

SQL

Composite Types

17

Copyright
© Postgres Professional, 2017–2025
Authors Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Igor Gnatyuk
Translated by Liudmila Mantrova and Alexander Meleshko
Photo by Oleg Bartunov (Tukuche peak, Nepal)

Use of course materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.com

Disclaimer
In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

Composite types and how to use them

Composite type arguments

Functions returning a single row

Functions returning a set of rows

3

Composite types

Composite type
set of named attributes (fields)
same as a table row, but without constraints

Creating a composite type
explicit declaration of a new type
implicitly when a table is created
record: a placeholder composite type

Using a composite type
attributes as scalar values
operations on composite type values: comparison, check for NULL,
use with subqueries

A composite type represents a set of attributes, with each attribute having its
own name and type. A composite type is similar to a table row in many
ways. It is often called a record (similar to a structure in C-like languages).

https://postgrespro.com/docs/postgresql/17/rowtypes

A composite type is a database object. When it is declared, a new type is
registered in the system catalog, making it a full-fledged SQL type. A table
creation automatically produces a composite type with the same name. This
type represents the row of the table. An important difference is that
composite types do not have constraints.

https://postgrespro.com/docs/postgresql/17/sql-createtype

Composite type attributes can be used as regular scalar values (although
each attribute can also be of a composite type itself).

A composite type can be used just like any other SQL type; for example,
you can create table columns of this type. Composite values can be
compared, checked for NULL, used with subqueries in clauses like IN,
ANY/SOME, ALL.

https://postgrespro.com/docs/postgresql/17/functions-comparisons

https://postgrespro.com/docs/postgresql/17/functions-subquery

https://postgrespro.com/docs/postgresql/17/rowtypes
https://postgrespro.com/docs/postgresql/17/sql-createtype
https://postgrespro.com/docs/postgresql/17/functions-comparisons
https://postgrespro.com/docs/postgresql/17/functions-subquery

Explicit	declaration	of	a	composite	type

The	first	way	to	introduce	a	composite	type	is	to	explicitly	declare	it.

=>	CREATE	TYPE	currency	AS	(
				amount	numeric,
				code			text
);

CREATE	TYPE

=>	\dT

							List	of	data	types
	Schema	|			Name			|	Description	
--------+----------+-------------
	public	|	currency	|	
(1	row)

Such	a	type	can	be	used	just	as	any	other	SQL	type.	For	example,	we	can	create	a	table	that	has	some	columns	of	this	type:

=>	CREATE	TABLE	transactions(
				account_id			integer,
				debit								currency,
				credit							currency,
				date_entered	date	DEFAULT	current_date
);

CREATE	TABLE

Whether	it’s	a	good	idea	is	not	an	easy	question:	there	are	no	universal	solutions	here.	In	some	cases,	it	can	be	quite	useful;	in	other
situations	it’s	more	convenient	to	follow	the	relational	data	model,	i.e.,	move	the	entity	represented	by	this	type	into	a	separate
table	and	add	references	to	this	table.	It	enables	you	to	avoid	data	redundancy	(normalization)	and	simplify	indexing	(a	composite
type	is	likely	to	require	an	index	on	expression).

In	general,	PostgreSQL	offers	quite	a	lot	of	built-in	data	types,	so	the	need	for	a	custom	type	is	unlikely	to	arise	too	often.

Constructing	composite	type	values

Composite	type	values	can	be	constructed	in	the	form	of	a	string,	with	all	the	attributes	listed	in	brackets.	Note	that	the	attributes	of
the	string	type	are	enclosed	in	double	quotes:

=>	INSERT	INTO	transactions	VALUES	(1,	NULL,	'(100.00,"EUR")');

INSERT	0	1

Another	option	is	to	use	the	ROW	constructor:

=>	INSERT	INTO	transactions	VALUES	(2,	ROW(80.00,'EUR'),	NULL);

INSERT	0	1

If	the	composite	type	contains	more	than	one	field,	you	can	omit	the	ROW	keyword:

=>	INSERT	INTO	transactions	VALUES	(3,	(20.00,'EUR'),	NULL);

INSERT	0	1

=>	SELECT	*	FROM	transactions;

	account_id	|				debit				|				credit				|	date_entered	
------------+-------------+--------------+--------------
										1	|													|	(100.00,EUR)	|	2025-04-16
										2	|	(80.00,EUR)	|														|	2025-04-16
										3	|	(20.00,EUR)	|														|	2025-04-16
(3	rows)

Using	composite	type	attributes	as	separate	values

Accessing	a	separate	attribute	of	a	composite	type	is	virtually	the	same	operation	as	accessing	a	table	column,	since	a	table	row
actually	represents	a	composite	type:

=>	SELECT	t.account_id	FROM	transactions	t;

	account_id	

										1
										2
										3
(3	rows)

In	most	cases,	the	composite	value	has	to	be	enclosed	into	brackets,	e.g.,	to	distinguish	between	a	type	attribute	and	a	table	column:

=>	SELECT	(t.debit).amount,	(t.credit).amount	FROM	transactions	t;

	amount	|	amount	
--------+--------
								|	100.00
		80.00	|							
		20.00	|							
(3	rows)

Or	if	you	are	using	an	expression:

=>	SELECT	((10.00,'EUR')::currency).amount;

	amount	

		10.00
(1	row)

A	composite	value	does	not	necessarily	belong	to	a	particular	type,	it	can	be	an	indefinite	value	of	the	record	pseudotype:

=>	SELECT	(10.00,'EUR')::record;

					row					

	(10.00,EUR)
(1	row)

But	can	you	access	an	attribute	of	such	a	value?

=>	SELECT	((10.00,'EUR')::record).amount;

ERROR:		could	not	identify	column	"amount"	in	record	data	type
LINE	1:	SELECT	((10.00,'EUR')::record).amount;
																^

No,	because	attributes	of	such	a	type	have	no	name.

An	implicit	composite	type	for	tables

In	practice,	composite	types	are	typically	used	to	facilitate	the	use	of	functions	for	table	processing.

When	a	table	is	created,	a	composite	type	with	same	name	is	created	implicitly.	For	example,	seats	in	the	cinema:

=>	CREATE	TABLE	seats(
				line	text,
				number	integer
);

CREATE	TABLE

=>	INSERT	INTO	seats	VALUES
('A',	42),	('B',		1),	('C',	27);

INSERT	0	3

The	\dT	command	hides	such	implicit	types,	but	you	can	take	a	look	at	them	in	the	pg_type	table	if	you	like:

=>	SELECT	typtype	FROM	pg_type	WHERE	typname	=	'seats';

	typtype	

	c
(1	row)

Here	c	stands	for	a	composite	type.

Operations	on	composite	values

Composite	type	values	can	be	compared	with	each	other.	It	is	done	element	by	element	(similar	to	string	comparison,	which	is
performed	symbol	by	symbol):

=>	SELECT	*	FROM	seats	s	WHERE	s	<	('B',52)::seats;

	line	|	number	
------+--------
	A				|					42
	B				|						1
(2	rows)

Beware	multiple	intricacies	of	using	null	values	within	data	entries.

PostgreSQL	also	supports	IS	[NOT]	NULL	and	IS	[NOT]	DISTINCT	FROM	clauses	for	composite	values.

Composite	types	can	be	used	in	subqueries,	which	happens	to	be	very	convenient.

Let’s	add	a	table	with	tickets:

=>	CREATE	TABLE	tickets(
				line	text,
				number	integer,
				movie_start	date
);

CREATE	TABLE

=>	INSERT	INTO	tickets	VALUES
				('A',	42,	current_date),
				('B',		1,	current_date+1);

INSERT	0	2

Now	we	can	write	the	following	query	to	search	for	seats	in	tickets	for	a	today’s	movie:

=>	SELECT	*	FROM	seats	WHERE	(line,	number)	IN	(
				SELECT	line,	number	FROM	tickets	WHERE	movie_start	=	current_date
);

	line	|	number	
------+--------
	A				|					42
(1	row)

We	would	have	to	explicitly	join	tables	if	we	could	not	use	a	subquery.

