

PL/pgSQL

Triggers

17

Copyright
© Postgres Professional, 2017–2025
Authors Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Igor Gnatyuk
Translated by Liudmila Mantrova and Alexander Meleshko
Photo by Oleg Bartunov (Tukuche peak, Nepal)

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.com

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

Triggers and trigger functions

Trigger behavior

Execution context of a trigger function

Return values

Do’s and Don’ts

3

Triggers and functions

Trigger
a database object: a list of events to process
once an event occurs, the trigger function is called, and the call context is
passed to this function

Trigger function
a database object: event-processing code
executed in the same transaction as the main operation
convention: the function does not take any parameters,
returns a value of the trigger pseudotype (which is virtually record)
can be reused with multiple triggers

Triggers are used to set off particular actions in response to particular
events. A trigger consists of two parts: the trigger itself (which defines the
events) and a trigger function (which defines the actions). Both the trigger
and the function are independent database objects.

When an event occurs which the trigger is waiting for, the trigger function is
called. It receives the context of the call, which defines the exact trigger that
has called the function and the exact conditions that have led to this call.

A trigger function is a regular function that follows some conventions:
● It can be written in any language except pure SQL.
● It must have no parameters.
● Its return value is of the trigger type (which is actually a pseudotype; a

record corresponding to a table row is returned instead).

The trigger function is executed in the same transaction as the main
operation. Thus, if a trigger function results in an error, the whole transaction
is aborted.

https://postgrespro.com/docs/postgresql/17/trigger-definition

https://postgrespro.com/docs/postgresql/17/trigger-definition

4

Events

INSERT, UPDATE, DELETE

tables before/after statement
before/after row

views before/after statement
instead of row

TRUNCATE

tables before/after statement

WHEN condition
sets an additional filter

Triggers can fire for INSERT, UPDATE, or DELETE operations performed
on tables or views, as well as for the TRUNCATE operation on tables.

A trigger can fire before the specified action (BEFORE), after the action
(AFTER), or instead of the action (INSTEAD OF).

A trigger can fire once for the whole operation (FOR EACH STATEMENT)
or for each affected row (FOR EACH ROW).

There are some combinations of these conditions that are not supported.
For example, INSTEAD OF triggers can be defined only for views at the row
level, while TRUNCATE triggers can be defined only for tables and only at
the statement level. Possible combinations are listed on this slide.

Besides, you can limit the area controlled by the trigger by specifying the
WHEN condition: if this condition is false, the trigger does not fire.

https://postgrespro.com/docs/postgresql/17/sql-createtrigger

https://postgrespro.com/docs/postgresql/17/sql-createtrigger

5

Before statement

Triggers
before the operation

Return values
is ignored

Context
TG variables

BEFORE STATEMENT

op
e

ra
tio

n
ex

e
cu

tio
n

Let’s take a closer look at different trigger types.

The BEFORE STATEMENT trigger fires only once per operation, regardless
of the number of affected rows (even if there are none). It happens before
the start of the operation.

The return value of the trigger function is ignored. If there is an error in the
trigger, the operation is canceled. Since the trigger function has no
parameters, the call context in PL/pgSQL is passed via predefined TG
variables, such as:
● TG_WHEN = BEFORE
● TG_LEVEL = STATEMENT
● TG_OP = INSERT/UPDATE/DELETE/TRUNCATE

etc. You can also pass a user-defined context (which is analogous to the
absent parameters) via the TG_ARGV variable, although it is usually
advisable to create several specialized functions instead of a single generic
one.

https://postgrespro.com/docs/postgresql/17/plpgsql-trigger

https://postgrespro.com/docs/postgresql/17/plpgsql-trigger

6

Before row

Triggers
before the action on the row is taken
during the statement execution

Return values
a row (possibly modified)
null cancels the action

Context
OLD update, delete
NEW insert, update

TG variables

BEFORE STATEMENT

op
e

ra
tio

n
ex

e
cu

tio
n

BEFORE ROW

BEFORE ROW triggers fire each time an operation is about to process a
row. It happens right during the operation execution.

Trigger functions get the context via variables, such as:
● OLD — an old state of the row (undefined for insertion)
● NEW — an updated state of the row (undefined for deletion)
● TG_WHEN = BEFORE
● TG_LEVEL = ROW
● TG_OP = INSERT/UPDATE/DELETE

etc.

The NULL return value is interpreted as cancellation of the action for the
current row. The execution of the operation itself will continue, but the
current row won’t be processed, and other triggers won’t fire for this row.

To avoid interfering with the operation, the trigger must return the received
row without any modifications, so it must always return NEW for insert and
update operations. For delete operations, it can return any value except
NULL (usually OLD is used).

But the trigger function can also change the NEW value to affect the result
of the operation; this trigger is often defined exactly for this purpose.

