

The Bookstore App

Data Schema and API

17

Copyright
© Postgres Professional, 2017–2025
Authors Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Igor Gnatyuk
Translated by Liudmila Mantrova and Alexander Meleshko
Photo by Oleg Bartunov (Tukuche peak, Nepal)

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.com

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

Bookstore app overview

Data schema design, normalization

Data schema, the final version

Setting up the API

3

The application

The application consists of several parts, which are provided as separate
tabs.

“Store” is a customer UI for buying books online.

Other tabs represent the employee UI, which is available only to the
bookstore staff (the admin panel).

“Catalog” is the storekeeper’s UI which is used for ordering books to the
store and viewing arrivals and sales.

“Books” and “Authors” are the UI for librarians, where they can register
arrivals.

For training purposes, all this functionality is exposed in a single web page.
If any feature is unavailable because the required object (such as a table or
a function) is missing, the application will report an error. It also displays the
text of all queries sent to the server.

We will start with an empty database and will gradually implement all the
required components by the end of the course.

The source code of the application frontend will not be discussed in this
course, but is available for download:
https://pubgit.postgrespro.ru/pub/dev1app.git

https://pubgit.postgrespro.ru/pub/dev1app.git

Application	demonstration

This	demo	shows	the	Bookstore	app	as	it	would	look	like	after	completing	all	practice	assignments.	The	app	opens	in	a	separate
browser	tab	in	the	course	VM:

Opening	http://localhost...

student$	xdg-open	http://localhost

5

Books

Book

title
authors
quantity
operations

entity

attributes

An ER model for high-level design
entities – concepts of the application domain
relationships – connections between entities
attributes – properties of entities and relationships

After taking a look at the application’s UI and functionality, we need to figure
out its data schema. We will not go into details about database design: it is a
separate branch of knowledge, which is beyond the scope of this course, but
we cannot ignore this topic entirely.

High-level database design often uses the ER model (“Entity–Relationship”).
It deals with entities (concepts of the subject area), their relationships, and
attributes (the properties of entities and relationships). The model allows us
to remain at the logical level, without getting down to data representation at
the physical level (such as its table form).

The first approach to database design is creating a diagram as shown on
this slide: a book is represented as a single big entity, and everything else
becomes its attributes.

6

Data schema

 id | title | author | qty | operation
 −−−+−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−+−−−−−−−−−−−
 1 | The Tempest | William Shakespeare | 10 | +11
 1 | THE TEMPEST | William Shakespeare | 10 | -1

 2 | Romeo and Juliet | William Shakespeare | 4 | +4

 3 | Good Omens | Terry Pratchett | 7 | +7
 3 | Good Omens | Neil Gaiman | 7 | 0

Some data is duplicated
hard to maintain consistency
hard to perform updates
hard to write queries

10 = 11 – 1

7.0
or 0.7
or 7.7

?

Clearly, this approach cannot be correct. It may be not quite obvious in the
diagram itself, but let’s try to project this diagram onto database tables.
There are several ways to do it. One of them is shown on the slide: the table
corresponds to the entity, and table columns represent the attributes of this
entity.

This diagram is a good illustration that some data ends up duplicated (as
highlighted on the slide). Data duplication may lead to problems with
consistency, the very thing a database system is supposed to ensure.

For example, each of the two rows related to book 3 must list the total
quantity (7 items). How should purchases be recorded, then? Some rows
will need to be added to record the purchase operations. And then the
quantity in all the duplicated rows will need to be reduced from 7 to 6. But
what if an error leads to data discrepancy between these rows? How can we
define a constraint to make sure the values stay in sync?

Many queries will also become overcomplicated. How can we find the total
number of books? Or get a list of distinct authors?

Thus, such a schema will not work well for relational databases.

7

Books and operations

Normalization reduces data redundancy
Large entities are split into smaller ones

Book

title
authors

Operation

quantity change
date

one-to-many
relationship

To work with data in a relational database system properly, we need to
eliminate redundancy. This process is called normalization.

You might be familiar with various normal form concepts (first, second, third,
Boyce–Codd, etc.) We are not going to discuss them here; in essence, it is
enough to understand that all this math pursues one and the same goal:
eliminating redundancy.

The way to reduce redundancy is to split a larger entity into smaller ones.
How exactly to split it should be prompted by common sense (which cannot
be replaced by the knowledge of normal forms alone anyway).

