

PL/pgSQL

Error Handling

17

Copyright
© Postgres Professional, 2017–2025
Authors Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Igor Gnatyuk
Translated by Liudmila Mantrova and Alexander Meleshko
Photo by Oleg Bartunov (Tukuche peak, Nepal)

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.com

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

Error handling in PL/pgSQL blocks

Error names and codes

Choosing an error handler

Error handling overhead

3

Error handling in a block

Error handling is performed if there is an EXCEPTION section

Changes roll back to the savepoint at the beginning of the block
an implicit savepoint is set if the block contains an EXCEPTION section

If there is a handler that matches the error

error handler commands are executed
the block completes successfully

If there is no suitable handler
the block completes with an error

If a run-time error occurs within a block, the program (block, function) is
usually aborted, and the current transaction enters the failure mode: it
cannot be committed and can only be rolled back.

But an error can be caught and processed. It can be done by extending the
block with an additional EXCEPTION section, which lists error conditions
and provides operators to handle each of them.

In general, EXCEPTION is similar to the try-catch construct available in
some programming languages (except for specifics related to transactions,
or course).

A savepoint is implicitly set at the start of every block containing an
EXCEPTION section. Before an error is processed, all changes are rolled
back to the savepoint and all locks are removed.

Because of the savepoint, COMMIT and ROLLBACK commands cannot be
used in procedures with EXCEPTION. But although SAVEPOINT and
ROLLBACK TO SAVEPOINT commands are not supported by PL/pgSQL,
you can still use savepoints and rollbacks to savepoints both in functions
and procedures implicitly.

https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLP
GSQL-ERROR-TRAPPING

https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLPGSQL-ERROR-TRAPPING
https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLPGSQL-ERROR-TRAPPING

Handling	errors	in	a	block

Let’s	take	a	look	at	a	simple	example.

=>	CREATE	TABLE	t(id	integer);

CREATE	TABLE

=>	INSERT	INTO	t(id)	VALUES	(1);

INSERT	0	1

If	there	are	no	errors,	all	operators	in	a	block	are	executed	as	usual:

=>	DO	$$
DECLARE
				n	integer;
BEGIN
				SELECT	id	INTO	STRICT	n	FROM	t;
				RAISE	NOTICE	'The	SELECT	INTO	operator	has	completed,	n	=	%',	n;
END
$$;

NOTICE:		The	SELECT	INTO	operator	has	completed,	n	=	1
DO

Now	let’s	insert	a	“redundant”	row	to	trigger	an	error.

=>	INSERT	INTO	t(id)	VALUES	(2);

INSERT	0	1

If	there	is	no	EXCEPTION	section	in	a	block,	the	operator	execution	is	interrupted,	and	the	whole	block	is	considered	to	be
completed	with	an	error:

=>	DO	$$
DECLARE
				n	integer;
BEGIN
				SELECT	id	INTO	STRICT	n	FROM	t;
				RAISE	NOTICE	'The	SELECT	INTO	operator	has	completed,	n	=	%',	n;
END
$$;

ERROR:		query	returned	more	than	one	row
HINT:		Make	sure	the	query	returns	a	single	row,	or	use	LIMIT	1.
CONTEXT:		PL/pgSQL	function	inline_code_block	line	5	at	SQL	statement

To	catch	an	error,	a	block	must	have	an	EXCEPTION	section,	which	defines	one	or	more	error	handlers.

This	construct	works	similar	to	CASE:	conditions	are	parsed	from	top	to	bottom,	the	first	suitable	code	path	is	selected,	and	its
operators	are	executed.

What	will	be	displayed?

