SQL
Functions and Procedures

Copyright

© Postgres Professional, 2017-2025

Authors Egor Rogov, Pavel Luzanov, llya Bashtanov, Igor Gnatyuk
Translated by Liudmila Mantrova and Alexander Meleshko

Photo by Oleg Bartunov (Tukuche peak, Nepal)

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.com

Disclaimer

In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

Topics

Functions and their specifics in databases
Parameters and return values

Passing arguments in a function call

Volatility categories and query planning
Procedures and their differences from functions

Overloading and polymorphism

rt"

N

Functions in databases (~f

The main goal is simplifying development tasks

interface (parameters) and implementation (function body)
abstracting from other tasks when implementing a particular function

Traditional languages PostgreSQL

side global variables whole database
effects (volatility categories)
modules own interface namespaces,
and implementation client and server
challenges overhead hiding the query
related to calls from the planner
(inlining) (inlining, subqueries, views)

The main goal of introducing functions in programming is simplifying
development tasks by decomposing them into smaller subtasks. Such
simplification is possible because you can abstract from the big picture
when thinking of a function. For this purpose, the function provides a precise
interface to the outside world (parameters and the return value).

Its implementation (the function body) can change; the caller does not see
these changes and does not depend on them. This ideal situation can be
messed up by the global state (global variables), and you have to keep in
mind that in the DB context the whole database constitutes such a state.

In traditional programming languages, functions are often grouped into
modules (packages, classes for OOP, etc.), which have their own interface
and implementation. This separation into modules can be more or less
arbitrary. In PostgreSQL, there is a fixed boundary between the client and
the server: the server code deals with the database, while the client code
manages transactions. There are no modules (or packages), only
namespaces.

The only disadvantage of extensive use of functions in traditional languages
is function call overhead. It is sometimes overcome by inlining function code
into the calling program. In databases, the consequences can be more
serious: if some part of the query is moved into a function, the planner stops
seeing the big picture and cannot build a good query plan. In some cases,
PostgreSQL can also perform inlining; alternatively, subqueries or views can
be used.

Functions overview Al

A database object

function declaration is stored in the system catalog

The structure of function declaration

name
parameters
return data type
body

Can be written in various languages, including SQL

the code is stored as a string literal
a function is interpreted when it is called

Is called in the context of an expression

Functions are regular database objects, just like tables or indexes. Function
declarations are stored in the system catalog; that's why database functions
are called stored functions.

PostgreSQL provides a lot of standard functions. Some of them are listed in
the “Basic data types and functions” handout.

You can also write your own functions in various programming languages.
The information provided in this lecture applies to functions in any
programming language, but we will use SQL in all examples.

Predictably, a function declaration consists of a name, optional parameters,
a return data type, and a body. What may seem unexpected is that the body
IS written as a string literal, which contains the code written in the
programming language of your choice. It makes function declarations look
the same regardless of the used programming language. The body string is
stored in the system catalog and is interpreted each time the function is
called. Since PostgreSQL 14, SQL code can be pre-parsed. In this case the
parse result is stored in the system catalog instead of the code itself.
Another way to avoid interpretation is to write a function in the C language,
but we are not going to discuss this approach here.

A function is always called within the context of an expression: In the list of
expressions of the SELECT statement, in the WHERE clause, in CHECK
constraints, etc.

https://postgrespro.com/docs/postgresqgl/17/sql-createfunction
https://postgrespro.com/docs/postgresql/17/sgl-syntax-calling-funcs

https://postgrespro.com/docs/postgresql/17/sql-createfunction
https://postgrespro.com/docs/postgresql/17/sql-syntax-calling-funcs

Functions without parameters

Here is a simple example of a function with no parameters:

=> CREATE FUNCTION hello_world() -- function name and an empty list of parameters

RETURNS text -- the type of the return value
AS $$ SELECT 'Hello, world!'; $$ -- function body
LANGUAGE sql; -- language specification

CREATE FUNCTION

It is convenient to write the body as a dollar-quoted string, as shown in the example above. Otherwise, you have to take care of
escaping quotes, which are sure to appear in the function body. Compare the following strings:

=> SELECT ' SELECT '‘'Hello, world!''; *;

?column?

SELECT 'Hello, world!';
(1 row)

=> SELECT $$ SELECT 'Hello, world!'; $$%;

?column?

SELECT 'Hello, world!';
(1 row)

If required, dollar quoting can be nested. It is achieved by using different text strings between dollars in each pair of quotes:
=> SELECT $func$ SELECT $$Hello, world!s; $funcs;

?column?

SELECT $$Hello, world!$$;
(1 row)

A function is called in the context of an expression. For example:
=> SELECT hello_world(); -- empty brackets are mandatory

hello world

Hello, world!
(1 row)

Let's have a look at how the body of a function is stored in the system catalog.