7

Instead of row

Triggers
instead of the action on the row
for views

Return values
a row (possibly modified)
is shown in RETURNING
null cancels the action

Context
OLD update, delete
NEW insert, update

TG variables

BEFORE STATEMENT

op
e

ra
tio

n
ex

e
cu

tio
n

BEFORE ROW
INSTEAD OF ROW

INSTEAD OF triggers are very similar to BEFORE triggers, but they can
be defined only for views and fire instead of the specified operation, not
before it.

Such triggers usually perform operations on the base tables for views. The
trigger can also return a modified NEW value: this value will be available
when performing an operation with the RETURNING clause.

8

After row

Triggers
after operation execution
queue of rows satisfying the WHEN condition

Return values
are ignored

Context
OLD, OLD TABLE update, delete
NEW, NEW TABLE insert, update

TG variables

BEFORE STATEMENT

AFTER ROW

op
e

ra
tio

n
ex

e
cu

tio
n

BEFORE ROW
INSTEAD OF ROW

Just as BEFORE ROW, AFTER ROW triggers fire for each affected row; but
it happens only after the whole operation is complete, not immediately after
processing the row, to avoid any inconsistencies due to the order the rows
were processed in. For this purpose, all events are placed in a queue and
processed after the operation has finished. The fewer events get queued,
the smaller overhead will be incurred; that’s why it is recommended to use
the WHEN clause in this case, which can filter out the rows that we
definitely won't need.

The return value of the AFTER ROW triggers is ignored (because the
operation is already complete).

The context of the trigger function is constituted by the following variables:
● OLD — an old state of the row (undefined for insertion)
● NEW — an updated value of the row (undefined for deletion)

Apart from these variables, the trigger function can access special transition
tables. The table specified as OLD TABLE when creating the trigger
contains the old values of the rows processed by the trigger, and the NEW
TABLE contains the new values of the same rows.

Regular TG variables are also available, including the following ones:
● TG_WHEN = AFTER
● TG_LEVEL = ROW
● TG_OP = INSERT/UPDATE/DELETE

9

After statement

Triggers
after the operation
(even if none of the rows are affected)

Return values
are ignored

Context
OLD TABLE update, delete
NEW TABLE insert, update

TG variables

BEFORE STATEMENT

AFTER STATEMENT

AFTER ROW

op
e

ra
tio

n
ex

e
cu

tio
n

BEFORE ROW
INSTEAD OF ROW

The AFTER STATEMENT trigger fires after the operation has completed
(including all the AFTER ROW triggers, if any). This trigger fires only once
regardless of the number of the affected rows.

The return value of the trigger function is ignored.

The call context is passed using transition tables. The trigger function can
access these table to analyze all the affected rows. Transition tables are
usually used with AFTER STATEMENT, not with AFTER ROW triggers.

Besides, regular TG variables are defined, such as:
● TG_WHEN = AFTER
● TG_LEVEL = STATEMENT
● TG_OP = INSERT/UPDATE/DELETE/TRUNCATE

etc.

The	triggers’	firing	order

Let’s	create	a	“universal”	trigger	function	that	describes	the	context	in	which	it	is	called.	The	context	is	passed	in	various	TG
variables.

We	are	going	to	define	triggers	for	various	events	and	observe	the	order	in	which	the	triggers	are	fired	during	execution.

=>	CREATE	OR	REPLACE	FUNCTION	describe()	RETURNS	trigger
AS	$$
DECLARE
				rec	record;
				str	text	:=	'';
BEGIN
				IF	TG_LEVEL	=	'ROW'	THEN
								CASE	TG_OP
												WHEN	'DELETE'	THEN	rec	:=	OLD;	str	:=	OLD::text;
												WHEN	'UPDATE'	THEN	rec	:=	NEW;	str	:=	OLD	||	'	->	'	||	NEW;
												WHEN	'INSERT'	THEN	rec	:=	NEW;	str	:=	NEW::text;
								END	CASE;
				END	IF;
				RAISE	NOTICE	'%	%	%	%:	%',
								TG_TABLE_NAME,	TG_WHEN,	TG_OP,	TG_LEVEL,	str;
				RETURN	rec;
END
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

A	table:

=>	CREATE	TABLE	t(
				id	integer	PRIMARY	KEY,
				s	text
);

CREATE	TABLE

Triggers	at	the	statement	level:

=>	CREATE	TRIGGER	t_before_stmt
BEFORE	INSERT	OR	UPDATE	OR	DELETE	--	events
ON	t																														--	table
FOR	EACH	STATEMENT																--	level
EXECUTE	FUNCTION	describe();						--	trigger	function