=>	DO	$$
DECLARE
				n	integer;
BEGIN
				n	:=	3;
				INSERT	INTO	t(id)	VALUES	(n);
				SELECT	id	INTO	STRICT	n	FROM	t;
				RAISE	NOTICE	'The	SELECT	INTO	operator	has	completed,	n	=	%',	n;
EXCEPTION
				WHEN	no_data_found	THEN
								RAISE	NOTICE	'No	data';
				WHEN	too_many_rows	THEN
								RAISE	NOTICE	'Too	much	data';
								RAISE	NOTICE	'Rows	in	a	table:	%,	n	=	%',	(SELECT	count(*)	FROM	t),	n;
END
$$;

NOTICE:		Too	much	data
NOTICE:		Rows	in	a	table:	2,	n	=	3
DO

The	executed	handler	corresponds	to	the	too_many_rows	error.	Note:	if	a	handler	is	executed,	the	table	contains	two	rows	because
of	a	rollback	to	an	implicit	savepoint	at	the	beginning	of	the	block.

Also	note	that	the	local	variable	keeps	the	value	that	was	there	when	the	error	occured.

Note	the	following	subtlety:	if	an	error	occurs	in	the	DECLARE	section	or	within	the	EXCEPTION	section	of	the	handler	itself,	it	will
be	impossible	to	catch	it	in	this	block.

=>	DO	$$
DECLARE
				n	integer	:=	1	/	0;	--	an	error	is	not	trapped	here
BEGIN
				RAISE	NOTICE	'Success';
EXCEPTION
				WHEN	division_by_zero	THEN
								RAISE	NOTICE	'Division	by	zero';
END
$$;

ERROR:		division	by	zero
CONTEXT:		SQL	expression	"1	/	0"
PL/pgSQL	function	inline_code_block	line	3	during	statement	block	local	variable	
initialization

5

Error names and codes

Error info
error name
five-character error code
additional info: a short message, a detailed message, a hint, names of objects
related to this error

Two-level hierarchy

XX001 – data_corrupted

XX002 – index_corrupted

XX000 – internal_error

P0001 – raise_exception

P0003 – too_many_rows

P0002 – no_data_found

P0004 – assert_failure

P0000 – plpgsql_error

Each possible error has a name and a code (a five-character string). WHEN
clauses accept both error names and error codes.

All errors are classified into a two-level hierarchy of sorts. Each error class
has a code that ends with three zeros; it corresponds to any error with the
same first two characters in its code.

For example, the code 23000 defines the class that includes all errors
dealing with violations of integrity constraints (such as 23502, which stands
for NOT NULL constraint violation, or 23505, which indicates a UNIQUE
constraint violation).

Thus, apart from regular errors, you can specify the whole error class by its
name or code. Besides, you can use a special name OTHERS to catch any
errors (except for the fatal ones).

Apart from the name and code, each error can provide additional debug
information: a short error message, a detailed message, and a hint.

All errors are described in documentation in Appendix A:

https://postgrespro.com/docs/postgresql/17/errcodes-appendix

Errors can be not only trapped, but also raised programmatically.

https://postgrespro.com/docs/postgresql/17/plpgsql-errors-and-messages

https://postgrespro.com/docs/postgresql/17/errcodes-appendix
https://postgrespro.com/docs/postgresql/17/plpgsql-errors-and-messages

Error	names	and	codes

We	have	already	seen	error	names;	error	codes	are	specified	using	SQLSTATE.

An	error	handler	can	return	an	error	code	and	the	corresponding	message	using	the	predefined	variables	SQLSTATE	and	SQLERRM
(the	variables	are	undefined	outside	of	the	EXCEPTION	block).

=>	DO	$$
DECLARE
				n	integer;
BEGIN
				SELECT	id	INTO	STRICT	n	FROM	t;
EXCEPTION
				WHEN	SQLSTATE	'P0003'	OR	no_data_found	THEN	--	there	can	be	several	conditions
								RAISE	NOTICE	'%:	%',	SQLSTATE,	SQLERRM;
END
$$;

NOTICE:		P0003:	query	returned	more	than	one	row
DO

Which	error	handler	will	be	used?