=> SELECT proname, prosrc, prosqlbody FROM pg_proc
WHERE proname = 'hello_world' \gx

-[RECORD 1 J------mmmmmmmmmmmamm o
proname | hello world

prosrc | SELECT 'Hello, world!';
prosqlbody |

The function body is stored as-is in a text string.

Let’s go the modern way and recreate the function in accordance with the SQL standard. Here, the body of the function will be just
RETURN <expression> (so-called unquoted SQL function body):

=> CREATE OR REPLACE FUNCTION hello_world() RETURNS text
LANGUAGE sql
RETURN 'Hello, world!';

CREATE FUNCTION
Check the system catalog again: the function body is stored differently now.

=> SELECT proname, prosrc, left(prosqlbody, 100) AS body
FROM pg_proc
WHERE proname = 'hello_world' \gx

= RECORD 1 J---mmmmmmmmm s m o s o m o e o f e e e b e e b oo
proname | hello world

prosrc |

body | {QUERY :commandType 1 :querySource 0 :canSetTag true :utilityStmt <>
:resultRelation 0 :hasAggs fals

This time, the source code is not stored here. You can get it with the \sf command:
=> \sf hello_world

CREATE OR REPLACE FUNCTION public.hello world()
RETURNS text

LANGUAGE sql

RETURN 'Hello, world!'::text

If a function body contains multiple SQL operators, it will return the first row of the last operator’s output. If the function code is in
the SQL standard format, you will need to use the BEGIN ATOMIC ... END construct to return the whole block of operators:

=> CREATE OR REPLACE FUNCTION hello_world() RETURNS text
LANGUAGE sql
BEGIN ATOMIC
SELECT 'First Line';
SELECT 'Second Line';
END;

CREATE FUNCTION
Let’s call the function:
=> SELECT hello_world();

hello world

Second Line
(1 row)

Note how the SQL standard-style syntax is different from the regular single-line style:

no AS construct with the function code as a text,

the new keyword RETURN can be used to return a value,

"LANGUAGE sql" is optional,

function code is parsed and the parse result is stored in pg_proc.prosqlbody, while the source code itself is not stored in
pg_proc.prosrc, unlike with the traditional notation.

Not only does this confirm to the standard better, but also improves compatibility with other SQL implementations. Now, when a
function is called, its commands don’t need to go through interpretation again, and the parsed function body is used.

Not all SQL operators can be used in a function. The following ones are forbidden:

e transaction control commands (BEGIN, COMMIT, ROLLBACK, etc.);
e service commands (such as VACUUM or CREATE INDEX).

Here is an example of an invalid function. We have used the void pseudotype, which indicates that the function returns nothing.

=> CREATE FUNCTION do_commit() RETURNS void
LANGUAGE sql
BEGIN ATOMIC COMMIT; END;

ERROR: COMMIT is not yet supported in unquoted SQL function body

You can use procedures to manage transactions; we will cover this topic later in this lecture.

Functions with input parameters

Here is a function with a single parameter:

=> CREATE FUNCTION hello(name text) -- a formal parameter
RETURNS text

LANGUAGE sql

RETURN 'Hello, ' || name || '!';

CREATE FUNCTION
When calling this function, we have to specify the actual value that corresponds to the formal parameter:

=> SELECT hello('Alice');

Hello, Alice!
(1 row)

When specifying parameter types, you can add a modifier (such as varchar(10)), but it will be ignored.

You can define a function parameter without a name; then the function body will have to refer to it by its position number. Let’s
delete this function and create a new one:

=> DROP FUNCTION hello(text); -- it is enough to specify the parameter type
DROP FUNCTION

=> CREATE FUNCTION hello(text)

RETURNS text

LANGUAGE sql

RETURN 'Hello, ' || $1 || '!'; -- a number instead of the name

CREATE FUNCTION

=> SELECT hello('Alice');

Hello, Alice!
(1 row)

But this approach is inconvenient and should be avoided.

Let’s delete and recreate the function again, now adding two more parameters: a greeting and the title of a person.
=> DROP FUNCTION hello(text);

DROP FUNCTION

Here we have used an optional IN keyword, which means the input parameter. The DEFAULT clause is used to define the default
parameter value:

=> CREATE FUNCTION hello(IN name text, IN greet text DEFAULT 'Dear', IN title text DEFAULT 'Mr')
RETURNS text

LANGUAGE sql

RETURN 'Hello, ' || greet || ' ' || title || * ' || name || "!";

CREATE FUNCTION

=> SELECT hello('Alice', 'Charming', 'Mrs'); -- the second and the third parameter are specified

Hello, Charming Mrs Alice!
(1 row)

Note that parameters with default values must be at the end of the list. When calling a function, if some default parameters are
omitted and use their actual values, all following default-able parameters will also use their default values,

=> SELECT hello('Bob', 'Excellent'); -- only the first parameter gets the default value

Hello, Excellent Mr Bob!
(1 row)

=> SELECT hello('Bob'); -- both parameters with default values are omitted

Hello, Dear Mr Bob!
(1 row)

So far, we have provided function parameters as positional ones, in the order they were specified in the function declaration. In
many standard functions, parameter names are not set, so it is the only way possible.