CREATE	TRIGGER

=>	CREATE	TRIGGER	t_after_stmt
AFTER	INSERT	OR	UPDATE	OR	DELETE	ON	t
FOR	EACH	STATEMENT	EXECUTE	FUNCTION	describe();

CREATE	TRIGGER

Triggers	at	the	row	level:

=>	CREATE	TRIGGER	t_before_row
BEFORE	INSERT	OR	UPDATE	OR	DELETE	ON	t
FOR	EACH	ROW	EXECUTE	FUNCTION	describe();

CREATE	TRIGGER

=>	CREATE	TRIGGER	t_after_row
AFTER	INSERT	OR	UPDATE	OR	DELETE	ON	t
FOR	EACH	ROW	EXECUTE	FUNCTION	describe();

CREATE	TRIGGER

Let’s	perform	an	insert	operation:

=>	INSERT	INTO	t	VALUES	(1,'aaa'),	(2,	'bbb');

NOTICE:		t	BEFORE	INSERT	STATEMENT:	
NOTICE:		t	BEFORE	INSERT	ROW:	(1,aaa)
NOTICE:		t	BEFORE	INSERT	ROW:	(2,bbb)
NOTICE:		t	AFTER	INSERT	ROW:	(1,aaa)
NOTICE:		t	AFTER	INSERT	ROW:	(2,bbb)
NOTICE:		t	AFTER	INSERT	STATEMENT:	
INSERT	0	2

And	now	run	an	update	operation:

=>	UPDATE	t	SET	s	=	'ccc'	WHERE	id	=	1;

NOTICE:		t	BEFORE	UPDATE	STATEMENT:	
NOTICE:		t	BEFORE	UPDATE	ROW:	(1,aaa)	->	(1,ccc)
NOTICE:		t	AFTER	UPDATE	ROW:	(1,aaa)	->	(1,ccc)
NOTICE:		t	AFTER	UPDATE	STATEMENT:	
UPDATE	1

Statement-level	triggers	will	fire	even	if	the	command	has	not	processed	any	rows	at	all:

=>	UPDATE	t	SET	s	=	'ddd'	WHERE	id	=	0;

NOTICE:		t	BEFORE	UPDATE	STATEMENT:	
NOTICE:		t	AFTER	UPDATE	STATEMENT:	
UPDATE	0

Here	is	a	subtle	point:	the	INSERT	statement	with	the	ON	CONFLICT	clause	activates	BEFORE	triggers	both	on	inserts	and	updates:

=>	INSERT	INTO	t	VALUES	(1,'ddd'),	(3,'eee')
ON	CONFLICT(id)	DO	UPDATE	SET	s	=	EXCLUDED.s;

NOTICE:		t	BEFORE	INSERT	STATEMENT:	
NOTICE:		t	BEFORE	UPDATE	STATEMENT:	
NOTICE:		t	BEFORE	INSERT	ROW:	(1,ddd)
NOTICE:		t	BEFORE	UPDATE	ROW:	(1,ccc)	->	(1,ddd)
NOTICE:		t	BEFORE	INSERT	ROW:	(3,eee)
NOTICE:		t	AFTER	UPDATE	ROW:	(1,ccc)	->	(1,ddd)
NOTICE:		t	AFTER	INSERT	ROW:	(3,eee)
NOTICE:		t	AFTER	UPDATE	STATEMENT:	
NOTICE:		t	AFTER	INSERT	STATEMENT:	
INSERT	0	2

And	finally,	let’s	try	out	deletion:

=>	DELETE	FROM	t	WHERE	id	=	2;

NOTICE:		t	BEFORE	DELETE	STATEMENT:	
NOTICE:		t	BEFORE	DELETE	ROW:	(2,bbb)
NOTICE:		t	AFTER	DELETE	ROW:	(2,bbb)
NOTICE:		t	AFTER	DELETE	STATEMENT:	
DELETE	1

There	is	no	dedicated	trigger	for	the	MERGE	operator	(introduced	in	PostgreSQL	15),	use	regular	triggers	for	UPDATE,	INSERT,
DELETE:

=>	MERGE	INTO	t
USING	(VALUES	(1,	'fff'),	(3,	'ggg'),	(4,	'hhh'))	AS	vals(id,	s)
ON	t.id	=	vals.id
WHEN	MATCHED	AND	t.id	=	1	THEN
		UPDATE	SET	s	=	vals.s
WHEN	MATCHED	THEN
		DELETE
WHEN	NOT	MATCHED	THEN
		INSERT	(id,	s)
		VALUES	(vals.id,	vals.s);