5

Routine arguments

A routine can take composite type arguments

Implementing computed fields
table.column and column(table) are interchangeable

Other options
views
GENERATED ALWAYS columns

Naturally, routines can take arguments of composite types.

It’s worth noting that apart from the usual table.column notation, you can
access a table column using the functional form: column(table). It allows
us to create computed fields by declaring a function that takes a composite
value as an argument.

https://postgrespro.com/docs/postgresql/17/xfunc-sql

This approach is a bit odd because there is a more straightforward way to
get the same outcome by using a view. The SQL standard also defines
GENERATED ALWAYS columns, but their implementation in PostgreSQL
does not fully comply with the standard yet: generated columns are
STORED in a table instead of being generated on the fly. Such VIRTUAL
columns are to be introduced in PostgreSQL 18.

https://postgrespro.com/docs/postgresql/17/ddl-generated-columns

https://postgrespro.com/docs/postgresql/17/xfunc-sql
https://postgrespro.com/docs/postgresql/17/ddl-generated-columns

Composite	type	parameters

Let’s	declare	a	function	that	takes	a	composite	value	as	an	input	parameter	and	returns	a	string	with	a	seat	number.

=>	CREATE	FUNCTION	seat_no(seat	seats)	RETURNS	text
IMMUTABLE	LANGUAGE	sql
RETURN	seat.line	||	seat.number;

CREATE	FUNCTION

Note	that	concatenation	is	normally	stable,	not	immutable:	casting	some	data	types	to	a	string	can	give	different	results	depending
on	the	current	settings.

=>	SELECT	seat_no(ROW('A',42));

	seat_no	

	A42
(1	row)

It	comes	in	handy	that	such	functions	allow	you	to	pass	the	actual	table	row	as	a	parameter:

=>	SELECT	s.line,	s.number,	seat_no(s.*)	FROM	seats	s;

	line	|	number	|	seat_no	
------+--------+---------
	A				|					42	|	A42
	B				|						1	|	B1
	C				|					27	|	C27
(3	rows)

We	can	also	do	without	an	asterisk:

=>	SELECT	s.line,	s.number,	seat_no(s)	FROM	seats	s;

	line	|	number	|	seat_no	
------+--------+---------
	A				|					42	|	A42
	B				|						1	|	B1
	C				|					27	|	C27
(3	rows)

The	syntax	allows	calling	a	function	as	if	it	were	a	table	column	(and	vice	versa,	you	can	access	a	table	as	if	it	were	a	function):

=>	SELECT	s.line,	number(s),	s.seat_no	FROM	seats	s;

	line	|	number	|	seat_no	
------+--------+---------
	A				|					42	|	A42
	B				|						1	|	B1
	C				|					27	|	C27
(3	rows)

Using	this	syntax,	you	can	use	functions	like	table	columns	computed	on	the	fly.

What	if	the	table	contains	a	column	with	the	same	name?	Previously,	the	column	would	always	have	priority;	starting	from	version
11,	the	choice	depends	on	the	syntactic	form.

Clearly,	you	can	get	the	same	outcome	by	creating	a	view.

=>	CREATE	VIEW	seats_v	AS
				SELECT	s.line,	s.number,	seat_no(s)	FROM	seats	s;

CREATE	VIEW

=>	SELECT	line,	number,	seat_no	FROM	seats_v;

	line	|	number	|	seat_no	
------+--------+---------
	A				|					42	|	A42
	B				|						1	|	B1
	C				|					27	|	C27
(3	rows)

And	starting	from	version	12,	you	can	declare	“true”	computed	columns	as	a	part	of	a	table.	But	instead	of	being	computed	on	the
fly	as	defined	by	the	SQL	standard,	they	are	simply	stored	in	the	table:

=>	CREATE	TABLE	seats2(
				line	text,
				number	integer,
				seat_no	text	GENERATED	ALWAYS	AS	(seat_no(ROW(line,number)))	STORED
);

CREATE	TABLE

=>	\d	seats2

																																							Table	"public.seats2"
	Column		|		Type			|	Collation	|	Nullable	|																									Default															
										
---------+---------+-----------+----------+---

	line				|	text				|											|										|	
	number		|	integer	|											|										|	
	seat_no	|	text				|											|										|	generated	always	as	(seat_no(ROW(line,	
number)))	stored

=>	INSERT	INTO	seats2	(line,	number)
				SELECT	line,	number	FROM	seats;

INSERT	0	3

=>	SELECT	*	FROM	seats2;

	line	|	number	|	seat_no	
------+--------+---------
	A				|					42	|	A42
	B				|						1	|	B1
	C				|					27	|	C27
(3	rows)

If	we	later	wish	to	define	the	value	explictly,	we	can	just	drop	the	expression:

=>	ALTER	TABLE	seats2	ALTER	COLUMN	seat_no	DROP	EXPRESSION;

ALTER	TABLE

The	data	is	still	in	the	column,	but	the	column	is	no	longer	computed.

=>	SELECT	*	FROM	seats2;

	line	|	number	|	seat_no	
------+--------+---------
	A				|					42	|	A42
	B				|						1	|	B1
	C				|					27	|	C27
(3	rows)

=>	\d	seats2

															Table	"public.seats2"
	Column		|		Type			|	Collation	|	Nullable	|	Default	
---------+---------+-----------+----------+---------
	line				|	text				|											|										|	
	number		|	integer	|											|										|	
	seat_no	|	text				|											|										|	

7

Functions returning one row

Return a composite value

Usually called in SELECT lists

When called within a FROM clause, return a one-row table

Functions can both take arguments of a composite type and return
composite type values.

Functions are usually called in SELECT lists, but it is possible to call a
function within a FROM clause, as if it were a one-row table.

Functions	returning	one	row

Let’s	create	a	function	that	constructs	and	returns	a	table	row	from	separate	components.

Such	a	function	can	be	declared	as	RETURNS	seats:

=>	CREATE	FUNCTION	seat(line	text,	number	integer)	RETURNS	seats
IMMUTABLE	LANGUAGE	sql
RETURN	ROW(line,	number)::seats;

CREATE	FUNCTION

=>	SELECT	seat('A',	42);

		seat		

	(A,42)
(1	row)

The	returned	result	is	of	a	composite	type.	It	can	be	“unfolded”	into	a	one-row	table:

=>	SELECT	(seat('A',	42)).*;

	line	|	number	
------+--------
	A				|					42
(1	row)

Column	names	and	types	are	received	from	the	definition	of	the	seats	composite	type	here.

Apart	from	calling	a	function	in	the	SELECT	list	or	as	part	of	an	expression,	you	can	also	call	it	in	the	FROM	clause,	as	if	it	were	a
table:

=>	SELECT	*	FROM	seat('A',	42);

	line	|	number	
------+--------
	A				|					42
(1	row)

As	a	result,	we	are	getting	a	one-row	table	again.

By	the	way,	can	we	use	the	same	calling	method	for	a	function	that	returns	a	single	(scalar)	value?

=>	SELECT	*	FROM	abs(-1.5);

	abs	

	1.5
(1	row)

Yes,	it’s	also	possible:	we	get	a	single	column	with	a	single	row.

Another	approach	that	we	have	already	seen	in	the	“SQL.	Functions	and	Procedures”	lecture	is	to	define	output	parameters.