But if the formal parameters are named, you can use these names when providing their actual values. In this case, parameters can
be specified in any order:

=> SELECT hello(title => 'Dr.', name => 'Alice');

Hello, Dear Dr. Alice!
(1 row)

This approach is convenient if the order of parameters is not quite obvious, especially if there are a lot of them.
You can combine both conventions: provide some parameters by position (starting from the first one) and specify the rest by name:

=> SELECT hello('Alice', title => 'Dr.');

Hello, Dear Dr. Alice!
(1 row)

If the function must return NULL when at least one of its input parameters is NULL, it can be declared STRICT. In this case, the
function body will not be executed at all.

=> DROP FUNCTION hello(text, text, text);
DROP FUNCTION

=> CREATE FUNCTION hello(IN name text, IN title text DEFAULT 'Mr')
RETURNS text

LANGUAGE sql STRICT

RETURN 'Hello, ' || title || ' * || name || '!';

CREATE FUNCTION

=> SELECT hello('Alice', NULL);

Input and output (¢

Input values
are defined by parameters with IN or INOUT modes

Output value

is defined either by the RETURNS clause
or by parameters with IN or INOUT modes

if both forms are specified, they must be logically equivalent

Formal parameters that have IN or INOUT modes are input parameters.
Their actual values must be specified in the function call (or the default
values must be defined).

There are two ways to define the return value:
* use the RETURNS clause to specify the return data type,
« define output parameters using INOUT or OUT modes.

These two approaches are equivalent. For example, a function with the
RETURNS integer clause and a function with the OUT integer parameter
both return an integer number.

You can combine these two approaches. In this case, the function will also
return one integer number. But note that the types of the output parameters
and the RETURNS clause must not contradict each other.

Thus, unlike in many traditional programming languages, you cannot write a
function that returns one value while passing another value into the OUT
parameter.

Functions with output parameters

An alternative way to return a value is to use an output parameter.
=> DROP FUNCTION hello(text, text);
DROP FUNCTION

=> CREATE FUNCTION hello(
IN name text,
OUT text -- you can omit the parameter name if it is not required

)
LANGUAGE sql
RETURN 'Hello, ' || name || '!';

CREATE FUNCTION

=> SELECT hello('Alice');

Hello, Alice!
(1 row)

The result is the same.

You can use the RETURNS clause and the OUT parameter together: the result will be the same anyway:
=> DROP FUNCTION hello(text); -- OUT parameters are omitted

DROP FUNCTION

=> CREATE FUNCTION hello(IN name text, OUT text)
RETURNS text

LANGUAGE sql

RETURN 'Hello, ' || name || "'!‘;

CREATE FUNCTION

=> SELECT hello('Alice');

Hello, Alice!
(1 row)

Or even use an INOUT parameter:
=> DROP FUNCTION hello(text);
DROP FUNCTION

=> CREATE FUNCTION hello(INOUT name text)
LANGUAGE sql
RETURN 'Hello, ' || name || '!‘;

CREATE FUNCTION

=> SELECT hello('Alice');

Hello, Alice!
(1 row)

Note that the actual value passed to the SQL function in an INOUT parameter is not modified: we pass an input value, and the
output value is returned as a result (SQL differs from many other programming languages in this respect). That’s why we can pass a
constant, although other languages would require a variable.

While the RETURNS clause can take only one value, there can be several output parameters. For example:
=> DROP FUNCTION hello(text);

DROP FUNCTION

=> CREATE FUNCTION hello(
IN name text,
OUT greeting text,
OUT clock timetz)
LANGUAGE sql
RETURN ('Hello, ' || name || '!', current_time);

CREATE FUNCTION
Here, the expression after RETURN has to be in parentheses.

=> SELECT hello('Alice');

("Hello, Alice!",21:39:43.010241+03)
(1 row)

Indeed, our function has returned not just one but several values at once.

We will provide more details about this feature and composite types in the “SQL. Composite Types” lecture.

Volatility categories (<r

Volatile

may return different values for the same input arguments
is used by default

Stable

the return value cannot change within a single SQL operator
the function cannot change the database state

Immutable

the return value cannot change, the function is deterministic
the function cannot change the database state

Each function is mapped to a particular volatility category, which defines the
properties of the return value for the same input arguments.

The volatile category means that the return value can change randomly.
Such functions will be executed each time they are called. If the function is
declared without a category specification, it is assumed to be volatile.

The stable category is used for functions that always return the same value

within a single SQL operator. In particular, such functions cannot change the
state of the database. PostgreSQL could execute such a function only once

during the query and then use the computed value.

The immutable category is even more strict: the return value always
remains the same. Such a function could be executed at the planning stage,
before the query is actually executed.