NOTICE:		t	BEFORE	INSERT	STATEMENT:	
NOTICE:		t	BEFORE	UPDATE	STATEMENT:	
NOTICE:		t	BEFORE	DELETE	STATEMENT:	
NOTICE:		t	BEFORE	UPDATE	ROW:	(1,ddd)	->	(1,fff)
NOTICE:		t	BEFORE	DELETE	ROW:	(3,eee)
NOTICE:		t	BEFORE	INSERT	ROW:	(4,hhh)
NOTICE:		t	AFTER	UPDATE	ROW:	(1,ddd)	->	(1,fff)
NOTICE:		t	AFTER	DELETE	ROW:	(3,eee)
NOTICE:		t	AFTER	INSERT	ROW:	(4,hhh)
NOTICE:		t	AFTER	DELETE	STATEMENT:	
NOTICE:		t	AFTER	UPDATE	STATEMENT:	
NOTICE:		t	AFTER	INSERT	STATEMENT:	
MERGE	3

Transition	tables

Let’s	create	a	trigger	function	that	shows	the	contents	of	transition	tables.	Here	we	use	old_table	and	new_table	names:	they	will	be
declared	as	part	of	the	trigger	definition.

Transition	tables	look	just	like	regular	ones,	but	they	are	not	included	into	the	system	catalog	and	are	located	in	RAM	(although

they	can	be	flushed	to	disk	if	they	get	too	large).

=>	CREATE	OR	REPLACE	FUNCTION	transition()	RETURNS	trigger
AS	$$
DECLARE
				rec	record;
BEGIN
				IF	TG_OP	=	'DELETE'	OR	TG_OP	=	'UPDATE'	THEN
								RAISE	NOTICE	'Old	state:';
								FOR	rec	IN	SELECT	*	FROM	old_table	LOOP
												RAISE	NOTICE	'%',	rec;
								END	LOOP;
				END	IF;
				IF	TG_OP	=	'UPDATE'	OR	TG_OP	=	'INSERT'	THEN
								RAISE	NOTICE	'New	state:';
								FOR	rec	IN	SELECT	*	FROM	new_table	LOOP
												RAISE	NOTICE	'%',	rec;
								END	LOOP;
				END	IF;
				RETURN	NULL;
END
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	create	a	new	table:

=>	CREATE	TABLE	trans(
				id	integer	PRIMARY	KEY,
				n	integer
);

CREATE	TABLE

=>	INSERT	INTO	trans	VALUES	(1,10),	(2,20),	(3,30);

INSERT	0	3

To	create	transition	tables	for	an	operation,	you	have	to	specify	their	names	in	the	trigger	definition:

=>	CREATE	TRIGGER	t_after_upd_trans
AFTER	UPDATE	ON	trans	--	one	event	per	trigger
REFERENCING
				OLD	TABLE	AS	old_table	--	it’s	OK	to	specify	only	one	table,
				NEW	TABLE	AS	new_table	--	there	is	no	need	to	provide	both
FOR	EACH	STATEMENT
EXECUTE	FUNCTION	transition();

CREATE	TRIGGER

Let’s	check	the	result:

=>	UPDATE	trans	SET	n	=	n	+	1	WHERE	n	<=	20;

NOTICE:		Old	state:
NOTICE:		(1,10)
NOTICE:		(2,20)
NOTICE:		New	state:
NOTICE:		(1,11)
NOTICE:		(2,21)
UPDATE	2

Transition	tables	contain	only	those	rows	that	have	been	affected	by	the	operation.

In	addition	to	updates,	transition	tables	are	also	supported	for	INSERT	and	DELETE	operations,	although	only	one	table	will	be
available	at	a	time:	OLD	TABLE	is	unavailable	for	inserts,	while	NEW	TABLE	is	unavailable	for	deletes.

Since	AFTER	ROW	triggers	fire	after	the	whole	operation	is	completed,	they	can	also	use	transition	tables.	But	there	is	usually	no
point	in	it.

11

Possible use cases

changing the base tables for views

consistency checks,
including table-level checks;
logging operations for audit purposes;
cascading table updates (denormalization,
asynchronous processing...)

operation applicability checks

validation,
row modifications

BEFORE STATEMENT

AFTER STATEMENT

AFTER ROW

op
e

ra
tio

n
ex

e
cu

tio
n

BEFORE ROW

INSTEAD OF ROW

What are triggers actually used for?

BEFORE triggers can be used to check if the operation is valid and to raise
errors if required.

BEFORE ROW triggers can be used to modify a row (for example, fill an
empty field with the required value). It is convenient to use such triggers to
avoid repeating the logic of filling out “technical” fields in each operation, as
well as tweak the application behavior if its code cannot be modified.

INSTEAD OF ROW triggers are used to translate operations on views into
the corresponding operations on the underlying base tables.