Note	that	you	do	not	have	to	manually	construct	the	composite	type	from	separate	fields	in	the	query;	it	will	be	done	automatically:

=>	DROP	FUNCTION	seat(text,	integer);

DROP	FUNCTION

=>	CREATE	FUNCTION	seat(line	INOUT	text,	number	INOUT	integer)
IMMUTABLE	LANGUAGE	sql
RETURN	(line,	number);

CREATE	FUNCTION

=>	SELECT	seat('A',	42);

		seat		

	(A,42)
(1	row)

=>	SELECT	*	FROM	seat('A',	42);

	line	|	number	
------+--------
	A				|					42
(1	row)

We	get	the	same	outcome,	but	names	and	types	of	the	columns	are	taken	from	the	function	input	parameters,	while	the	composite
type	itself	remains	anonymous.

And	one	more	approach	is	to	declare	a	function	that	returns	the	record	pseudotype,	which	denotes	a	composite	type	in	general,
without	specifying	its	structure.

=>	DROP	FUNCTION	seat(text,	integer);

DROP	FUNCTION

=>	CREATE	FUNCTION	seat(line	text,	number	integer)	RETURNS	record
IMMUTABLE	LANGUAGE	sql
RETURN	(line,	number);

CREATE	FUNCTION

=>	SELECT	seat('A',42);

		seat		

	(A,42)
(1	row)

But	you	won’t	be	able	to	call	such	a	function	in	the	FROM	clause	not	just	because	the	return	type	is	anonymous,	but	also	because
the	number	and	types	of	the	fields	in	the	returned	composite	type	are	not	known	in	advance	(at	the	parsing	stage):

=>	SELECT	*	FROM	seat('A',42);

ERROR:		a	column	definition	list	is	required	for	functions	returning	"record"
LINE	1:	SELECT	*	FROM	seat('A',42);
																						^

In	this	case,	you	have	to	specify	the	exact	structure	of	the	composite	type	when	calling	a	function:

=>	SELECT	*	FROM	seat('A',42)	AS	(line	text,	number	integer);

	line	|	number	
------+--------
	A				|					42
(1	row)

You	can	use	any	of	these	three	approaches	when	creating	functions.	But	you	should	keep	in	mind	the	expected	use	cases	from	the
very	beginning:	whether	it	will	be	convenient	to	use	anonymous	types	and	specify	the	structure	of	the	type	during	function	calls.

9

Set returning functions

Declared as RETURNS SETOF or RETURNS TABLE

Can return multiple rows

Usually called in a FROM clause

Can be used as a view with arguments
very convenient when combined with function inlining

We have tried calling functions in a FROM clause, but have only seen one-
row outputs so far. However, there is nothing stopping us from declaring
functions that would return whole sets of rows: the so-called table functions
or set returning functions (SRF).

It's only natural to call these functions in a FROM clause, turning them into a
pseudo-views to some extent. (Technically, PostgreSQL allows calling such
functions in SELECT lists as well, but it is not recommended.)

Like with regular functions, the planner can sometimes inline the function
body into the main query. It allows creating “views with arguments” without
additional overhead.

https://wiki.postgresql.org/wiki/Inlining_of_SQL_functions

https://wiki.postgresql.org/wiki/Inlining_of_SQL_functions

Set	returning	functions

Let’s	create	a	function	that	returns	all	seats	in	a	rectangular	cinema	hall	of	the	specified	size.

=>	CREATE	FUNCTION	rect_hall(max_line	integer,	max_number	integer)
RETURNS	SETOF	seats
IMMUTABLE	LANGUAGE	sql
BEGIN	ATOMIC
				SELECT	chr(line+64),	number
				FROM	generate_series(1,max_line)	AS	line,
									generate_series(1,max_number)	AS	number;
END;

CREATE	FUNCTION

The	key	difference	is	the	SETOF	usage.	In	this	case,	instead	of	returning	the	first	row	of	the	last	query,	as	usual,	the	function	returns
all	the	rows	of	the	last	query.