In our case, everything is quite straightforward. Let’s start by separating
books and operations. These two entities are connected by a one-to-many
relationship: there can be several operations on each book, but each
operation relates to only one book.

8

Data schema

books

 book_id | title | author
−−−−−−−−−+−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 1 | The Tempest | William Shakespeare
 2 | Romeo and Juliet | William Shakespeare

 3 | Good Omens | Terry Pratchett
 3 | Good Omens | Neil Gaiman

operations

 operation_id | book_id | qty_change | date_created
−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−
 1 | 1 | +10 | 2020-07-13
 2 | 1 | -1 | 2020-08-25
 3 | 3 | +7 | 2020-07-13
 4 | 2 | +4 | 2020-07-13

At the physical level, this can be represented by two tables: books and
operations.

An operation changes the quantity of books (sell books if negative, order
new books if positive). Note that the book entity has no quantity attribute
anymore. Instead, you get the quantity by adding up all changes made by
operations related to this book. Having an additional quantity attribute would
only create data redundancy again.

This solution might raise some eyebrows at first. Is it really a good idea to
have to calculate the amount every time instead of having a separate field to
query? The answer is that we can simply create a view that shows the
current amount of books in store. This will not lead to redundancy, because
the view is just another query.

But what about performance? If summing up all changes brings too much
overhead, we can resort to denormalization: add the quantity field to the
books table and ensure its consistency with the operations table. Whether to
do this or not is beyond the scope of this course (it is discussed in the QPT
"Query Performance Tuning" course). Common sense suggests that it’s not
required for our bare-bones app, but we will get back to denormalization
when we get to the “Triggers” lecture.

Thus, moving all operations into a separate entity resolves most of the
duplication issues, but not all of them.

9

Books, authors, operations

Book

title

Author

first name
last name
middle name

Operation

quantity change
date

many-to-many
relationship

That’s why we have to go deeper: separate books from authors and tie them
by a many-to-many relationship: a book can be written by several authors,
and each author can have more than one book. At the table level, such
relationship can be implemented using an additional intermediate table.

The author’s attributes will be their first, last and middle name. It makes
sense because we may need to work with each of these attributes
separately, for example, to display the author’s last name and initials.

Application	schema

=>	\c	bookstore

You	are	now	connected	to	database	"bookstore"	as	user	"student".

The	application	schema	consists	of	four	tables:

=>	\dt

												List	of	relations
		Schema			|				Name				|	Type		|		Owner		
-----------+------------+-------+---------
	bookstore	|	authors				|	table	|	student
	bookstore	|	authorship	|	table	|	student
	bookstore	|	books						|	table	|	student
	bookstore	|	operations	|	table	|	student
(4	rows)

Books

=>	\d	books

																										Table	"bookstore.books"
			Column			|		Type			|	Collation	|	Nullable	|											Default												
------------+---------+-----------+----------+------------------------------
	book_id				|	integer	|											|	not	null	|	generated	always	as	identity
	title						|	text				|											|	not	null	|	
	onhand_qty	|	integer	|											|	not	null	|	0
Indexes:
				"books_pkey"	PRIMARY	KEY,	btree	(book_id)
Check	constraints:
				"books_onhand_qty_check"	CHECK	(onhand_qty	>=	0)
Referenced	by:
				TABLE	"authorship"	CONSTRAINT	"authorship_book_id_fkey"	FOREIGN	KEY	(book_id)	
REFERENCES	books(book_id)
				TABLE	"operations"	CONSTRAINT	"operations_book_id_fkey"	FOREIGN	KEY	(book_id)	
REFERENCES	books(book_id)

We	use	the	following	data	types	here:

integer;
text,	which	is	a	text	string	of	arbitrary	length.

We	also	use	the	PRIMARY	KEY	constraint.

The	GENERATED	AS	IDENTITY	clause	is	used	to	automatically	generate	unique	values.

GENERATED	AS	IDENTITY	columns	take	their	values	from	special	database	objects	called	sequences.	We	can	obtain	the	name	of	the
used	sequence	as	follows:

=>	SELECT	pg_get_serial_sequence('books','book_id');

			pg_get_serial_sequence				

	bookstore.books_book_id_seq
(1	row)

If	required,	you	can	also	create	sequences	manually	and	query	them	directly:

=>	SELECT	nextval('books_book_id_seq');

	nextval	

						15
(1	row)

A	sequence	is	the	most	efficient	way	of	generating	unique	IDs.	But	you	should	keep	in	mind	that:

there	may	be	gaps	in	numbering	(since	the	changes	are	not	transactional);
the	numbers	may	not	increase	monotonically	(if	sessions	cache	values).