It does not mean that it happens so all the time, but the planner has the right
to perform such optimizations. In some (simple) cases, the planner makes
its own assumptions about function volatility, regardless of the explicitly
provided category.

https://postgrespro.com/docs/postgresql/17/xfunc-volatility

https://postgrespro.com/docs/postgresql/17/xfunc-volatility

Volatility categories and isolation

In general, using functions within queries does not violate the isolation level of the transaction, but there are two points worth
knowing.

First, volatile functions can cause data inconsistency within the query when used at the Read Committed level.
Let’s create a function that returns the number of rows in a table:

=> CREATE TABLE t(n integer);

CREATE TABLE

=> CREATE FUNCTION cnt() RETURNS bigint
LANGUAGE sql VOLATILE
RETURN (SELECT count(*) FROM t);

CREATE FUNCTION

Now let’s call it several times with a delay and insert a row into the table in a parallel session.
=> BEGIN ISOLATION LEVEL READ COMMITTED;

BEGIN

=> SELECT (SELECT count(*) FROM t), cnt(), pg_sleep(1)
FROM generate_series(1,4);

| => INSERT INTO t VALUES (1);

INSERT 0 1

count | cnt | pg sleep

—_——

(4 rows

=> END;

COMMIT

It won’t happen at stricter isolation levels, or if the function is stable or immutable.
=> ALTER FUNCTION cnt() STABLE;

ALTER FUNCTION

=> TRUNCATE t;

TRUNCATE TABLE

=> BEGIN ISOLATION LEVEL READ COMMITTED;

BEGIN

=> SELECT (SELECT count(*) FROM t), cnt(), pg_sleep(1)
FROM generate_series(1,4);

| => INSERT INTO t VALUES (1);

INSERT 0 1

count | cnt | pg _sleep

_——

(4 rows

=> END;

COMMIT

Another point is the visibility of changes made by the same transaction.

Volatile functions can see all the changes, even those made by the current SQL operator that has not been completed yet.
=> ALTER FUNCTION cnt() VOLATILE;

ALTER FUNCTION

=> TRUNCATE t;

TRUNCATE TABLE

=> INSERT INTO t SELECT cnt() FROM generate_series(1,5);

INSERT 0 5

=> SELECT * FROM t;

n

0
1
2
3
4
5

(

rows)

It is true for any isolation level.

Stable and immutable functions see only the changes performed by an already completed operator.
=> ALTER FUNCTION cnt() STABLE;

ALTER FUNCTION

=> TRUNCATE t;

TRUNCATE TABLE

=> INSERT INTO t SELECT cnt() FROM generate_series(1,5);

INSERT 0 5

=> SELECT * FROM t;

Volatility categories and query planning

Thanks to the volatility labels that provide additional information about the function behavior, the optimizer can spare some
function calls.

To try it out, let’s create a function that returns a random number:

=> CREATE FUNCTION rnd() RETURNS float
LANGUAGE sql VOLATILE
RETURN random();

CREATE FUNCTION
Let’s check the execution plan of the following query:

=> EXPLAIN (costs off)
SELECT * FROM generate_series(1,10) WHERE rnd() > 0.5;

QUERY PLAN

Function Scan on generate series
Filter: (random() > '0.5'::double precision)
(2 rows)

The query plan shows that the generate_series function is honestly called several times; each result is compared with a random
number and is filtered out, if required.

You can see it for yourself:
=> SELECT * FROM generate_series(1,10) WHERE rnd() > 0.5;

generate series

(5 rows)

= \g

generate series

(4 rows)

= \g

generate series

(6 rows)

=> \g

generate series

(4 rows)

=> \g

generate series

(3 rows)

Here, we randomly get 0 to 10 rows.

A stable function will be called only once, because we have virtually specified that its value cannot change within a single operator:
=> ALTER FUNCTION rnd() STABLE;
ALTER FUNCTION

=> EXPLAIN (costs off)
SELECT * FROM generate_series(1,10) WHERE rnd() > 0.5;

QUERY PLAN

Result
One-Time Filter: (rnd() > '0.5'::double precision)
-> Function Scan on generate series

(3 rows)

The output will be either 0 or 10 rows.

=> SELECT * FROM generate_series(1,10) WHERE rnd() > 0.5;

generate series

1
2
3
4
5
6
7
8
9
10

(10 rows)

= \g

generate series

(0 rows)

= \g

generate series

=
©QOVWoOoONOUTEA WN =

(10 rows)

Finally, immutable functions are computed at the planning stage, so we do not need any filters during execution:
=> ALTER FUNCTION rnd() IMMUTABLE;

ALTER FUNCTION

=> EXPLAIN (costs off)
SELECT * FROM generate_series(1,10) WHERE rnd() > 0.5;

QUERY PLAN
Function Scan on generate series
(1 row)
= \g
QUERY PLAN
Function Scan on generate series
(1 row)
=> \g
QUERY PLAN
Result
One-Time Filter: false
(2 rows)
= \g

QUERY PLAN

Function Scan on generate series
(1 row)

The plan for immutable is random!