=>	DO	$$
DECLARE
				n	integer;
BEGIN
				SELECT	id	INTO	STRICT	n	FROM	t;
EXCEPTION
				WHEN	no_data_found	THEN
								RAISE	NOTICE	'No	data.	%:	%',	SQLSTATE,	SQLERRM;
				WHEN	plpgsql_error	THEN
								RAISE	NOTICE	'Another	error.	%:	%',	SQLSTATE,	SQLERRM;
				WHEN	too_many_rows	THEN
								RAISE	NOTICE	'Too	much	data.	%:	%',	SQLSTATE,	SQLERRM;
END
$$;

NOTICE:		Another	error.	P0003:	query	returned	more	than	one	row
DO

The	first	applicable	handler	is	selected,	plpgsql_error	in	this	case	(remember:	this	is	not	a	specific	error,	but	an	error	category).	We
will	never	get	to	the	last	error	handler.

You	can	force	an	error	using	either	its	code	or	its	name.

Here	we	use	a	special	name	“others,”	which	corresponds	to	any	error	that	should	be	trapped	(except	for	assertion	failures	and	cases
when	the	execution	is	aborted	by	user	–	you	can	catch	them	separately,	but	you	almost	never	need	to).

=>	DO	$$
BEGIN
				RAISE	no_data_found;
EXCEPTION
				WHEN	others	THEN
								RAISE	NOTICE	'%:	%',	SQLSTATE,	SQLERRM;
END
$$;

NOTICE:		P0002:	no_data_found
DO

If	required,	it	is	also	possible	to	incorporate	user-provided	error	codes	that	are	not	predefined,	as	well	as	pass	some	additional
information	(the	example	illustrates	only	some	of	the	supported	features):

=>	DO	$$
BEGIN
				RAISE	SQLSTATE	'ERR01'	USING
								message	:=	'Matrix	failure',
								detail		:=	'Irrecoverable	matrix	failure	has	occurred	during	execution',
								hint	:=	'Contact	your	system	administrator';
END
$$;

ERROR:		Matrix	failure
DETAIL:		Irrecoverable	matrix	failure	has	occurred	during	execution
HINT:		Contact	your	system	administrator
CONTEXT:		PL/pgSQL	function	inline_code_block	line	3	at	RAISE

Error	handlers	cannot	get	this	information	from	variables;	there	is	a	special	construct	for	analyzing	such	data	in	the	code:

=>	DO	$$
DECLARE
				message	text;
				detail	text;
				hint	text;
BEGIN
				RAISE	SQLSTATE	'ERR01'	USING
								message	:=	'Matrix	failure',
								detail		:=	'Irrecoverable	matrix	failure	has	occurred	during	execution',
								hint	:=	'Contact	your	system	administrator';
EXCEPTION
				WHEN	others	THEN
								GET	STACKED	DIAGNOSTICS
												message	:=	MESSAGE_TEXT,
												detail	:=	PG_EXCEPTION_DETAIL,
												hint	:=	PG_EXCEPTION_HINT;
								RAISE	NOTICE	E'\nmessage	=	%\ndetail	=	%\nhint	=	%',
												message,	detail,	hint;
END
$$;

NOTICE:		
message	=	Matrix	failure
detail	=	Irrecoverable	matrix	failure	has	occurred	during	execution
hint	=	Contact	your	system	administrator
DO

7

Choosing a handler

An unhandled error is sent one level up
into the outer PL/pgSQL block, if available
into the calling routine, if available

The search path of a handler is determined by the call stack
it is not defined statically, but depends on how the program executes

An unhandled error is passed to the client
the transaction enters the failure mode and has to be rolled back by the client
the error is registered in the server log

If none of the conditions listed in the EXCEPTION section is triggered, the
error goes one level up.

If an error has occurred in the inner block of a nested structure, the server
will search for a handler in the outer block. If there is no suitable handler
either, the whole outer block will be treated as failed, while the error will be
passed to the next nesting level, and so on.

If the error goes through the whole nested structure and does not find an
appropriate handler, it goes further up to the level of the routine that has
called the outermost block. Therefore, you have to analyze the call stack to
determine the order in which different error handlers will be applied.

If none of the available error handlers is triggered:
● The error message usually gets into the server log (the exact behavior

depends on the server settings),
● The error is reported to the client that has initiated this operation in the

database. The client cannot do anything about the cause of the error at
this point: the transaction enters the failure mode, and it can only be
rolled back.