AFTER ROW and AFTER STATEMENT triggers can be useful for getting
the exact state after the operation (BEFORE triggers may affect the result,
so the state is not yet clear at this stage):
● To check consistency of the operation.
● To perform audit operations, i.e., logging all changes in a separate

storage.
● To cascade changes to other tables (for example, to update

denormalized data if the base tables have changed, or queue changes
for subsequent processing outside of the current transaction).

If the operation affects multiple rows, it may be more efficient to use AFTER
STATEMENT on transition tables instead of AFTER ROW as it can process
changes in batches.

12

Challenges

The code is called implicitly
the execution logic is hard to track

Visibility rules for volatile trigger functions
the result of BEFORE ROW and INSTEAD OF ROW triggers is visible

The order of calling triggers for one and the same event
triggers fire in the alphabetical order

Infinite looping can occur
a trigger can activate other triggers

Integrity constraints can be broken
for example, by excluding rows that have to be deleted

Triggers should not be overused. As they fire implicitly, the logic of the
application becomes obscure, thus making its maintenance hugely
complicated. Attempts to use triggers for implementing complex logic are
usually quite unfortunate.

In some cases, you can use generated columns instead of triggers
(GENERATED ALWAYS AS ... STORED). If applicable, this solution is sure
to be more transparent and easier to implement.

There is a number of subtle points related to using triggers; we consciously
skip their detailed discussion here:
● visibility rules of volatile functions in BEFORE ROW and INSTEAD OF

ROW triggers (do not rely on the order of triggers when accessing a
table)

● the order of calling several triggers on one and the same event (do not
aggravate implicit firing of triggers by relying on their exact processing
sequence)

● a possibility of infinite looping if cascade firing of triggers leads to another
activation of the first trigger

● a risk of integrity constraint violation (for example, referential integrity can
be compromised when skipping a row deleted by the ON DELETE
CASCADE condition)

If you see that these subtleties are important for your application, you
should seriously consider redesigning it.

Examples	of	using	triggers

Example	1:	saving	the	history	of	row	changes.

Suppose	we	have	a	table	that	contains	the	current	data.	The	task	is	to	save	the	main	table’s	history	of	all	row	changes	into	a
separate	table.

Historical	table	support	could	be	delegated	to	the	application,	but	chances	are	high	that	some	part	of	the	history	won’t	be	saved	if
an	error	occurs.	That’s	why	we	are	going	to	solve	this	problem	using	triggers.

As	an	example,	we	will	create	two	tables:	one	with	actual,	up-to-date	data,	and	the	other	with	historical	data	tracking	all	changes
made	to	the	first	table.

The	main	table	will	store	various	British	coins	and	the	materials	they	are	made	of:

=>	CREATE	TABLE	coins(
				name	text	PRIMARY	KEY,
				material	text
);

CREATE	TABLE

Let's	create	a	clone	of	the	main	table	and	add	"_history"	to	its	name...

=>	CREATE	TABLE	coins_history(LIKE	coins);

CREATE	TABLE

...and	then	add	columns	for	validity	range:

=>	ALTER	TABLE	coins_history
				ADD	start_date	timestamp,
				ADD	end_date	timestamp;

ALTER	TABLE

The	first	trigger	function	will	be	inserting	a	row	into	the	historical	table.	Validity	end	date	is	left	undefined,	meaning	that	the	row	is
the	current	one:

=>	CREATE	OR	REPLACE	FUNCTION	history_insert()	RETURNS	trigger
AS	$$
BEGIN
				EXECUTE	format(
								'INSERT	INTO	%I	SELECT	($1).*,	current_timestamp,	NULL',
								TG_TABLE_NAME||'_history'
)	USING	NEW;

				RETURN	NEW;
END
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

The	second	function	will	be	turning	the	current	row	into	a	historical	one	by	setting	the	end	date	of	its	validity:

=>	CREATE	OR	REPLACE	FUNCTION	history_delete()	RETURNS	trigger
AS	$$
BEGIN
				EXECUTE	format(
								'UPDATE	%I	SET	end_date	=	current_timestamp	WHERE	name	=	$1	AND	end_date	IS	NULL',
								TG_TABLE_NAME||'_history'
)	USING	OLD.name;

				RETURN	OLD;
END
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

Now	let’s	define	triggers.	Some	important	points	to	keep	in	mind:

An	update	is	treated	as	deletion	followed	by	insertion;	the	order	of	triggers	is	important	here	(they	fire	in	the	alphabetical
order).
Current_timestamp	returns	the	time	of	the	transaction	start,	so	if	an	update	is	performed,	the	start_date	of	one	row	will	be
the	same	as	the	end_date	of	another	row.
Using	AFTER	triggers	allows	avoiding	issues	with	INSERT	...	ON	CONFLICT	and	potential	conflicts	with	other	triggers	that	may
be	defined	on	the	main	table.