It is the developer’s responsibility to provide the correct information.

Function inlining

In some (very simple) cases, a function can be inlined: the function body written in SQL can be inserted right into the main SQL
operator while the query is being parsed. In this case, we can save some time on the function call.

Roughly speaking, the following conditions should be met:

The function body contains only one SELECT operator.

The function does not access any tables.

There are no subqueries, grouping operations, etc.

There must be only one return value.

The called functions must not violate the specified volatility category.

We have already seen such an example: the rnd() function, which is declared volatile.
Let’s take another look.

=> ALTER FUNCTION rnd() VOLATILE;

ALTER FUNCTION

=> EXPLAIN (costs off)
SELECT * FROM generate_series(1,10) WHERE rnd() > 0.5;

QUERY PLAN

Function Scan on generate series
Filter: (random() > '0.5'::double precision)
(2 rows)

The Filter does not mention the rnd() function, only random() is present; it will be called directly, without using the rnd() wrapper.

Procedures overview o

The same structure of declaration

except for return data type
can return a result via OUT parameters

Is called using the CALL statement

Can manage transactions
except for SQL language

10

Procedures were first introduced in PostgreSQL 11. The main reason for
their introduction was that functions cannot manage transactions. Functions
are called in the context of some expression which is computed as part of
an already started operator (such as SELECT) in an already started
transaction. It is impossible to complete a transaction and then start a new
one while the operator is being executed.

Procedures are always called by the special CALL operator. If this operator
starts a new transaction (instead of being called from an already started
one), then it is possible to use transaction management commands in the
called procedure.

Unfortunately, procedures written in SQL cannot use COMMIT and
ROLLBACK commands (although those written in accordance with the new
SQL standard may be able to in the future). Therefore, we won't see an
example of a procedure that manages transactions until we get to the
“PL/pgSQL. Query execution” section.

Some say that the difference between functions and procedures is that a
procedure does not return a result. But it is not true: procedures can also
return a result, if required.

An umbrella term for both functions and procedures is routines. They share
the common namespace.

https://postgrespro.com/docs/postaresal/17/sgl-createprocedure
https://postgrespro.com/docs/postgresql/17/sql-call

https://postgrespro.com/docs/postgresql/17/sql-createprocedure
https://postgrespro.com/docs/postgresql/17/sql-call

Procedures without parameters

Let’s start with an example of a simple procedure with no parameters.

=> CREATE PROCEDURE fill()
AS $%

TRUNCATE t;

INSERT INTO t SELECT random(1,100) FROM generate_series(1,3);
$$ LANGUAGE sql;

CREATE PROCEDURE

To call a procedure, you have to use the CALL operator:
=> CALL fill();

CALL

Take alook at the result in the table:

=> SELECT * FROM t;

n

21
76
40
(3 rows)

Let’s define the procedure again, now in the SQL standard style:

=> CREATE OR REPLACE PROCEDURE fill()

LANGUAGE sql

BEGIN ATOMIC
DELETE FROM t; -- TRUNCATE is not yet supported in such procedures
INSERT INTO t SELECT random(1,100) FROM generate_series(1,3);

END;

CREATE PROCEDURE
Check if it works:

=> CALL fill();
CALL

=> SELECT * FROM t;

n

81
42
69
(3 rows)

Try to commit a transaction within the procedure:

=> CREATE OR REPLACE PROCEDURE fill()

LANGUAGE sql

BEGIN ATOMIC
DELETE FROM t;
INSERT INTO t SELECT random(1,100) FROM generate_series(1,3);
COMMIT;

END;

ERROR: COMMIT is not yet supported in unquoted SQL function body

Note that we get the invalid command error as early as at the procedure definition stage.
Rename the table the procedure is working with:

=> ALTER TABLE t RENAME TO ta;

ALTER TABLE

The call below will not result in an error. In the procedure definition in the system catalog, the table is specified not by name but by
ID, which was obtained at procedure creation.

=> CALL fill();

Similar behavior can be achieved with a function that returns the output of its last operator. You can define the return type as void
if the function does not return anything.

Let’s give the table back its previous name and define the function:
=> ALTER TABLE ta RENAME TO t;
ALTER TABLE

=> CREATE FUNCTION fill_avg() RETURNS float

LANGUAGE sql

BEGIN ATOMIC
DELETE FROM t;
INSERT INTO t SELECT random(1,100) FROM generate_series(1l, 3);
SELECT avg(n) FROM t;

END;

CREATE FUNCTION
In any case, a function is always called in the context of some expression:
=> SELECT fill_avg();

fill avg

=> SELECT * FROM t;

n

7
53
66
(3 rows)

Functions cannot manage transactions. But SQL procedures do not support it either (although procedures written in other
languages do provide such support).

