PL/pgSQL
Dynamic Commands

Copyright

© Postgres Professional, 2017-2025

Authors Egor Rogov, Pavel Luzanov, llya Bashtanov, Igor Gnatyuk
Translated by Liudmila Mantrova and Alexander Meleshko

Photo by Oleg Bartunov (Tukuche peak, Nepal)

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.com

Disclaimer

In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

Topics

Objectives
Executing dynamic queries

Constructing dynamic queries

rt"

N

Dynamic SQL (¢

The text of an SQL command is constructed at run time

Objectives

provide additional flexibility for an application

construct several specific queries for optimization purposes
instead of using a single query that covers all possible cases

Trade-off

statements cannot be prepared
the risk of SQL injection rises
maintenance gets more complicated

An SQL command is considered dynamic if its text is constructed and then
executed within PL/pgSQL routine blocks or in anonymous blocks.

In most cases, you can do without dynamic commands, but sometimes they
can provide additional flexibility. For example, an application can have a
built-in capability to execute commands provided via system settings.
Instead of being hard-coded by developers, these settings can be tuned by
the support team in production.

When creating reports with a large number of optional parameters, it is
sometimes easier to construct the text of a query at run time for the provided
arguments only, instead of creating a complex query that includes all
possible parameter combinations while developing the application.

The price you pay for using dynamic commands is inability to take
advantage of prepared statements, which are available in PL/pgSQL.
Besides, you have to take care of dynamic commands’ security as they are
vulnerable to SQL injection.

We should also mention that maintenance gets more complicated. In
particular, it will be impossible to scan the source code quickly for
executable commands with tools like grep.

Query execution (¢

EXECUTE operator

runs a text representation of an SQL query
allows using parameters
PL/pgSQL variables do not become implicit parameters

Can be used instead of an SQL query

independently

when opening a cursor

in a loop over a query

in the RETURN QUERY clause

To run dynamic commands, PL/pgSQL uses the EXECUTE operator that
launches the SQL operator provided as a text string.

A dynamic query can contain explicit parameters. In the command’s text
representation, parameters are denoted by $1, $2, etc.; their actual values
are provided in the USING clause. Parameters are handled in the same way
as in prepared statements. However, PL/pgSQL variables do not become
implicit parameters, as it happens in the case of regular (as opposed to
dynamic) use of SQL in PL/pgSQL.

The EXECUTE operator can be used on its own (it will simply execute a
dynamic command). It can also be used in loops over queries, when
opening a cursor, or in the RETURN QUERY command: in all these cases,
EXECUTE replaces the SQL operator.

https://postgrespro.com/docs/postgresql/17/plpgsql-statements#PLPGSQL-
STATEMENTS-EXECUTING-DYN

Note that a procedure cannot perform transaction control if it is called by the
EXECUTE operator.

https://postgrespro.com/docs/postgresql/17/plpgsql-statements#PLPGSQL-STATEMENTS-EXECUTING-DYN
https://postgrespro.com/docs/postgresql/17/plpgsql-statements#PLPGSQL-STATEMENTS-EXECUTING-DYN

Executing dynamic queries

The EXECUTE operator allows running SQL commands provided as text strings.

=> DO $$
DECLARE

cmd CONSTANT text := 'CREATE TABLE city_london(

name text, architect text, founded integer

)"
BEGIN

EXECUTE cmd; -- a table that lists examples of contemporary architecture in London
END
$$;
DO

The INTO clause of the EXECUTE operator enables saving a single row of the result (the first returned row) into a variable of a
composite type or into several scalar variables.

Like with static commands, you can check the result of a dynamic command using GET DIAGNOSTICS (but not the FOUND variable).

=> DO $%
DECLARE
rec record;
cnt bigint;
BEGIN
EXECUTE 'INSERT INTO city london (name, architect, founded) VALUES
(''The Shard'', ''Renzo Piano'', 2009),
(''The Scalpel'', ''Kohn Pedersen Fox'', 2018),
(''London Aquatics Centre'', '‘'Zaha Hadid'', 2011),
(''30 St Mary Axe'', ''Norman Foster'', 2001),
(''London City Hall'', '‘'Norman Foster'', 2000)
RETURNING name, architect, founded'
INTO rec;

RAISE NOTICE '%', rec;
GET DIAGNOSTICS cnt := ROW_COUNT;
RAISE NOTICE 'Added rows: %', cnt;
END
$$;

NOTICE: ("The Shard","Renzo Piano",2009)
NOTICE: Added rows: 5
DO

You can use STRICT to ensure that the command processes only one row.

The result of a dynamic query can be processed in a FOR loop.