Here	is	the	data	stored	in	the	books	table:

=>	SELECT	*	FROM	books	\gx

-[RECORD	1]--
book_id				|	2
title						|	Romeo	and	Juliet
onhand_qty	|	0
-[RECORD	2]--
book_id				|	3
title						|	Good	Omens
onhand_qty	|	0
-[RECORD	3]--
book_id				|	4
title						|	Dark	Avenues
onhand_qty	|	0
-[RECORD	4]--
book_id				|	5
title						|	Travels	into	Several	Remote	Nations	of	the	World.	In	Four	Parts.	By	Lemuel	
Gulliver,	First	a	Surgeon,	and	then	a	Captain	of	Several	Ships
onhand_qty	|	0
-[RECORD	5]--
book_id				|	6
title						|	Three	Men	in	a	Boat	(To	Say	Nothing	of	the	Dog)
onhand_qty	|	0
-[RECORD	6]--
book_id				|	7
title						|	101	Famous	Poems
onhand_qty	|	0
-[RECORD	7]--
book_id				|	8
title						|	The	Tale	of	Tsar	Saltan
onhand_qty	|	0
-[RECORD	8]--
book_id				|	9
title						|	Romeo	and	Juliet
onhand_qty	|	0
-[RECORD	9]--
book_id				|	10
title						|	Good	Omens
onhand_qty	|	0
-[RECORD	10]---
book_id				|	11
title						|	Dark	Avenues
onhand_qty	|	0
-[RECORD	11]---
book_id				|	12
title						|	Travels	into	Several	Remote	Nations	of	the	World.	In	Four	Parts.	By	Lemuel	
Gulliver,	First	a	Surgeon,	and	then	a	Captain	of	Several	Ships
onhand_qty	|	0
-[RECORD	12]---
book_id				|	13
title						|	Three	Men	in	a	Boat	(To	Say	Nothing	of	the	Dog)
onhand_qty	|	0
-[RECORD	13]---
book_id				|	14
title						|	101	Famous	Poems
onhand_qty	|	0
-[RECORD	14]---
book_id				|	1
title						|	The	Tale	of	Tsar	Saltan
onhand_qty	|	48

Note	that	book	titles	can	be	quite	long.

Authors

=>	\d	authors

																										Table	"bookstore.authors"
			Column				|		Type			|	Collation	|	Nullable	|											Default												
-------------+---------+-----------+----------+------------------------------
	author_id			|	integer	|											|	not	null	|	generated	always	as	identity
	last_name			|	text				|											|	not	null	|	
	first_name		|	text				|											|	not	null	|	
	middle_name	|	text				|											|										|	
Indexes:
				"authors_pkey"	PRIMARY	KEY,	btree	(author_id)
Referenced	by:
				TABLE	"authorship"	CONSTRAINT	"authorship_author_id_fkey"	FOREIGN	KEY	(author_id)	
REFERENCES	authors(author_id)

In	this	table,	we	also	use	the	NOT	NULL	constraint,	which	means	that	undefined	values	are	not	allowed.

=>	SELECT	*	FROM	authors;

	author_id	|		last_name		|	first_name	|	middle_name		
-----------+-------------+------------+--------------
									1	|	Pushkin					|	Alexander		|	Sergeyevich
									2	|	Shakespeare	|	William				|	
									3	|	Pratchett			|	Terry						|	
									4	|	Gaiman						|	Neil							|	
									5	|	Bunin							|	Ivan							|	Alekseyevich
									6	|	Swift							|	Jonathan			|	
									7	|	Jerome						|	Jerome					|	Klapka
									8	|	Pushkin					|	Alexander		|	Sergeyevich
									9	|	Shakespeare	|	William				|	
								10	|	Pratchett			|	Terry						|	
								11	|	Gaiman						|	Neil							|	
								12	|	Bunin							|	Ivan							|	Alekseyevich
								13	|	Swift							|	Jonathan			|	
								14	|	Jerome						|	Jerome					|	Klapka
(14	rows)

Note	that	the	middle	name	might	be	missing	(or	defined	by	an	empty	string).

The	PRIMARY	KEY	constraint	was	mentioned	in	the	\d	output	together	with	the	terms	“index”	and	“btree”.