Procedures with parameters

Let’s add an input parameter that defines the number of rows:
=> DROP PROCEDURE fill();
DROP PROCEDURE

=> CREATE PROCEDURE fill(nrows integer)
LANGUAGE sql
BEGIN ATOMIC
DELETE FROM t;
INSERT INTO t SELECT random(1,100) FROM generate_series(l, nrows);
END;

CREATE PROCEDURE

Just like functions, procedures allow passing arguments by position or by name:
=> CALL fill(nrows => 5);

CALL

=> SELECT * FROM t;

n
36
83
2
8
39
(5 rows)

Procedures can also have OUT and INOUT parameters that can be used to return a value.

=> DROP PROCEDURE fill(integer);
DROP PROCEDURE

=> CREATE PROCEDURE fill(IN nrows integer, OUT average float)
LANGUAGE sql
BEGIN ATOMIC
DELETE FROM t;
INSERT INTO t SELECT random(1,100) FROM generate_series(1l, nrows);

SELECT avg(a) FROM t; -- like in a function
END;
ERROR: column "a" does not exist
LINE 6: SELECT avg(a) FROM t; -- like in a function
Let’s try it out:

=> CALL fill(5, NULL /* the input parameter is not used but has to be specified */);

ERROR: procedure fill(integer, unknown) does not exist
LINE 1: CALL fill(5, NULL /* the input parameter is not used but has...

HINT: No procedure matches the given name and argument types. You might need to add
explicit type casts.

Overloading g

Several routines with the same name

routines differ in names and input parameter types

types of the return value and output parameters are ignored
an appropriate routine is selected during execution based on the argument
types

CREATE OR REPLACE command

for new combinations of input parameter types, creates a new overloaded
routine

for existing combinations of input parameter types, changes the
corresponding routine, but not the type of the return value

12

Overloading is the ability to use one and the same name for several routines
(functions or procedures), which differ in types of IN and INOUT
parameters.

In other words, a routine name and types of its input parameters form a
routine signature. When calling a routine, PostgreSQL finds its version that
corresponds to the passed arguments. If an appropriate routine cannot be
determined unambiguously, a runtime error occurs.

A signature, however, does not include:
* routine type (procedure or function),

* OUT parameter types,

* returned value type.

You have to take overloading into account when executing CREATE OR
REPLACE (FUNCTION or PROCEDURE). If input parameter types differ
from those used by already existing routines, a new overloaded routine will
be created, otherwise a matching existing one will be replaced. Besides,
when an existing routine is replaced with the CREATE OR REPLACE
command, its type, OUT parameter types and return value type may not be
changed, but other properties such as the language can be. In some cases,
this means you must delete the routine and create it anew to replace it.
However, doing so requires you to first delete all dependent objects, such as
views, triggers, and other routines (DROP ROUTINE ... CASCADE).

https://postgrespro.com/docs/postgresgl/17/xfunc-overload

https://postgrespro.com/docs/postgresql/17/xfunc-overload

Polymorphism (¢

A routine that takes arguments of various types
formal parameters use polymorphic pseudotypes (such as anyelement or
anycompatible)

the actual data type is selected during execution based on the type of the
passed arguments

13

Instead of having several overloaded routines for different types, it is
sometimes more convenient to create a single routine that takes arguments
of any (or almost any) type.

For this purpose, a special polymorphic pseudotype is used as the formal
parameter type. For now, we will use just two of them — anyelement and
anycompatible — with more to follow in later sections.

A routine defined with polymorphic pesudotypes as input parameters may
take any data type as input. The exact type to be used by the routine is
selected at run time based on the type of the passed argument.

If a routine is defined with multiple polymorphic parameters of the
anyelement type, all passed arguments will be implicitly converted to the
type of the first parameter. On the other hand, if a routine is defined with
multiple polymorphic parameters of the anycompatible type, all passed
arguments will be converted to some common type.

If a function is declared with a polymorphic return value, it must have at
least one polymorphic input parameter. The exact type of the return value is
also defined by the actual type of the passed input argument. For SQL
standard-style routines, there is no way to use polymorphic data types for
arguments.

https://postgrespro.com/docs/postgresgl/17/extend-type-system#EXTEND-T
YPES-POLYMORPHIC

https://postgrespro.com/docs/postgresql/17/xfunc-sql#XFUNC-SQL-POLYM
ORPHIC-FUNCTIONS

https://postgrespro.com/docs/postgresql/17/extend-type-system#EXTEND-TYPES-POLYMORPHIC
https://postgrespro.com/docs/postgresql/17/extend-type-system#EXTEND-TYPES-POLYMORPHIC
https://postgrespro.com/docs/postgresql/17/xfunc-sql#XFUNC-SQL-POLYMORPHIC-FUNCTIONS
https://postgrespro.com/docs/postgresql/17/xfunc-sql#XFUNC-SQL-POLYMORPHIC-FUNCTIONS

Overloaded routines

Overloading mechanism is the same for both functions and procedures. They have a common namespace.

As an example, let’s create a function that compares two integer numbers and returns the largest value. (There is a similar SQL
expression called greatest, but we’ll write our own function here.)