It is up to the client to choose how to handle the error from there. For
example, psql will display the error message and all the debugging
information available. An end-user client may display a generic message
like “contact your system administrator”.

Choosing	a	handler

Let’s	take	a	look	at	several	examples	of	choosing	a	handler	in	nested	blocks.	What	will	be	displayed?

=>	DO	$$
BEGIN
				BEGIN
								SELECT	1/0;
								RAISE	NOTICE	'The	inner	block	has	completed';
				EXCEPTION
								WHEN	division_by_zero	THEN
												RAISE	NOTICE	'Error	in	the	inner	block';
				END;
				RAISE	NOTICE	'The	outer	block	has	completed';
EXCEPTION
				WHEN	division_by_zero	THEN
								RAISE	NOTICE	'Error	in	the	outer	block';
END
$$;

NOTICE:		Error	in	the	inner	block
NOTICE:		The	outer	block	has	completed
DO

An	error	is	handled	in	the	same	block	where	it	has	occurred.	The	outer	block	is	executed	as	if	there	has	been	no	error	at	all.

And	now?

=>	DO	$$
BEGIN
				BEGIN
								SELECT	1/0;
								RAISE	NOTICE	'The	inner	block	has	completed';
				EXCEPTION
								WHEN	no_data_found	THEN
												RAISE	NOTICE	'Error	in	the	inner	block';
				END;
				RAISE	NOTICE	'The	outer	block	has	completed';
EXCEPTION
				WHEN	division_by_zero	THEN
								RAISE	NOTICE	'Error	in	the	outer	block';
END
$$;

NOTICE:		Error	in	the	outer	block
DO

The	handler	in	the	inner	block	is	not	applicable;	the	block	completes	with	an	error	that	is	handled	in	the	outer	block.

Remember	that	the	block	containing	an	EXCEPTION	section	is	rolled	back	to	the	implicit	savepoint	at	the	beginning	of	this	block.	In
this	case,	all	changes	made	in	both	blocks	will	be	rolled	back.

And	now?

=>	DO	$$
BEGIN
				BEGIN
								SELECT	1/0;
								RAISE	NOTICE	'The	inner	block	has	completed';
				EXCEPTION
								WHEN	no_data_found	THEN
												RAISE	NOTICE	'Error	in	the	inner	block';
				END;
				RAISE	NOTICE	'The	outer	block	has	completed';
EXCEPTION
				WHEN	no_data_found	THEN
								RAISE	NOTICE	'Error	in	the	outer	block';
END
$$;

ERROR:		division	by	zero
CONTEXT:		SQL	statement	"SELECT	1/0"
PL/pgSQL	function	inline_code_block	line	4	at	SQL	statement

None	of	the	handlers	is	triggered,	and	the	whole	transaction	is	aborted.

There	is	usually	no	need	to	handle	all	possible	errors	in	the	server	code.	There	is	nothing	wrong	in	passing	an	error	to	the	client.	In
general,	an	error	should	be	handled	at	the	level	where	something	meaningful	can	be	done	about	it.	So	it	makes	sense	to	process	an
error	within	the	database	if	it	can	be	addressed	on	the	server	side	(e.g.,	the	operation	can	be	repeated	in	case	of	a	serialization
failure).

Now	let’s	take	a	look	at	an	example	that	uses	routines.

=>	CREATE	PROCEDURE	foo()
AS	$$
BEGIN
					CALL	bar();
END
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

=>	CREATE	PROCEDURE	bar()
AS	$$
BEGIN
				CALL	baz();
END
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

=>	CREATE	PROCEDURE	baz()
AS	$$
BEGIN
				PERFORM	1	/	0;
END
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

What	will	happen	if	we	call	this	procedure?

=>	CALL	foo();

ERROR:		division	by	zero
CONTEXT:		SQL	statement	"SELECT	1	/	0"
PL/pgSQL	function	baz()	line	3	at	PERFORM
SQL	statement	"CALL	baz()"
PL/pgSQL	function	bar()	line	3	at	CALL
SQL	statement	"CALL	bar()"
PL/pgSQL	function	foo()	line	3	at	CALL

The	error	message	displays	the	call	stack:	top	to	bottom	means	inside	out.