=>	CREATE	TRIGGER	coins_history_insert
AFTER	INSERT	OR	UPDATE	ON	coins
FOR	EACH	ROW	EXECUTE	FUNCTION	history_insert();

CREATE	TRIGGER

=>	CREATE	TRIGGER	coins_history_delete
AFTER	UPDATE	OR	DELETE	ON	coins
FOR	EACH	ROW	EXECUTE	FUNCTION	history_delete();

CREATE	TRIGGER

Let’s	check	our	trigger	implementation:

=>	INSERT	INTO	coins	VALUES	('penny',	'silver'),	('farthing',	'silver');

INSERT	0	2

=>	UPDATE	coins	SET	material	=	'copper'	WHERE	name	=	'penny';

UPDATE	1

=>	UPDATE	coins	SET	material	=	'bronze'	WHERE	name	=	'penny';

UPDATE	1

=>	DELETE	FROM	coins	WHERE	name	=	'farthing';

DELETE	1

=>	INSERT	INTO	coins	VALUES	('twentypence',	'sterling	silver');

INSERT	0	1

=>	UPDATE	coins	SET	material	=	'steel'	WHERE	name	=	'penny';

UPDATE	1

=>	SELECT	*	FROM	coins;

				name					|				material					
-------------+-----------------
	twentypence	|	sterling	silver
	penny							|	steel
(2	rows)

The	historical	table	stores	the	whole	history	of	changes:

=>	SELECT	*	FROM	coins_history	ORDER	BY	name,	start_date;

				name					|				material					|									start_date									|										end_date										
-------------+-----------------+----------------------------+----------------------------
	farthing				|	silver										|	2025-04-22	12:48:58.215882	|	2025-04-22	12:49:03.403949
	penny							|	silver										|	2025-04-22	12:48:58.215882	|	2025-04-22	12:49:00.312306
	penny							|	copper										|	2025-04-22	12:49:00.312306	|	2025-04-22	12:49:01.354397
	penny							|	bronze										|	2025-04-22	12:49:01.354397	|	2025-04-22	12:49:07.51046
	penny							|	steel											|	2025-04-22	12:49:07.51046		|	
	twentypence	|	sterling	silver	|	2025-04-22	12:49:05.462512	|	
(6	rows)

And	now	we	can	use	it	to	restore	the	state	at	any	point	in	time	(slightly	similar	to	the	MVCC	mechanism).	For	example,	at	the	very
beginning	the	table	looked	as	follows:

=>	\set	d	'2025-04-22	12:48:58.280804+03'

=>	SELECT	name,	material
FROM	coins_history
WHERE	start_date	<=	:'d'	AND	(end_date	IS	NULL	OR	:'d'	<	end_date)
ORDER	BY	name;

			name			|	material	
----------+----------
	farthing	|	silver
	penny				|	silver
(2	rows)

Examples	of	using	triggers

Example	2:	an	updatable	view.

Suppose	we	have	two	tables:	airports	and	flights:

=>	CREATE	TABLE	airports(
				code	char(3)	PRIMARY	KEY,
				name	text	NOT	NULL
);

CREATE	TABLE

=>	INSERT	INTO	airports	VALUES
				('LHR',	'London.	Heathrow'),
				('CDG',	'Paris.	Charles	de	Gaulle'),
				('JFK',	'New	York.	John	F.	Kennedy');

INSERT	0	3

=>	CREATE	TABLE	flights(
				id	integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY,
				airport_from	char(3)	NOT	NULL	REFERENCES	airports(code),
				airport_to			char(3)	NOT	NULL	REFERENCES	airports(code),
				UNIQUE	(airport_from,	airport_to)
);

CREATE	TABLE

=>	INSERT	INTO	flights(airport_from,	airport_to)	VALUES
				('LHR','CDG');

INSERT	0	1

For	convenience,	we	can	define	a	view:

=>	CREATE	VIEW	flights_v	AS
SELECT	id,
							(SELECT	name
								FROM	airports
								WHERE	code	=	airport_from)	airport_from,
							(SELECT	name
								FROM	airports
								WHERE	code	=	airport_to)	airport_to
FROM	flights;

CREATE	VIEW

=>	SELECT	*	FROM	flights_v;

	id	|			airport_from			|								airport_to								
----+------------------+--------------------------
		1	|	London.	Heathrow	|	Paris.	Charles	de	Gaulle
(1	row)

But	such	a	view	does	not	support	updates.	For	example,	you	won’t	be	able	to	change	the	destination	point	using	the	following
command:

=>	UPDATE	flights_v
SET	airport_to	=	'New	York.	John	F.	Kennedy'
WHERE	id	=	1;

ERROR:		cannot	update	column	"airport_to"	of	view	"flights_v"
DETAIL:		View	columns	that	are	not	columns	of	their	base	relation	are	not	updatable.