=>	SELECT	*	FROM	rect_hall(max_line	=>	2,	max_number	=>	3);

	line	|	number	
------+--------
	A				|						1
	A				|						2
	A				|						3
	B				|						1
	B				|						2
	B				|						3
(6	rows)

Instead	of	SETOF	seats	you	can	also	use	SETOF	record:

=>	DROP	FUNCTION	rect_hall(integer,	integer);

DROP	FUNCTION

=>	CREATE	FUNCTION	rect_hall(max_line	integer,	max_number	integer)
RETURNS	SETOF	record
IMMUTABLE	LANGUAGE	sql
BEGIN	ATOMIC
				SELECT	chr(line+64),	number
				FROM	generate_series(1,max_line)	AS	line,
									generate_series(1,max_number)	AS	number;
END;

CREATE	FUNCTION

But	as	we	have	already	seen,	in	this	case	you	have	to	specify	the	structure	of	the	composite	type	when	calling	a	function:

=>	SELECT	*	FROM	rect_hall(max_line	=>	2,	max_number	=>	3)
				AS	(a_line	text,	a_number	integer);

	a_line	|	a_number	
--------+----------
	A						|								1
	A						|								2
	A						|								3
	B						|								1
	B						|								2
	B						|								3
(6	rows)

Or	we	could	declare	a	function	with	output	parameters.	But	SETOF	record	would	still	be	required	to	show	that	the	function	returns
a	set	of	rows,	not	a	single	row:

=>	DROP	FUNCTION	rect_hall(integer,	integer);

DROP	FUNCTION

=>	CREATE	FUNCTION	rect_hall(
				max_line	integer,	max_number	integer,
				OUT	p_line	text,	OUT	p_number	integer
)
RETURNS	SETOF	record
IMMUTABLE	LANGUAGE	sql
BEGIN	ATOMIC
				SELECT	chr(line+64),	number
				FROM	generate_series(1,max_line)	AS	line,
									generate_series(1,max_number)	AS	number;
END;

CREATE	FUNCTION

=>	SELECT	*	FROM	rect_hall(max_line	=>	2,	max_number	=>	3);

	p_line	|	p_number	
--------+----------
	A						|								1
	A						|								2
	A						|								3
	B						|								1
	B						|								2
	B						|								3
(6	rows)

Another	equivalent	way	to	declare	a	set-returning	function	(which	is	even	defined	by	the	SQL	standard)	is	to	use	the	TABLE
keyword:

=>	DROP	FUNCTION	rect_hall(integer,	integer);

DROP	FUNCTION

=>	CREATE	FUNCTION	rect_hall(max_line	integer,	max_number	integer)
RETURNS	TABLE(t_line	text,	t_number	integer)
LANGUAGE	sql
BEGIN	ATOMIC
				SELECT	chr(line+64),	number
				FROM	generate_series(1,max_line)	AS	line,
									generate_series(1,max_number)	AS	number;
END;

CREATE	FUNCTION

=>	SELECT	*	FROM	rect_hall(max_line	=>	2,	max_number	=>	3);

	t_line	|	t_number	
--------+----------
	A						|								1
	A						|								2
	A						|								3
	B						|								1
	B						|								2
	B						|								3
(6	rows)

It	is	sometimes	useful	to	enumerate	the	rows	returned	by	the	query,	in	the	order	they	were	received	from	the	function.	There	is	a
special	clause	for	that:

=>	SELECT	*
FROM	rect_hall(max_line	=>	2,	max_number	=>	3)	WITH	ORDINALITY;

	t_line	|	t_number	|	ordinality	
--------+----------+------------
	A						|								1	|										1
	A						|								2	|										2
	A						|								3	|										3
	B						|								1	|										4
	B						|								2	|										5
	B						|								3	|										6
(6	rows)

When	a	function	is	used	in	a	FROM	clause,	the	LATERAL	keyword	is	assumed	to	implicitly	precede	it,	which	allows	this	function	to
access	columns	of	the	tables	that	were	mentioned	in	the	query	to	the	left	of	the	function.	It	can	sometimes	simplify	query
definitions.