Note	that	this	message	(like	many	others)	uses	the	term	“function”	instead	of	“procedure”.

An	error	handler	can	also	provide	access	to	the	call	stack,	but	it	will	be	presented	as	a	single	string:

=>	CREATE	OR	REPLACE	PROCEDURE	bar()
AS	$$
DECLARE
				msg	text;
				ctx	text;
BEGIN
				CALL	baz();
EXCEPTION
				WHEN	others	THEN
								GET	STACKED	DIAGNOSTICS
													msg	:=	MESSAGE_TEXT,
													ctx	:=	PG_EXCEPTION_CONTEXT;
								RAISE	NOTICE	E'\nError:	%\nError	stack:\n%\n',	msg,	ctx;
END
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

Let’s	check	the	result:

=>	CALL	foo();

NOTICE:		
Error:	division	by	zero
Error	stack:
SQL	statement	"SELECT	1	/	0"
PL/pgSQL	function	baz()	line	3	at	PERFORM
SQL	statement	"CALL	baz()"
PL/pgSQL	function	bar()	line	6	at	CALL
SQL	statement	"CALL	bar()"
PL/pgSQL	function	foo()	line	3	at	CALL

CALL

Since	a	block	with	an	EXCEPTION	section	creates	an	implicit	savepoint,	procedures	cannot	use	COMMIT	and	ROLLBACK	commands
both	in	this	block	and	in	all	the	blocks	up	the	call	stack.

=>	CREATE	OR	REPLACE	PROCEDURE	baz()
AS	$$
BEGIN
				COMMIT;
END
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

=>	CALL	foo();

NOTICE:		
Error:	invalid	transaction	termination
Error	stack:
PL/pgSQL	function	baz()	line	3	at	COMMIT
SQL	statement	"CALL	baz()"
PL/pgSQL	function	bar()	line	6	at	CALL
SQL	statement	"CALL	bar()"
PL/pgSQL	function	foo()	line	3	at	CALL

CALL

9

Overhead

Any block with an EXCEPTION section is executed slower
because of setting an implicit savepoint

Additional costs are incurred in case of an error
because of the rollback to the savepoint

Error handling can and should be used, but not overused
PL/pgSQL is an interpreted language that uses SQL to compute expressions
anyway
the speed is more than enough for most tasks

performance issues are usually related to queries, not to PL/pgSQL code

The mere inclusion of an EXCEPTION section already incurs overhead
because it requires setting an implicit savepoint at the beginning of the
block. If an error occurs, the rollback to the savepoint increases the
overhead even more.

So if there is a simple way to avoid exception handling, it’s better to do
without it; you should not base your application logic on “exception juggling.”

However, if error handing is really required, you should use it without doubt:
errors can and must be handled regardless of the overhead.

First, the PL/pgSQL language itself is quite slow because of interpreting
instructions and constantly calling SQL to compute expressions.

Second, its speed is usually still adequate. Yes, you can create a faster
implementation in C, but what’s the point?

And third, the main performance issues are usually caused by bad query
plans that affect query speed, not by the execution speed of procedural
code (for details, see the QPT course that deals with query performance
tuning).

But if there is an alternative that is both simpler and faster, it should certainly
be preferred.

Overhead

To	estimate	the	overhead,	let’s	take	a	look	at	the	following	simple	example.

Suppose	we	have	a	table	with	a	text	field	that	stores	arbitrary	data	inserted	by	users	(although	usually	a	sign	of	bad	design,	it	may
sometimes	be	required).	We	need	to	extract	all	numbers	into	a	separate	column	of	a	numeric	type.