Btree	is	the	main	index	type	used	in	databases	to	speed	up	search	and	provide	support	for	constraints	(primary	key	and	unique).

Suppose	that	our	bookstore	sells	books	written	by	a	million	of	different	authors	with	the	same	last	name:

=>	BEGIN;	--	let’s	explicitly	start	a	transaction	to	roll	back	the	changes	later

BEGIN

=>	INSERT	INTO	authors(first_name,	last_name)
				SELECT	'John',	'Wordsmith'	FROM	generate_series(1,	1_000_000);

INSERT	0	1000000

How	long	will	it	take	to	find	an	author	in	such	a	table?

=>	\timing	on

Timing	is	on.

=>	SELECT	*	FROM	authors	WHERE	last_name	=	'Pushkin';

	author_id	|	last_name	|	first_name	|	middle_name	
-----------+-----------+------------+-------------
									1	|	Pushkin			|	Alexander		|	Sergeyevich
									8	|	Pushkin			|	Alexander		|	Sergeyevich
(2	rows)

Time:	74.776	ms

=>	\timing	off

Timing	is	off.

If	we	ask	the	optimizer	to	display	the	query	plan,	we	will	see	that	Seq	Scan	is	used;	it	means	that	the	whole	table	is	scanned
sequentially	using	a	Filter	to	find	the	required	value:

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	authors	WHERE	last_name	=	'Pushkin';

															QUERY	PLAN																

	Seq	Scan	on	authors
			Filter:	(last_name	=	'Pushkin'::text)
(2	rows)

And	what	if	we	perform	the	search	by	an	indexed	field?

=>	\timing	on

Timing	is	on.

=>	SELECT	*	FROM	authors	WHERE	author_id	=	1;

	author_id	|	last_name	|	first_name	|	middle_name	
-----------+-----------+------------+-------------
									1	|	Pushkin			|	Alexander		|	Sergeyevich
(1	row)

Time:	0.230	ms

=>	\timing	off

Timing	is	off.

The	query	time	has	been	reduced	by	an	order	of	magnitude.

And	the	query	plan	now	contains	an	index:

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	authors	WHERE	author_id	=	1;

																QUERY	PLAN																
--
	Index	Scan	using	authors_pkey	on	authors
			Index	Cond:	(author_id	=	1)
(2	rows)

We	can	also	create	an	index	by	the	last	name	(and	analyze	the	table	to	gather	up-to-date	statistics):

=>	ANALYZE	authors;

ANALYZE

=>	CREATE	INDEX	ON	authors(last_name);

CREATE	INDEX

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	authors	WHERE	last_name	=	'Pushkin';

																				QUERY	PLAN																					

	Index	Scan	using	authors_last_name_idx	on	authors
			Index	Cond:	(last_name	=	'Pushkin'::text)
(2	rows)

However,	the	index	is	not	a	universal	performance	tuning	tool.	Having	an	index	is	usually	very	useful	if	the	query	needs	to	select
only	a	small	portion	of	all	table	rows.	But	if	it	is	required	to	read	a	lot	of	data,	the	index	will	only	add	overhead,	and	the	optimizer	is
smart	enough	to	understand	it:

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	authors	WHERE	last_name	=	'Wordsmith';

																QUERY	PLAN																	

	Seq	Scan	on	authors
			Filter:	(last_name	=	'Wordsmith'::text)
(2	rows)

Besides,	you	have	to	keep	in	mind	that	indexes	take	extra	disk	space,	and	index	updates	caused	by	table	modifications	bring	extra
overhead.

Let’s	cancel	all	our	changes	(including	index	creation):

=>	ROLLBACK;

ROLLBACK

=>	ANALYZE	authors;

ANALYZE

Authorship

This	table	implements	many-to-many	relationship.

=>	\d	authorship

													Table	"bookstore.authorship"
		Column			|		Type			|	Collation	|	Nullable	|	Default	
-----------+---------+-----------+----------+---------
	book_id			|	integer	|											|	not	null	|	
	author_id	|	integer	|											|	not	null	|	
	seq_num			|	integer	|											|	not	null	|	
Indexes:
				"authorship_pkey"	PRIMARY	KEY,	btree	(book_id,	author_id)
Foreign-key	constraints:
				"authorship_author_id_fkey"	FOREIGN	KEY	(author_id)	REFERENCES	authors(author_id)
				"authorship_book_id_fkey"	FOREIGN	KEY	(book_id)	REFERENCES	books(book_id)

In	addition	to	all	the	previously	used	constraints,	this	table	also	uses	FOREIGN	KEY,	which	is	a	referential	integrity	constraint.

