQL
an expression is automatically converted into a query
the query is prepared
PL/pgSQL variables are substituted as parameters

Features
you can use all SQL capabilities, including subqueries
the execution speed is lower although the parsed query (and sometimes the
query plan) is cached
naming ambiguities are an issue

All expressions in PL/pgSQL code are computed as SQL database queries.
The interpreter builds the query by preparing a SELECT <expr> statement
and puts parameters in place of PL/pgSQL variables. A prepared statement
is parsed once, and its parse tree is cached. When the statement is
executed, specific values are bound to the parameters, and planning is
redone (if PostgreSQL has the query plan cached, this step may be
skipped).

While executing SQL queries impacts PL/pgSQL performance, it ensures
close integration with SQL. In fact, expressions can leverage any SQL
functionality without limitations, including calling built-in or custom functions,
running subqueries, etc.

Starting with PostgreSQL 14, the execution of simple expressions (at least
those that do not query any tables) has been optimized: such expressions
are processed by the server's parser directly, without using the planner at
all.

https://postgrespro.com/docs/postgresql/17/plpgsql-expressions

https://postgrespro.com/docs/postgresql/17/plpgsql-expressions

Computing	expressions

Any	PL/pgSQL	expression	is	computed	using	the	SQL	engine.	Thus,	PL/pgSQL	provides	exactly	the	same	features	as	SQL.	For
example,	since	SQL	allows	using	CASE,	the	same	construct	will	also	work	in	PL/pgSQL	code	(as	an	expression;	it	should	not	be
confused	with	the	CASE	...	END	CASE	operator,	which	is	available	only	in	PL/pgSQL):

=>	DO	$$
BEGIN
				RAISE	NOTICE	'%',	CASE	2+2	WHEN	4	THEN	'Everything	is	OK'	END;
END
$$;

NOTICE:		Everything	is	OK
DO

You	can	also	use	subqueries	in	expressions:

=>	DO	$$
BEGIN
				RAISE	NOTICE	'%',	(
								SELECT	code
								FROM	(VALUES	(1,	'One'),	(2,	'Two'))	t(id,	code)
								WHERE	id	=	1
);
END
$$;

NOTICE:		One
DO

Another	PL/pgSQL	expression	computation	example:	how	many	string	reverse	functions	did	we	have	in	total?

=>	DO	$$
DECLARE
		s	integer;
BEGIN
		s	:=	count(*)	FROM	pg_proc	WHERE	proname	LIKE	'reverse%';
		RAISE	NOTICE	'Total	"reverse"	functions	:	%',	s;
END
$$;

NOTICE:		Total	"reverse"	functions	:	4
DO

15

Takeaways

PL/pgSQL is an easy-to-use language that comes with the
system by default, integrated with SQL

Managing routines in PL/pgSQL is similar to other languages

DO is an SQL command for executing anonymous blocks

PL/pgSQL variables can use any SQL types

PL/pgSQL supports regular control structures, such as
conditional operators and loops

16

Practice

1. Modify the book_name function, so that the length of the return
value does not exceed 47 characters.
If the book title gets truncated, it must be concluded with an
ellipsis.

Check your implementation in SQL and in the application. Add
more books with long titles if required.

2. Modify the book_name function again, so that an excessively
long title gets cut off at the end of a full word.

Check the implementation.

1. For example:
Travels into Several Remote Nations of the World. In Four Parts.
By Lemuel Gulliver, First a Surgeon, and then a Captain of Several
Ships →

→ Travels into Several Remote Nations of the W...

Here are some cases that are worth checking for:
● The title length is less than 47 characters (should not change).
● The title length is exactly 47 characters (should not change).
● The title length is 48 characters (four characters have to be truncated

because three dots will be added).

It is recommended to implement and debug a separate function for
truncation, and then use it in book_name. It is useful for other reasons as
well:

● It may come in handy somewhere else.
● Each function will perform exactly one task.