But	we	can	define	a	trigger.	A	trigger	function	can	look	as	follows	(for	brevity,	we’ll	process	only	the	destination	airport,	but	it’s	not
hard	to	add	the	departure	airport	as	well):

=>	CREATE	OR	REPLACE	FUNCTION	flights_v_update()	RETURNS	trigger
AS	$$
DECLARE
				code_to	char(3);
BEGIN
				BEGIN
								SELECT	code	INTO	STRICT	code_to
								FROM	airports
								WHERE	name	=	NEW.airport_to;
				EXCEPTION
								WHEN	no_data_found	THEN
												RAISE	EXCEPTION	'Airport	"%"	is	missing',	NEW.airport_to;
				END;
				UPDATE	flights
				SET	airport_to	=	code_to
				WHERE	id	=	OLD.id;	--	ignore	the	id	change
				RETURN	NEW;
END
$$	LANGUAGE	plpgsql;

CREATE	FUNCTION

And	the	trigger	itself	will	look	like	this:

=>	CREATE	TRIGGER	flights_v_upd_trigger
INSTEAD	OF	UPDATE	ON	flights_v
FOR	EACH	ROW	EXECUTE	FUNCTION	flights_v_update();

CREATE	TRIGGER

Let’s	check	the	result:

=>	UPDATE	flights_v
SET	airport_to	=	'New	York.	John	F.	Kennedy'
WHERE	id	=	1;

UPDATE	1

=>	SELECT	*	FROM	flights_v;

	id	|			airport_from			|								airport_to									
----+------------------+---------------------------
		1	|	London.	Heathrow	|	New	York.	John	F.	Kennedy
(1	row)

An	attempt	to	update	the	airport	to	the	one	missing	from	the	table:

=>	UPDATE	flights_v
SET	airport_to	=	'Amsterdam.	Schiphol'
WHERE	id	=	1;

ERROR:		Airport	"Amsterdam.	Schiphol"	is	missing
CONTEXT:		PL/pgSQL	function	flights_v_update()	line	11	at	RAISE

14

Takeaways

A trigger is a way to address a particular event

Using triggers, you can cancel an operation, modify its outcome,
or perform additional actions

Triggers are executed as part of the main transaction; an error in
a trigger aborts this transaction

Using AFTER ROW triggers and transition tables makes
processing more expensive

Everything is good in moderation: complex logic is hard to
debug because of implicit trigger execution

15

Practice

1. Create a trigger that handles updates of the onhand_qty field in
the catalog_v view.

Check that the Catalog tab now allows ordering books.

2. Make sure that the following consistency requirement is met:
the amount of available books cannot be negative
(it is impossible to buy a book if it is not in stock).

Check your implementation carefully, keeping in mind that the
application can be accessed by several users simultaneously.

2. It may seem that it’s enough to define the AFTER trigger on the
operations table to calculate the qty_change sum. However, at the READ
COMMITTED isolation level used in the Bookstore application, we will have
to acquire an exclusive lock on this table: otherwise, the check may not
function properly in some scenarios.

Here is a better approach: extend the books table with the onhand_qty
column and create a trigger that will be modifying onhand_qty values when
the operations table is changed (i.e., you should virtually perform data
denormalization). You can now define the CHECK constraint on the
onhand_qty field to ensure data consistency. The onhand_qty() function
created earlier is no longer required.

You should pay special attention to setting the initial value, keeping in mind
that the database system may be serving some users while we apply these
changes.

Task	1.	Using	a	trigger	to	update	the	catalog

=>	CREATE	FUNCTION	update_catalog()	RETURNS	trigger
AS	$$
BEGIN
				INSERT	INTO	operations(book_id,	qty_change)	VALUES
								(OLD.book_id,	NEW.onhand_qty	-	coalesce(OLD.onhand_qty,0));
				RETURN	NEW;
END
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

=>	CREATE	TRIGGER	update_catalog_trigger
INSTEAD	OF	UPDATE	ON	catalog_v
FOR	EACH	ROW
EXECUTE	FUNCTION	update_catalog();

CREATE	TRIGGER

Task	2.	Checking	the	quantity	of	books

Let’s	extend	the	table	with	the	column	that	will	store	the	quantity	of	the	books	available.

=>	ALTER	TABLE	books	ADD	COLUMN	onhand_qty	integer;

ALTER	TABLE

The	trigger	function	for	the	AFTER	trigger,	which	is	fired	on	insertion	to	update	the	quantity	of	available	books	(we	assume	that	the
onhand_qty	field	cannot	be	empty):

=>	CREATE	FUNCTION	update_onhand_qty()	RETURNS	trigger
AS	$$
BEGIN
				UPDATE	books
				SET	onhand_qty	=	onhand_qty	+	NEW.qty_change
				WHERE	book_id	=	NEW.book_id;
				RETURN	NULL;
END
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

The	remaining	operations	are	performed	within	a	single	transaction.