=> CREATE FUNCTION maximum(a integer, b integer) RETURNS integer
LANGUAGE sql
RETURN CASE WHEN a > b THEN a ELSE b END;

CREATE FUNCTION
Let’s check the result:
=> SELECT maximum(10, 20);

maximum

20
(1 row)

Suppose we decided to create a similar function for three numbers. Thanks to overloading, we do not need to invent a new name:

=> CREATE FUNCTION maximum(a integer, b integer, c integer)
RETURNS integer
LANGUAGE sql
RETURN CASE
WHEN a > b THEN maximum(a, c)
ELSE maximum(b, c)
END;

CREATE FUNCTION
Now we have two functions with the same name but a different number of parameters:
=> \df maximum

List of functions

Schema | Name | Result data type | Argument data types | Type
-------- B e s s e TR SR
public | maximum | integer | a integer, b integer | func
public | maximum | integer | a integer, b integer, c¢ integer | func
(2 rows)

And both of them work:

=> SELECT maximum(10, 20), maximum(10, 20, 30);

maximum | maximum

The CREATE OR REPLACE command enables you to create a routine or replace an existing one without deleting it. Since a function
with such a signature already exists, it will be replaced:

=> CREATE OR REPLACE FUNCTION maximum(a integer, b integer, c integer)
RETURNS integer
LANGUAGE sql
RETURN CASE
WHEN a > b THEN
CASE WHEN a > ¢ THEN a ELSE c END
ELSE
CASE WHEN b > ¢ THEN b ELSE c END
END;

CREATE FUNCTION

Let our function support not only integers but also real numbers. How can we implement it? We could define one more function as
follows:

=> CREATE FUNCTION maximum(a real, b real) RETURNS real
LANGUAGE sql
RETURN CASE WHEN a > b THEN a ELSE b END;

CREATE FUNCTION
Now we have three functions with the same name:
=> \df maximum

List of functions

Schema | Name | Result data type | Argument data types | Type
-------- B e T ks s
public | maximum | integer | a integer, b integer | func
public | maximum | integer | a integer, b integer, c integer | func
public | maximum | real | a real, b real | func
(3 rows)

Two of them have the same number of parameters, which differ in types:
=> SELECT maximum(10, 20), maximum(1l.l, 2.2);

maximum | maximum

If a routine is overloaded multiple times, you can output information on specific overloads in \df by specifying parameter types:
=> \df maximum real

List of functions

Schema | Name | Result data type | Argument data types | Type
-------- i s e
public | maximum | real | a real, b real | func
(1 row)

Then we would have to define separate functions with exactly the same body for all other data types, and repeat it for three
parameters.

Polymorphic routines

We can use the polymorphic types anyelement and anycompatible. These are pseudotypes, and when a function is called and
interpreted, they are substituted with actual argument types. Naturally, if a routine is defined in SQL standard style, its code is
parsed at creation, preventing the use of pseudotypes.

Let’s delete all the three functions that we have created...

=> DROP FUNCTION maximum(integer, integer);

DROP FUNCTION

=> DROP FUNCTION maximum(integer, integer, integer);
DROP FUNCTION

=> DROP FUNCTION maximum(real, real);

DROP FUNCTION

..and then create a new one:

=> CREATE FUNCTION maximum(a anyelement, b anyelement)
RETURNS anyelement

AS $$
SELECT CASE WHEN a > b THEN a ELSE b END;
$$ LANGUAGE sql;

CREATE FUNCTION

This function should accept any data type (but will work only with those types for which the “greater than” operator is defined).
Will it work?

=> SELECT maximum('A', 'B');

ERROR: could not determine polymorphic type because input has type unknown

Unfortunately not. In this case, string literals can be of the char, varchar, or text type; the exact type is unknown. But we can use
explicit type casting:

=> SELECT maximum('A'::text, 'B'::text);

maximum

Here is another example with a different type:
=> SELECT maximum(now(), now() + interval 'l day');

maximum

2025-04-17 21:39:54.825624+03
(1 row)

The type of the result value will always be the same as the parameter type.

But we could go further and make polymorphic routines take not just the same types but compatible ones: those that can be
implicitly converted into each other. This is where the polymorphic pseudotype anycompatible comes in.

Let’s recreate our function:
=> DROP FUNCTION maximum;
DROP FUNCTION

=> CREATE FUNCTION maximum(a anycompatible, b anycompatible)
RETURNS anycompatible

AS $%
SELECT CASE WHEN a > b THEN a ELSE b END;
$$ LANGUAGE sql;

CREATE FUNCTION
Try the literals again:
=> SELECT maximum('A', 'B');

maximum

It works!
But if the types are neither the same nor compatible, we get an error:
=> SELECT maximum(l, 'A');

ERROR: invalid input syntax for type integer: "A"
LINE 1: SELECT maximum(1l, 'A');

~

In this example, such a requirement looks quite natural, but it may turn out to be inconvenient in some other cases.