=>	CREATE	TABLE	data(comment	text,	n	integer);

CREATE	TABLE

=>	INSERT	INTO	data(comment)
SELECT	CASE
								WHEN	random()	<	0.01	THEN	'not	a	number'	--		1%
								ELSE	(random()*1000)::integer::text		--	99%
				END
FROM	generate_series(1,1_000_000);

INSERT	0	1000000

Let’s	solve	this	problem	using	error	handling	that	comes	up	when	converting	text	to	integer:

=>	CREATE	FUNCTION	safe_to_integer_ex(s	text)	RETURNS	integer
AS	$$
BEGIN
				RETURN	s::integer;
EXCEPTION
				WHEN	invalid_text_representation	THEN
								RETURN	NULL;
END
$$	IMMUTABLE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	check	the	result:

=>	\timing	on

Timing	is	on.

=>	UPDATE	data	SET	n	=	safe_to_integer_ex(comment);

UPDATE	1000000
Time:	8522.957	ms	(00:08.523)

=>	\timing	off

Timing	is	off.

=>	SELECT	count(*)	FROM	data	WHERE	n	IS	NOT	NULL;

	count		

	990000
(1	row)

The	following	implementation	of	our	function	will	check	the	format	using	a	(slightly	simplified)	regular	expression,	without	error
handling.	The	body	can	be	written	in	SQL:

=>	CREATE	FUNCTION	safe_to_integer_re(s	text)	RETURNS	integer
IMMUTABLE
RETURN	CASE
				WHEN	s	~	'^\d+$'	THEN	s::integer
				ELSE	NULL
END;

CREATE	FUNCTION

Let’s	check	this	implementation:

=>	\timing	on

Timing	is	on.

=>	UPDATE	data	SET	n	=	safe_to_integer_re(comment);

UPDATE	1000000
Time:	4917.223	ms	(00:04.917)

=>	\timing	off

Timing	is	off.

=>	SELECT	count(*)	FROM	data	WHERE	n	IS	NOT	NULL;

	count		

	990000
(1	row)

This	implementation	is	significantly	faster.	In	this	example,	the	exception	has	occurred	in	1%	of	cases	only.	The	more	often	it
occurs,	the	more	overhead	will	be	incurred	by	rollbacks	to	the	savepoint.

=>	UPDATE	data	SET	comment	=	'not	a	number';	--	100%

UPDATE	1000000

=>	\timing	on

Timing	is	on.

=>	UPDATE	data	SET	n	=	safe_to_integer_ex(comment);

UPDATE	1000000
Time:	52040.536	ms	(00:52.041)

=>	\timing	off

Timing	is	off.

In	some	cases	(which	are	not	infrequent),	you	can	do	without	error	handling	if	you	choose	other	suitable	means.

Problem:	update	a	table	row	with	the	specified	ID;	if	there	is	no	such	row,	insert	it.

=>	CREATE	TABLE	categories(code	text	UNIQUE,	description	text);

CREATE	TABLE

=>	INSERT	INTO	categories	VALUES	('books','Books'),	('discs','Disks');

INSERT	0	2

Here	is	the	first	approach.	What	is	wrong	with	it?

=>	CREATE	OR	REPLACE	FUNCTION	change(code	text,	description	text)
RETURNS	void
AS	$$
DECLARE
				cnt	integer;
BEGIN
				SELECT	count(*)	INTO	cnt
				FROM	categories	c	WHERE	c.code	=	change.code;

				IF	cnt	=	0	THEN
								INSERT	INTO	categories	VALUES	(code,	description);
				ELSE
								UPDATE	categories	c
								SET	description	=	change.description
								WHERE	c.code	=	change.code;
				END	IF;
END
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Almost	everything	is	bad	here,	starting	from	the	fact	that	such	a	function	will	not	work	correctly	at	the	Read	Committed	isolation
level	if	there	are	several	concurrent	sessions.	That’s	because	the	data	in	the	database	can	change	between	the	executed	SELECT
statement	and	the	next	operation.