=>	BEGIN;

BEGIN

Locking	the	table	for	the	duration	of	the	transaction:

=>	LOCK	TABLE	operations;

LOCK	TABLE

Providing	the	initial	value:

=>	UPDATE	books	b
SET	onhand_qty	=	(
				SELECT	coalesce(sum(qty_change),0)
				FROM	operations	o
				WHERE	o.book_id	=	b.book_id
);

UPDATE	7

Defining	constraints	now	that	the	field	is	non-empty:

=>	ALTER	TABLE	books	ALTER	COLUMN	onhand_qty	SET	DEFAULT	0;

ALTER	TABLE

=>	ALTER	TABLE	books	ALTER	COLUMN	onhand_qty	SET	NOT	NULL;

ALTER	TABLE

=>	ALTER	TABLE	books	ADD	CHECK(onhand_qty	>=	0);

ALTER	TABLE

Creating	a	trigger:

=>	CREATE	TRIGGER	update_onhand_qty_trigger
AFTER	INSERT	ON	operations
FOR	EACH	ROW
EXECUTE	FUNCTION	update_onhand_qty();

CREATE	TRIGGER

Done.

=>	COMMIT;

COMMIT

Now	the	books.onhand_qty	column	is	being	updated,	but	the	catalog_v	view	still	calls	a	function	to	calculate	the	number	of	books.
Although	the	syntax	used	for	function	access	in	the	initial	query	is	the	same	as	that	for	the	field	access,	the	query	has	been	stored	in
a	different	form:

=>	\d+	catalog_v

																												View	"bookstore.catalog_v"
				Column				|		Type			|	Collation	|	Nullable	|	Default	|	Storage		|	Description	
--------------+---------+-----------+----------+---------+----------+-------------
	book_id						|	integer	|											|										|									|	plain				|	
	title								|	text				|											|										|									|	extended	|	
	onhand_qty			|	integer	|											|										|									|	plain				|	
	display_name	|	text				|											|										|									|	extended	|	
	authors						|	text				|											|										|									|	extended	|	
View	definition:
	SELECT	book_id,
				title,
				onhand_qty(b.*)	AS	onhand_qty,
				book_name(book_id,	title)	AS	display_name,
				authors(b.*)	AS	authors
			FROM	books	b
		ORDER	BY	(book_name(book_id,	title));
Triggers:
				update_catalog_trigger	INSTEAD	OF	UPDATE	ON	catalog_v	FOR	EACH	ROW	EXECUTE	FUNCTION	
update_catalog()

Let’s	replace	the	view:

=>	CREATE	OR	REPLACE	VIEW	catalog_v	AS
SELECT	b.book_id,
							b.title,
							b.onhand_qty,
							book_name(b.book_id,	b.title)	AS	display_name,
							b.authors
FROM			books	b
ORDER	BY	display_name;

CREATE	VIEW

Now	the	function	can	be	deleted.

=>	DROP	FUNCTION	onhand_qty(books);

DROP	FUNCTION

Let’s	run	a	small	check:

=>	SELECT	*	FROM	catalog_v	WHERE	book_id	=	1	\gx

-[RECORD	1]+--
book_id						|	1
title								|	The	Tale	of	Tsar	Saltan
onhand_qty			|	19
display_name	|	The	Tale	of	Tsar	Saltan.	Alexander	S.	Pushkin
authors						|	Alexander	Sergeyevich	Pushkin

=>	INSERT	INTO	operations(book_id,	qty_change)	VALUES	(1,+10);

INSERT	0	1

=>	SELECT	*	FROM	catalog_v	WHERE	book_id	=	1	\gx

-[RECORD	1]+--
book_id						|	1
title								|	The	Tale	of	Tsar	Saltan
onhand_qty			|	29
display_name	|	The	Tale	of	Tsar	Saltan.	Alexander	S.	Pushkin
authors						|	Alexander	Sergeyevich	Pushkin

Incorrect	operations	are	aborted:

=>	INSERT	INTO	operations(book_id,	qty_change)	VALUES	(1,-100);

ERROR:		new	row	for	relation	"books"	violates	check	constraint	"books_onhand_qty_check"
DETAIL:		Failing	row	contains	(1,	The	Tale	of	Tsar	Saltan,	-71).
CONTEXT:		SQL	statement	"UPDATE	books
				SET	onhand_qty	=	onhand_qty	+	NEW.qty_change
				WHERE	book_id	=	NEW.book_id"
PL/pgSQL	function	update_onhand_qty()	line	3	at	SQL	statement