2. For example:
Travels into Several Remote Nations of the World. In Four Parts.
By Lemuel Gulliver, First a Surgeon, and then a Captain of Several
Ships →

→ Travels into Several Remote Nations of the...

Will your implementation work properly if the title consists of a single long
word without spaces?

Task	1.	Truncating	book	titles

Let’s	create	a	more	general	function	that	accepts	the	following	parameters:	the	string	to	truncate,	the	maximum	length,	and	the
suffix	to	be	used	in	case	of	truncation.	It	won’t	complicate	the	code	and	will	allow	us	to	do	without	magic	numbers.

=>	CREATE	FUNCTION	shorten(
				s	text,
				max_len	integer	DEFAULT	47,
				suffix	text	DEFAULT	'...'
)
RETURNS	text	AS	$$
DECLARE
				suffix_len	integer	:=	length(suffix);
BEGIN
				RETURN	CASE	WHEN	length(s)	>	max_len
								THEN	left(s,	max_len	-	suffix_len)	||	suffix
								ELSE	s
				END;
END
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	check	the	result:

=>	SELECT	shorten(
				'Travels	into	Several	Remote	Nations	of	the	World.	In	Four	Parts.	'
'By	Lemuel	Gulliver,	First	a	Surgeon,	and	then	a	Captain	of	Several	Ships'
);

																					shorten																					

	Travels	into	Several	Remote	Nations	of	the	W...
(1	row)

=>	SELECT	shorten(
				'Travels	into	Several	Remote	Nations	of	the	World.	In	Four	Parts.	'
'By	Lemuel	Gulliver,	First	a	Surgeon,	and	then	a	Captain	of	Several	Ships',
				34
);

														shorten															

	Travels	into	Several	Remote	Nat...
(1	row)

Let’s	use	the	created	function:

=>	CREATE	OR	REPLACE	FUNCTION	book_name(book_id	integer,	title	text)
RETURNS	text
STABLE	LANGUAGE	sql
BEGIN	ATOMIC
SELECT	shorten(book_name.title)	||	
							CASE	WHEN	(right(shorten(book_name.title),	3)	!=	'...')
											THEN	'.	'::text
											ELSE	'	'
							END	||
							string_agg(
											author_name(a.last_name,	a.first_name,	a.middle_name),	',	'
											ORDER	BY	ash.seq_num
)
FROM			authors	a
							JOIN	authorship	ash	ON	a.author_id	=	ash.author_id
WHERE		ash.book_id	=	book_name.book_id;
END;

CREATE	FUNCTION

Task	2.	Truncating	book	titles	by	full	words

=>	CREATE	OR	REPLACE	FUNCTION	shorten(
				s	text,
				max_len	integer	DEFAULT	47,
				suffix	text	DEFAULT	'...'

)
RETURNS	text
AS	$$
DECLARE
				suffix_len	integer	:=	length(suffix);
				short	text	:=	suffix;
BEGIN
				IF	length(s)	<	max_len	THEN
								RETURN	s;
				END	IF;
				FOR	pos	in	1	..	least(max_len-suffix_len+1,	length(s))
				LOOP
								IF	substr(s,pos-1,1)	!=	'	'	AND	substr(s,pos,1)	=	'	'	THEN
												short	:=	left(s,	pos-1)	||	suffix;
								END	IF;
				END	LOOP;
				RETURN	short;
END
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	check	the	result:

=>	SELECT	shorten(
				'Travels	into	Several	Remote	Nations	of	the	World.	In	Four	Parts.	'
'By	Lemuel	Gulliver,	First	a	Surgeon,	and	then	a	Captain	of	Several	Ships'
);

																				shorten																				

	Travels	into	Several	Remote	Nations	of	the...
(1	row)

=>	SELECT	shorten(
				'Travels	into	Several	Remote	Nations	of	the	World.	In	Four	Parts.	'
'By	Lemuel	Gulliver,	First	a	Surgeon,	and	then	a	Captain	of	Several	Ships',
				34
);

												shorten													

	Travels	into	Several	Remote...
(1	row)