In	fact,	this	table	contains	two	foreign	keys:	one	of	them	refers	to	the	books	table,	and	the	other	refers	to	the	authors	table.

The	seq_num	column	defines	the	order	in	which	multiple	authors	of	the	same	book	should	be	listed.

Note	that	we	have	a	composite	primary	key	here.

=>	SELECT	*	FROM	authorship;

	book_id	|	author_id	|	seq_num	
---------+-----------+---------
							1	|									1	|							1
							2	|									2	|							1
							3	|									3	|							2
							3	|									4	|							1
							4	|									5	|							1
							5	|									6	|							1
							6	|									7	|							1
							7	|									1	|							1
							7	|									5	|							2
							7	|									2	|							3
(10	rows)

Operations

=>	\d	operations

																									Table	"bookstore.operations"
				Column				|		Type			|	Collation	|	Nullable	|											Default												
--------------+---------+-----------+----------+------------------------------
	operation_id	|	integer	|											|	not	null	|	generated	always	as	identity
	book_id						|	integer	|											|	not	null	|	
	qty_change			|	integer	|											|	not	null	|	
	date_created	|	date				|											|	not	null	|	CURRENT_DATE
Indexes:
				"operations_pkey"	PRIMARY	KEY,	btree	(operation_id)
Foreign-key	constraints:
				"operations_book_id_fkey"	FOREIGN	KEY	(book_id)	REFERENCES	books(book_id)
Triggers:
				update_onhand_qty_trigger	AFTER	INSERT	ON	operations	FOR	EACH	ROW	EXECUTE	FUNCTION	
update_onhand_qty()

This	table	uses	one	more	data	type:	date,	which	defines	the	date	without	timestamp.

For	the	date_created	column,	the	current	date	is	specified	as	the	default	value	(using	the	DEFAULT	clause).

=>	SELECT	*	FROM	operations;

	operation_id	|	book_id	|	qty_change	|	date_created	
--------------+---------+------------+--------------
												1	|							1	|									10	|	2025-04-16
												2	|							1	|									10	|	2025-04-16
												3	|							1	|									-1	|	2025-04-16
												4	|							1	|									10	|	2025-04-16
												6	|							1	|									10	|	2025-04-16
												7	|							1	|									10	|	2025-04-16
												8	|							1	|									-1	|	2025-04-16
(7	rows)

Apart	from	the	data	types	used	in	application	tables,	we	are	going	to	come	across	the	boolean	type	all	the	time.	For	example,	the
expressions	in	WHERE	clauses	are	of	the	boolean	type.

It's	important	to	remember	that,	unlike	traditional	programming	languages,	SQL	uses	three-valued	logic:	in	addition	to	true	and
false,	there	is	also	the	NULL	value	(which	can	be	interpreted	as	“the	value	is	unknown”).

You	will	see	some	other	data	types	in	the	examples.	Check	the	handout	“Basic	Data	Types	and	Functions”	(datatypes.pdf)	for	details.

We	will	also	cover	some	other	types	that	are	more	complex:

the	composite	type,	which	represents	a	record	similar	to	a	table	row	(in	“SQL.	Composite	Types”);
arrays	(in	“PL/pgSQL.	Arrays”).

11

Designing the API

Tables and triggers
reading data directly from tables (views)
writing data directly to tables (views)
using triggers for changing related tables

the application must be aware of the data model
this approach provides maximum flexibility

hard to maintain consistency

Functions
reading data via table functions
writing data by calling functions

the application is separated from the data model and is limited by API

lots of wrapper functions required
potential performance issues

There are several ways to set up an API.

The first option is to allow the application to access and modify database
tables directly. In this case, the application must have the exact knowledge
of the data model. This requirement can be relaxed to some extent by using
views.

Another limitation of this approach is that the application has to follow certain
rules; otherwise, it is very hard to maintain data consistency if you have to
address all possible inappropriate operations at the database level. But this
is the approach that provides the most flexibility.

Another option is to forbid direct table access from the application and allow
only function calls. Reading data can be performed by table functions (which
return a set of rows). Writing can be performed by calling other functions and
passing the required data to them. In this case, all the necessary
consistency checks can be implemented within functions: the database will
be protected, but the application will be able to use only a limited set of
features that we provide. It requires writing many wrapper functions and can
lead to performance degradation.