It	can	be	easily	demonstrated	by	executing	commands	with	a	delay:

=>	CREATE	OR	REPLACE	FUNCTION	change(code	text,	description	text)
RETURNS	void
AS	$$
DECLARE
				cnt	integer;
BEGIN
				SELECT	count(*)	INTO	cnt
				FROM	categories	c	WHERE	c.code	=	change.code;

				PERFORM	pg_sleep(1);	--	anything	can	happen	here

				IF	cnt	=	0	THEN
								INSERT	INTO	categories	VALUES	(code,	description);

				ELSE
								UPDATE	categories	c
								SET	description	=	change.description
								WHERE	c.code	=	change.code;
				END	IF;
END
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Now	let’s	run	this	function	in	two	different	sessions,	almost	simultaneously:

=>	SELECT	change('games',	'Games');

=>	SELECT	change('games',	'Games');

ERROR:		duplicate	key	value	violates	unique	constraint	"categories_code_key"
DETAIL:		Key	(code)=(games)	already	exists.
CONTEXT:		SQL	statement	"INSERT	INTO	categories	VALUES	(code,	description)"
PL/pgSQL	function	change(text,text)	line	11	at	SQL	statement

	change	

(1	row)

A	correct	solution	can	be	implemented	using	error	handling:

=>	CREATE	OR	REPLACE	FUNCTION	change(code	text,	description	text)
RETURNS	void
AS	$$
BEGIN
				LOOP
								UPDATE	categories	c
								SET	description	=	change.description
								WHERE	c.code	=	change.code;

								EXIT	WHEN	FOUND;
								PERFORM	pg_sleep(1);	--	for	the	demo

								BEGIN
												INSERT	INTO	categories	VALUES	(code,	description);
												EXIT;
								EXCEPTION
												WHEN	unique_violation	THEN	NULL;
								END;
				END	LOOP;
END
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

Let’s	check	the	result.

=>	SELECT	change('vynil',	'Vynil	records');

=>	SELECT	change('vynil',	'Vynil	records');

	change	

(1	row)

	change	

(1	row)

Yes,	now	everything	is	correct.

But	there	is	an	easier	way:	you	can	use	a	special	flavor	of	the	INSERT	command	that	attempts	to	insert	a	row	and	performs	an
update	if	a	conflict	occurs.	Again,	all	you	need	is	pure	SQL.

=>	CREATE	OR	REPLACE	FUNCTION	change(code	text,	description	text)
RETURNS	void
VOLATILE	LANGUAGE	sql
BEGIN	ATOMIC
				INSERT	INTO	categories	VALUES	(code,	description)
				ON	CONFLICT(code)
								DO	UPDATE	SET	description	=	change.description;
END;

CREATE	FUNCTION

Let’s	see	an	example	where	we	cannot	do	without	error	handling.

Problem:	process	a	set	of	documents;	a	processing	error	of	a	particular	document	should	not	result	in	a	general	failure.

=>	CREATE	TYPE	doc_status	AS	ENUM	--	enumeration	type
				('READY',	'ERROR',	'PROCESSED');

CREATE	TYPE

=>	CREATE	TABLE	documents(
				id	integer,
				version	integer,
				status	doc_status,
				message	text
);

CREATE	TABLE

=>	INSERT	INTO	documents(id,	version,	status)
SELECT	id,	1,	'READY'	FROM	generate_series(1,100)	id;

INSERT	0	100

A	procedure	that	processes	a	single	document	can	sometimes	result	in	an	error:

=>	CREATE	PROCEDURE	process_one_doc(id	integer)
AS	$$
BEGIN
				UPDATE	documents	d
				SET	version	=	version	+	1
				WHERE	d.id	=	process_one_doc.id;
				--	processing	can	take	a	while
				IF	random()	<	0.05	THEN
								RAISE	EXCEPTION	'Catastrophic	failure';
				END	IF;
END
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

Now	let’s	create	a	procedure	that	processes	all	documents.	It	loops	through	the	documents	to	process	them	one	by	one	and	catches
an	error	if	required.

Note	that	transactions	are	committed	outside	of	the	block	that	contains	the	EXCEPTION	section.