Now let’s create a function with three parameters, so that the third parameter is optional.

=> CREATE FUNCTION maximum(

a anycompatible,

b anycompatible,

c anycompatible DEFAULT NULL
) RETURNS anycompatible
AS $$
SELECT CASE

WHEN ¢ IS NULL THEN

X
ELSE
CASE WHEN x > ¢ THEN x ELSE c END
END
FROM (
SELECT CASE WHEN a > b THEN a ELSE b END
) max2(x);

$$ LANGUAGE sql;
CREATE FUNCTION

=> SELECT maximum(10, 11.21, 3e3);

maximum

It works. And what about the following query?
=> SELECT maximum(10, 11.21);

ERROR: function maximum(integer, numeric) is not unique
LINE 1: SELECT maximum(10, 11.21);

HINT: Could not choose a best candidate function. You might need to add explicit type
casts.

A conflict occurs between two overloaded functions:
=> \df maximum

List of functions

Schema | Name | Result data type | Argument data types
| Type
-------- R s e e R
_____________________ B
public | maximum | anycompatible | a anycompatible, b anycompatible
| func
public | maximum | anycompatible | a anycompatible, b anycompatible, c anycompatible
DEFAULT NULL::unknown | func
(2 rows)

It’s impossible to understand whether we meant to run the function with two parameters, or simply omitted the third one.
This conflict can be easily resolved: let’s delete the first function as it is no longer required.

=> DROP FUNCTION maximum(anycompatible, anycompatible);

DROP FUNCTION

=> SELECT maximum(10, 11.21), maximum(10, 11.21, 3e3);

maximum | maximum
_________ B

11.21 | 3000
(1 row)

Now everything works fine. Once we get to the “PL/pgSQL. Arrays” lecture, we will also learn how to define routines with an
arbitrary number of parameters.

Takeaways (<r

You can create your own routines (functions and procedures)
Routines can be written in various languages, including SQL
Routines support overloading and polymorphism

Functions volatility categories affect optimization opportunities
An SQL function can sometimes be inlined

Unlike functions, procedures are called using the CALL
operator and can manage transactions

15

Practice [/ Y

1. Create a function author_name to construct author names. The
function takes three parameters (last_name, first_name, and
middle_name) and returns the full name, with the middle name
abbreviated to its initial.

Use this function in the authors_v view.

2. Create a function book_name to construct book titles. The
function takes two parameters (book ID and the title) and returns
a concatenation of the book title and the list of authors, ordered
by seq_num. The name of each author is produced by the
author_name function.

Use this function in the catalog_v view.
Check the changes in the application.

16

Reminder: all the required functions are listed in the “Basic data types and
functions” handout.

1. FUNCTION author_name(
last_name text, first_name text, middle_name text

)
RETURNS text

For example: author_name('Alexander', 'Sergeyevich', 'Pushkin')-
- 'Alexander S. Pushkin'

3. FUNCTION book_name(book_id integer, title text)
RETURNS text

For example: book_name(3, 'Good Omens') -
- 'Good Omens. Terry Pratchett, Neil Gaiman'

Stored functions can be edited directly. For example, psql provides the \ef
command that opens the function body in an editor and saves the changes
in the database.

You should avoid using this capability (or at least do not overuse it). A
properly set up development process requires that all the code is stored in
files under version control. If a function has to be changed, the file is
modified and executed (using psqgl or an IDE). Function modifications made
directly in the database can be easily lost. (In fact, setting up development
processes is much more complex, but we are not going to cover it in this
course.)

Task 1. The author_name function

=> CREATE FUNCTION author_name(
last_name text,
first_name text,
middle_name text

) RETURNS text

LANGUAGE sql IMMUTABLE

RETURN first_name ||

CASE WHEN middle_name != '' -- NOT NULL is implied
THEN * ' || left(middle_name, 1) || '.®
ELSE "'

END || * "]

last_name;

CREATE FUNCTION
Volatility category: immutable. The function always returns the same value given the same input arguments.

=> CREATE OR REPLACE VIEW authors_v AS
SELECT a.author_id,
author_name(a.last_name, a.first_name, a.middle_name) AS display_name
FROM authors a
ORDER BY display_name;

CREATE VIEW

Task 2. The book_name function

=> CREATE FUNCTION book_name(book_id integer, title text)
RETURNS text
LANGUAGE sql STABLE
RETURN (
SELECT title || '. ' |]
string_agg(
author_name(a.last_name, a.first_name, a.middle_name), ',
ORDER BY ash.seq_num
)
FROM authors a
JOIN authorship ash ON a.author_id = ash.author_id
WHERE ash.book_id = book_name.book_id
);

CREATE FUNCTION
Volatility category: stable. The function returns the same value given the same input arguments, but only within a single SQL query.

=> CREATE OR REPLACE VIEW catalog_v AS
SELECT b.book_id,
book_name(b.book_id, b.title) AS display_name
FROM books b
ORDER BY display_name;

CREATE VIEW