You can also combine these two approaches. For example, you can allow
the application to read data from tables directly, but perform modifications
only by functions.

12

Customer API

buy_book

books

book_id
title

authorship

book_id
author_id
seq_num

authors

author_id
last_name
first_name
middle_name

operations

operation_id
book_id
qty_change
date_created book purchase

get_catalog list of
books

In this application, we will try different ways of setting up the interface
(although it’s usually better to stick to one approach when developing real
applications).

The store will use API functions:
● get_catalog for looking up books (see “SQL. Composite Types”)
● buy_book for making a purchase (see “PL/pgSQL. Query Execution”)

13

o
p

er
at

io
n

s_
v

ca
ta

lo
g

_v

au
th

o
rs

_v

Employee API

add_book

books

book_id
title

authorship

book_id
author_id
seq_num

authors

author_id
last_name
first_name
middle_name

operations

operation_id
book_id
qty_change
date_created

add_author

UPDATE

adding a book adding an author

ordering a book

update_catalog_trigger

The admin panel is going to retrieve data by accessing the following views
(which we create as part of the practice for this lecture):
● catalog_v for the list of books,
● authors_v for the list of authors,
● operations_v for the list of operations.

Authors will be added using the add_author function (we will create it once
we get to the “PL/pgSQL. Query Execution” lecture). For adding books, we
will implement the add_book function (“PL/pgSQL. Arrays”).

To enable book purchase, we will make the catalog_v view updatable
(“PL/pgSQL. Triggers”).

Views

A	view	is	a	named	query.	For	example,	you	can	create	a	view	that	displays	only	those	authors	who	do	not	have	a	middle	name,	as
follows:

=>	CREATE	VIEW	authors_no_middle_name	AS
				SELECT	author_id,	first_name,	last_name
				FROM	authors
				WHERE	nullif(middle_name,'')	IS	NULL;

CREATE	VIEW

Now	this	view	can	be	used	in	queries	almost	like	a	regular	table:

=>	SELECT	*	FROM	authors_no_middle_name;

	author_id	|	first_name	|		last_name		
-----------+------------+-------------
									2	|	William				|	Shakespeare
									3	|	Terry						|	Pratchett
									4	|	Neil							|	Gaiman
									6	|	Jonathan			|	Swift
									9	|	William				|	Shakespeare
								10	|	Terry						|	Pratchett
								11	|	Neil							|	Gaiman
								13	|	Jonathan			|	Swift
(8	rows)

In	a	simple	case,	other	operations	can	also	be	applied	to	a	view,	for	example:

=>	UPDATE	authors_no_middle_name	SET	last_name	=	initcap(last_name);

UPDATE	8

In	complex	cases,	you	can	use	triggers	to	enable	insert,	update,	and	delete	operations.	We	will	explain	it	in	the	“PL/pgSQL.	Triggers”
lecture.

At	the	planning	stage,	the	view	“unfolds”,	revealing	the	base	tables:

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	authors_no_middle_name;

																				QUERY	PLAN																					

	Seq	Scan	on	authors
			Filter:	(NULLIF(middle_name,	''::text)	IS	NULL)
(2	rows)

The	application	uses	three	views.	They	will	be	very	simple	at	first,	but	later	we’ll	move	some	application	logic	into	them.

The	authors	view	displays	a	concatenation	of	the	first	name,	last	name,	and	middle	name	(if	available):

=>	SELECT	*	FROM	authors_v;

	author_id	|					display_name					
-----------+----------------------
									1	|	Alexander	S.	Pushkin
									8	|	Alexander	S.	Pushkin
									5	|	Ivan	A.	Bunin
								12	|	Ivan	A.	Bunin
									7	|	Jerome	K.	Jerome
								14	|	Jerome	K.	Jerome
								13	|	Jonathan	Swift
									6	|	Jonathan	Swift
									4	|	Neil	Gaiman
								11	|	Neil	Gaiman
								10	|	Terry	Pratchett
									3	|	Terry	Pratchett
									2	|	William	Shakespeare
									9	|	William	Shakespeare
(14	rows)

The	catalog	view	displays	only	the	book	title	for	now:

=>	SELECT	*	FROM	catalog_v	\gx

-[RECORD	1]+---
book_id						|	7
title								|	101	Famous	Poems
onhand_qty			|	0
display_name	|	101	Famous	Poems.	Alexander	S.	Pushkin,	Ivan	A.	Bunin,	William	Shakespeare
authors						|	Alexander	Sergeyevich	Pushkin,	Ivan	Alekseyevich	Bunin,	William	Shakespeare
-[RECORD	2]+---
book_id						|	4
title								|	Dark	Avenues
onhand_qty			|	0
display_name	|	Dark	Avenues.	Ivan	A.	Bunin
authors						|	Ivan	Alekseyevich	Bunin
-[RECORD	3]+---
book_id						|	3
title								|	Good	Omens
onhand_qty			|	0
display_name	|	Good	Omens.	Neil	Gaiman,	Terry	Pratchett
authors						|	Neil	Gaiman,	Terry	Pratchett
-[RECORD	4]+---
book_id						|	2
title								|	Romeo	and	Juliet
onhand_qty			|	0
display_name	|	Romeo	and	Juliet.	William	Shakespeare
authors						|	William	Shakespeare
-[RECORD	5]+---
book_id						|	1
title								|	The	Tale	of	Tsar	Saltan
onhand_qty			|	48
display_name	|	The	Tale	of	Tsar	Saltan.	Alexander	S.	Pushkin
authors						|	Alexander	Sergeyevich	Pushkin
-[RECORD	6]+---
book_id						|	6
title								|	Three	Men	in	a	Boat	(To	Say	Nothing	of	the	Dog)
onhand_qty			|	0
display_name	|	Three	Men	in	a	Boat	(To	Say	Nothing	of	the...	Jerome	K.	Jerome
authors						|	Jerome	Klapka	Jerome
-[RECORD	7]+---
book_id						|	5
title								|	Travels	into	Several	Remote	Nations	of	the	World.	In	Four	Parts.	By	Lemuel	
Gulliver,	First	a	Surgeon,	and	then	a	Captain	of	Several	Ships
onhand_qty			|	0
display_name	|	Travels	into	Several	Remote	Nations	of	the...	Jonathan	Swift
authors						|	Jonathan	Swift
-[RECORD	8]+---
book_id						|	9
title								|	Romeo	and	Juliet
onhand_qty			|	0
display_name	|	
authors						|	
-[RECORD	9]+---
book_id						|	10
title								|	Good	Omens
onhand_qty			|	0
display_name	|	
authors						|	
-[RECORD	10]---
book_id						|	11
title								|	Dark	Avenues
onhand_qty			|	0
display_name	|	
authors						|	
-[RECORD	11]---
book_id						|	12
title								|	Travels	into	Several	Remote	Nations	of	the	World.	In	Four	Parts.	By	Lemuel	
Gulliver,	First	a	Surgeon,	and	then	a	Captain	of	Several	Ships
onhand_qty			|	0
display_name	|	
authors						|	
-[RECORD	12]---
book_id						|	13
title								|	Three	Men	in	a	Boat	(To	Say	Nothing	of	the	Dog)
onhand_qty			|	0
display_name	|	
authors						|	
-[RECORD	13]---
book_id						|	14
title								|	101	Famous	Poems
onhand_qty			|	0
display_name	|	
authors						|	

-[RECORD	14]---
book_id						|	8
title								|	The	Tale	of	Tsar	Saltan
onhand_qty			|	0
display_name	|	
authors						|	

The	operations	view	specifies	the	operation	type	(arrival	or	sale):

=>	SELECT	*	FROM	operations_v;

	book_id	|	op_type	|	qty_change	|	date_created	
---------+---------+------------+--------------
							1	|	Arrival	|									10	|	16.04.2025
							1	|	Arrival	|									10	|	16.04.2025
							1	|	Sale				|										1	|	16.04.2025
							1	|	Arrival	|									10	|	16.04.2025
							1	|	Arrival	|									10	|	16.04.2025
							1	|	Arrival	|									10	|	16.04.2025
							1	|	Sale				|										1	|	16.04.2025
(7	rows)

15

Takeaways

Database design is a separate complex topic
theory is important, but it should not take precedence over common sense

Normalized data simplifies the development and facilitates
consistency support

The API can use tables, views, functions, and triggers

16

Practice

1. Make sure that you are connected to the bookstore database and
the bookstore schema is the current one.

2. Create books, authors, authorship, and operations tables with all
the necessary constraints, exactly as shown in the demo.