=>	CREATE	PROCEDURE	process_docs()
AS	$$
DECLARE
				doc	record;
BEGIN
				FOR	doc	IN	(SELECT	id	FROM	documents	WHERE	status	=	'READY')
				LOOP
								BEGIN
												CALL	process_one_doc(doc.id);

												UPDATE	documents	d
												SET	status	=	'PROCESSED'
												WHERE	d.id	=	doc.id;
								EXCEPTION
												WHEN	others	THEN

																UPDATE	documents	d
																SET	status	=	'ERROR',	message	=	sqlerrm
																WHERE	d.id	=	doc.id;
								END;
								COMMIT;	--	there	is	a	separate	transaction	for	each	document
				END	LOOP;
END
$$	LANGUAGE	plpgsql;

CREATE	PROCEDURE

You	can	set	up	a	similar	processing	using	a	function,	but	then	all	documents	will	be	handled	within	a	single	common	transaction,
which	can	be	a	problem	if	processing	takes	a	long	time.	This	question	is	discussed	at	length	in	the	DEV2	course.

Let’s	check	the	result:

=>	CALL	process_docs();

CALL

=>	SELECT	d.status,	d.version,	count(*)::integer
FROM	documents	d
GROUP	BY	d.status,	d.version;

		status			|	version	|	count	
-----------+---------+-------
	PROCESSED	|							2	|				93
	ERROR					|							1	|					7
(2	rows)

As	you	can	see,	some	of	the	documents	have	not	been	processed,	but	it	has	not	affected	the	processing	of	the	others.

It	is	convenient	that	the	information	about	the	occurred	errors	is	stored	in	the	table	itself:

=>	SELECT	*	FROM	documents	d	WHERE	d.status	=	'ERROR';

	id	|	version	|	status	|							message								
----+---------+--------+----------------------
		7	|							1	|	ERROR		|	Catastrophic	failure
	37	|							1	|	ERROR		|	Catastrophic	failure
	38	|							1	|	ERROR		|	Catastrophic	failure
	11	|							1	|	ERROR		|	Catastrophic	failure
	94	|							1	|	ERROR		|	Catastrophic	failure
	24	|							1	|	ERROR		|	Catastrophic	failure
	60	|							1	|	ERROR		|	Catastrophic	failure
(7	rows)

Please	note	once	again	that	if	an	error	occurs,	the	changes	are	rolled	back	to	the	savepoint	at	the	beginning	of	the	block;	that’s	why
documents	with	the	ERROR	status	have	not	changed	and	still	have	version	1.

11

Takeaways

The search for an error handler is performed “inside out”:
starting from the innermost block in the nested structure and
going up the call stack

An implicit savepoint is set at the beginning of the block that
contains EXCEPTION; if an error occurs, a rollback to this
savepoint is performed

An unhandled error aborts the transaction; the error message is
passed to the client and registered in the server log

Error handling incurs overhead

12

Practice

1. Attempting to put in the same author several times when adding
a book causes an error.
Modify the add_book function: catch the unique constraint
violation error and produce an error with a meaningful message
instead.

Try it out in the application.

1. To determine the name of the error that has to be caught, catch all errors
(WHEN OTHERS) and display the required information (by raising another
error with the corresponding text).

Then remember to replace WITH OTHERS with a specific error: let all other
error types be handled at a higher level if there is no opportunity to do
anything useful in this particular position in the code.

(In a real environment, unique constraint violations should not be handled
either: it is better to forbid entering the same author twice at the application
level.)

Task	1.	Processing	duplicated	author	names	when	adding	books

=>	CREATE	OR	REPLACE	FUNCTION	add_book(title	text,	authors	integer[])
RETURNS	integer
AS	$$
DECLARE
				book_id	integer;
				id	integer;
				seq_num	integer	:=	1;
BEGIN
				INSERT	INTO	books(title)
								VALUES(title)
								RETURNING	books.book_id	INTO	book_id;
				FOREACH	id	IN	ARRAY	authors	LOOP
								INSERT	INTO	authorship(book_id,	author_id,	seq_num)
												VALUES	(book_id,	id,	seq_num);
								seq_num	:=	seq_num	+	1;
				END	LOOP;
				RETURN	book_id;
EXCEPTION
				WHEN	unique_violation	THEN
								RAISE	EXCEPTION	'One	and	the	same	author	cannot	be	specified	twice';
END
$$	VOLATILE	LANGUAGE	plpgsql;

CREATE	FUNCTION