=> DO $$
DECLARE
rec record;
BEGIN
FOR rec IN EXECUTE 'SELECT * FROM city_london WHERE architect = '‘Norman Foster'' ORDER BY founded'
LooP
RAISE NOTICE 'S%', rec;
END LOOP;
END
$$;
NOTICE: ("London City Hall","Norman Foster",2000)
NOTICE: ("30 St Mary Axe","Norman Foster",2001)
DO

Here is the same example using a cursor:

=> DO $$
DECLARE
cur refcursor;
rec record;
BEGIN
OPEN cur FOR EXECUTE 'SELECT * FROM city london WHERE architect = ''Norman Foster'' ORDER BY founded';
LooP
FETCH cur INTO rec;
EXIT WHEN NOT FOUND;
RAISE NOTICE 'S%', rec;
END LOOP;
END

$$;

NOTICE: ("London City Hall","Norman Foster",2000)
NOTICE: ("30 St Mary Axe","Norman Foster",2001)
DO

The RETURN QUERY operator can also use dynamic queries to return rows from functions. Let's create a function that retrieves all
buildings constructed by a particular architect and up to the specified year. We will have to use parameters for this purpose:

=> CREATE FUNCTION sel_london(architect text, founded integer DEFAULT NULL)
RETURNS SETOF text
AS $$
DECLARE
-- parameters are numbered: $1, $2...
cmd text := '
SELECT name FROM city_ london
WHERE architect = $1 AND ($2 IS NULL OR founded <= $2)';
BEGIN
RETURN QUERY
EXECUTE cmd
USING architect, founded; -- provide parameters in the order of their declaration
END
$$ LANGUAGE plpgsql;

CREATE FUNCTION
=> SELECT * FROM sel_london('Norman Foster');

sel london

30 St Mary Axe
London City Hall
(2 rows)

=> SELECT * FROM sel_london('Norman Foster', 2000);

sel london

London City Hall
(1 row)

Constructing commands g

Parameter values binding

USING clause
guarantees protection against SQL injection

Escaping values

identifiers: format ('%I'), quote_ident
literals: format('%L'), quote_literal, quote_nullable
SQL injection is impossible if implemented correctly

Regular string functions

concatenation, etc.
risk of SQL injection!

Using the EXECUTE operator makes sense if the command is constructed
dynamically. The previous examples could also do without EXECUTE.

Since the command is represented by a text string, it can be constructed
using regular string functions that perform such operations as concatenation,
etc. This should be done with great care as there is a risk of SQL injection.

If the values are passed as parameters in the USING clause, SQL injection
is technically impossible.

However, it is not always possible to use parameters: you may have to
concatenate specific parts of the query or insert a table name into the query.
In this case, you should escape the values received from an unreliable
source to protect your application against injections.

Identifiers are generated by either the format function with the %1 specifier or
the quote_ident function. These functions ensure that identifiers have
valid names by double-quoting them and escaping special characters, if
required.

To insert literals into the command text, you can use either quote_literal
and quote_nullable functions or the format function with the %L specifier.

https://postgrespro.com/docs/postgresgl/17/functions-string

https://postgrespro.com/docs/postgresql/17/functions-string

Dealing with SQL injection

Let’s rewrite the function returning buildings and add one more parameter: the name of the city. The idea is to allow this function
to access tables only if their names start with city_.

=> CREATE FUNCTION sel_city(
city_code text,
architect text,
founded integer DEFAULT NULL
)
RETURNS SETOF text AS $$
DECLARE
cmd text := '
SELECT name FROM city ' || city_code || '
WHERE architect = $1 AND ($2 IS NULL OR founded < $2)';
BEGIN
RAISE NOTICE '%', cmd;
RETURN QUERY
EXECUTE cmd
USING architect, founded;
END
$$ LANGUAGE plpgsql;

CREATE FUNCTION
The function works fine if its parameter values are “correct”:

=> SELECT * FROM sel_city('london', 'Renzo Piano');

NOTICE:
SELECT name FROM city london
WHERE architect = $1 AND ($2 IS NULL OR founded < $2)
sel city
The Shard
(1 row)

But a malicious user can pick a value that will change the syntactic structure of the query and enable unauthorized access to data:

=> SELECT * FROM sel_city('london WHERE false

UNION ALL
SELECT usename FROM pg_user
UNION ALL
SELECT name FROM city london', '');
NOTICE:
SELECT name FROM city london WHERE false
UNION ALL
SELECT usename FROM pg user
UNION ALL
SELECT name FROM city london
WHERE architect = $1 AND ($2 IS NULL OR founded < $2)
sel_city
postgres
student
(2 rows)

When you are using prepared statements or dynamic commands with parameters, such a situation is technically impossible
because the structure of the SQL query is locked while the statement is parsed. An expression will always remain an expression; it
is impossible to convert it, say, into a table name.