3. Insert data about several books into the tables.
Check the result by running some queries.

4. In the bookstore schema, create authors_v, catalog_v, and
operations_v views, so that they look exactly like shown in the
demo.
Check that the application now shows the data in “Books”,
“Authors”, and “Catalog” tabs.

1. Use current_database() and current_schema() functions.

2. Use the demonstrated output of psql’s \d commands as a reference.

3. You can use the data shown in the demo, or come up with your own data.

4. Try writing queries to the base tables that return the same results as the
queries to views shown in the demo. Then save these queries as views.

After completing the assignments, make sure to compare your queries with
those in the provided keys. Make corrections if necessary.

Task	1.	Database	and	schema

=>	SELECT	current_database(),	current_schema();

	current_database	|	current_schema	
------------------+----------------
	bookstore								|	bookstore
(1	row)

Task	2.	Tables

Authors:

=>	CREATE	TABLE	authors(
				author_id	integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY,
				last_name	text	NOT	NULL,
				first_name	text	NOT	NULL,
				middle_name	text
);

CREATE	TABLE

Books:

=>	CREATE	TABLE	books(
				book_id	integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY,
				title	text	NOT	NULL
);

CREATE	TABLE

Authorship:

=>	CREATE	TABLE	authorship(
				book_id	integer	REFERENCES	books,
				author_id	integer	REFERENCES	authors,
				seq_num	integer	NOT	NULL,
				PRIMARY	KEY	(book_id,author_id)
);

CREATE	TABLE

Operations:

=>	CREATE	TABLE	operations(
				operation_id	integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY,
				book_id	integer	NOT	NULL	REFERENCES	books,
				qty_change	integer	NOT	NULL,
				date_created	date	NOT	NULL	DEFAULT	current_date
);

CREATE	TABLE

Task	3.	Data

Authors:

=>	INSERT	INTO	authors(last_name,	first_name,	middle_name)
VALUES
				('Pushkin',	'Alexander',	'Sergeyevich'),
				('Shakespeare',	'William',	NULL),
				('Pratchett',	'Terry',	NULL),
				('Gaiman',	'Neil',	NULL),
				('Bunin',	'Ivan',	'Alekseyevich'),
				('Swift',	'Jonathan',	NULL),
				('Jerome',	'Jerome',	'Klapka');

INSERT	0	7

Books:

=>	INSERT	INTO	books(title)
VALUES
				('The	Tale	of	Tsar	Saltan'),
				('Romeo	and	Juliet'),
				('Good	Omens'),
				('Dark	Avenues'),
				('Travels	into	Several	Remote	Nations	of	the	World.	In	Four	Parts.	'
'By	Lemuel	Gulliver,	First	a	Surgeon,	and	then	a	Captain	of	Several	Ships'),
				('Three	Men	in	a	Boat	(To	Say	Nothing	of	the	Dog)'),
				('101	Famous	Poems');

INSERT	0	7

Authorship:

=>	INSERT	INTO	authorship(book_id,	author_id,	seq_num)
VALUES
				(1,	1,	1),
				(2,	2,	1),
				(3,	3,	2),
				(3,	4,	1),
				(4,	5,	1),
				(5,	6,	1),
				(6,	7,	1),
				(7,	1,	1),
				(7,	5,	2),
				(7,	2,	3);

INSERT	0	10

Operations:

=>	INSERT	INTO	operations(book_id,	qty_change)
VALUES
				(1,	10),
				(1,	10),
				(1,	-1);

INSERT	0	3

Task	4.	Views

Authors	View:

=>	CREATE	VIEW	authors_v	AS
SELECT	a.author_id,
							a.first_name	||
							coalesce('	'	||	nullif(a.middle_name,	''),	'')	||	'	'	||
							a.last_name	AS	display_name
FROM			authors	a;

CREATE	VIEW

Catalog	View:

=>	CREATE	VIEW	catalog_v	AS
SELECT	b.book_id,
							b.title	AS	display_name
FROM			books	b;

CREATE	VIEW

Operations	View:

=>	CREATE	VIEW	operations_v	AS
SELECT	book_id,
							CASE
											WHEN	qty_change	>	0	THEN	'Arrival'
											ELSE	'Sale'
							END	op_type,
							abs(qty_change)	qty_change,
							to_char(date_created,	'DD.MM.YYYY')	date_created
FROM			operations
ORDER	BY	operation_id;

CREATE	VIEW