Constructing a dynamic command

It is impossible to provide the names of objects (such as tables or columns) as parameters of the USING clause in a dynamic
command. Such identifiers must be escaped, so that it is impossible to modify the query structure:

=> SELECT format('%I', 'foo'),
format('sI', 'foo bar'),
format('%I', 'foo"bar');

format | format | format
........ e T T Ty
foo | "foo bar" | "foo""bar"

The following function does the same thing:

=> SELECT quote_ident('foo'),
quote_ident('foo bar'),
quote_ident('foo"bar');

quote_ident | quote ident | quote ident

foo | "foo bar" | "foo""bar"

Here is an example of creating a table:

=> DO $$
DECLARE
cmd CONSTANT text := 'CREATE TABLE %I(
name text, architect text, founded integer
)"
BEGIN
EXECUTE format(cmd, 'city paris'); -- a table for Paris
EXECUTE format(cmd, 'city milan'); -- a table for Milan
END
$$;

Instead of using parameters, you can insert literals into a string. It also requires escaping, but in a bit different way:

=> SELECT format('sL', 'foo bar'),
format('sL', 'foo''bar'),
("%l

format('%L', NULL);
format | format | format
___________ B g
'foo bar' | 'foo''bar' | NULL
(1 row)

The quote_nullable function also does the same thing:

=> SELECT quote_nullable('foo bar'),
quote_nullable('foo''bar'),
quote_nullable(NULL);

quote nullable | quote nullable | quote nullable

The quote_literal function is quite similar, but it does not convert NULL values into literals:
=> SELECT quote_literal(NULL);

quote literal

As an example, let's rewrite the function that returns the list of buildings of a particular city, so that it does not use any parameters,
but still remains safe.

=> CREATE OR REPLACE FUNCTION sel_city(
city code text,
architect text,
founded integer DEFAULT NULL

)

RETURNS SETOF text

AS $$
DECLARE
cmd text := '
SELECT name FROM SI
WHERE architect = %L AND (%L IS NULL OR founded < %L::integer)';
BEGIN
RETURN QUERY EXECUTE format(
cmd, 'city '||city_code, architect, founded, founded
)i
END

$$ LANGUAGE plpgsql;
CREATE FUNCTION

Note that we perform two extra type casting operations: first, the integer parameter is converted into a string, and then it is cast
back to integer at run time (this can be avoided with USING parameters):

=> SELECT * FROM sel_city('london', 'Renzo Piano', 2009);

sel city

(0 rows)

An attempt to pass an invalid value will not succeed:

=> SELECT * FROM sel_city('london WHERE false
UNION ALL
SELECT usename FROM pg_user
UNION ALL
SELECT name FROM city london', '');

NOTICE: identifier "city london WHERE false
UNION ALL
SELECT usename FROM pg user
UNION ALL
SELECT name FROM city london" will be truncated to "city london WHERE false
UNION ALL
SELECT usenam"
ERROR: relation "city london WHERE false
UNION ALL
SELECT usenam" does not exist
LINE 2: SELECT name FROM "city london WHERE false
QUERY:
SELECT name FROM "city london WHERE false
UNION ALL
SELECT usename FROM pg user
UNION ALL
SELECT name FROM city_ london"
WHERE architect = '' AND (NULL IS NULL OR founded < NULL::integer)
CONTEXT: PL/pgSQL function sel city(text,text,integer) line 7 at RETURN QUERY

Takeaways (<r

Dynamic commands provide additional flexibility

Constructing separate queries for different arguments can
improve performance

Dynamic commands are not suitable for short, frequently used
queries

Maintenance gets more complicated

Practice [Y

1. Modify the get_catalog function so that the query
to the catalog_v view is constructed dynamically and takes
into account only those fields that are filled out in the search
form of the Store tab.
Make sure that your implementation is protected against SQL
injection.
Check your function in the application.

1. Suppose we have to generate the following query if these conditions are
met: the “In stock” option is selected in the search form, but “Book Title” and
“Author” fields are empty.

SELECT ... FROM catalog_v WHERE onhand_qty > 0;

You should keep in mind that this implementation will not necessarily speed
up search, but it will certainly be harder to maintain. Avoid such solutions in
production environments unless you have a solid reason to use this
technique. To learn more about query performance tuning, check out the
QPT course.

Task 1. The get_catalog function

=> CREATE OR REPLACE FUNCTION get_catalog(
author_name text,
book_title text,
in_stock boolean
)
RETURNS TABLE(book_id integer, display_name text, onhand_qty integer)
AS $$
DECLARE
title_cond text := '';
author_cond text := '';

qty_cond text := '';
cmd text;
BEGIN
IF book_title != '' THEN
title_cond := format(

" AND cv.title ILIKE %L', '%'||book_title||'s"
)i

END IF;
IF author_name !'= "' THEN
author_cond := format(
' AND cv.authors ILIKE %L', '%'||author_name]||'%"'
)i
END IF;
IF in_stock THEN
qty_cond := ' AND cv.onhand_qty > 0';
END IF;
cmd := 'SELECT cv.book_id,

cv.display_name,
cv.onhand_qty
FROM catalog_v cv
WHERE true'
|| title_cond || author_cond || qty_cond || '
ORDER BY display_name';
RAISE NOTICE ‘%', cmd;
RETURN QUERY EXECUTE cmd;
END
$$ STABLE LANGUAGE plpgsql;

CREATE FUNCTION