For	example,	let’s	create	a	function	that	distributes	seats	in	the	cinema	like	in	an	amphitheatre,	with	front	rows	having	fewer	seats
than	back	rows:

=>	CREATE	FUNCTION	amphitheatre(max_line	integer)
RETURNS	TABLE(t_line	text,	t_number	integer)
IMMUTABLE	LANGUAGE	sql
BEGIN	ATOMIC
				SELECT	chr(line	+	64),	number
				FROM	generate_series(1,max_line)	AS	line,	--	<--+
									generate_series(1,	--																						|
																									line	----------------------+
)	AS	number;
END;

CREATE	FUNCTION

=>	SELECT	*	FROM	amphitheatre(3);

	t_line	|	t_number	
--------+----------
	A						|								1
	B						|								1
	B						|								2
	C						|								1
	C						|								2
	C						|								3
(6	rows)

It’s	interesting	that	you	can	call	a	function	returning	a	set	of	rows	as	part	of	the	SELECT	list:

=>	SELECT	rect_hall(3,4);

	rect_hall	

	(A,1)
	(A,2)
	(A,3)
	(A,4)
	(B,1)
	(B,2)
	(B,3)
	(B,4)
	(C,1)
	(C,2)
	(C,3)
	(C,4)
(12	rows)

It	seems	logical	in	some	cases,	but	occasionally	the	result	can	surprise	you.	For	example,	how	many	rows	will	be	returned	by	the
following	query?

=>	SELECT	rect_hall(2,3),	rect_hall(2,2);

	rect_hall	|	rect_hall	
-----------+-----------
	(A,1)					|	(A,1)
	(A,2)					|	(A,2)
	(A,3)					|	(B,1)
	(B,1)					|	(B,2)
	(B,2)					|	
	(B,3)					|	
(6	rows)

We	get	six	rows,	while	prior	to	version	10	we	would	get	the	least	common	multiple	of	all	rows	returned	by	each	function	(12	in	this
case).

What’s	even	worse	is	that	the	query	can	return	fewer	rows	than	expected	if	the	function	returns	no	rows	when	passed	some
particular	parameters.

So	using	this	calling	method	is	not	recommended.

Functions	as	views	with	parameters

As	we	have	already	seen,	a	function	can	be	used	in	the	FROM	clause,	as	if	it	were	a	table	or	a	view.	We	can	also	pass	additional
parameters	in	this	case,	which	is	sometimes	very	convenient.

The	only	issue	with	this	approach	is	that	a	Function	Scan	must	be	completed	before	additional	conditions	defined	in	the	query	can
be	applied.

=>	EXPLAIN	(costs	off)

SELECT	*	FROM	rect_hall(3,4)	WHERE	t_line	=	'A';

											QUERY	PLAN											

	Function	Scan	on	rect_hall
			Filter:	(t_line	=	'A'::text)
(2	rows)

It	could	become	a	problem	if	the	function	performed	a	long	and	complex	query.

In	some	cases,	a	function	body	can	be	inlined,	e.g.,	inserted	into	the	calling	query.	The	requirements	for	set-returning	functions	are
more	relaxed.	The	main	restrictions	are:

the	function	must	be	written	in	the	SQL	language,
the	function	itself	must	not	be	volatile	and	must	not	call	other	volatile	functions,
the	function	must	not	be	STRICT,
the	function	body	must	contain	only	one	SELECT	operator	(although	it	can	introduce	a	complex	query),
and	some	other	restrictions.

In	this	case,	we	did	not	specify	the	volatility	category	when	creating	the	function,	so	it	was	implicitly	declared	volatile.

=>	ALTER	FUNCTION	rect_hall(integer,	integer)	IMMUTABLE;

ALTER	FUNCTION

=>	EXPLAIN	(costs	off)
SELECT	*	FROM	rect_hall(3,4)	WHERE	t_line	=	'A';

																			QUERY	PLAN																			
--
	Nested	Loop
			->		Function	Scan	on	generate_series	line
									Filter:	(chr((line	+	64))	=	'A'::text)
			->		Function	Scan	on	generate_series	number
(4	rows)

There	is	virtually	no	function	call	now,	and	the	condition	is	inserted	into	the	query	itself,	which	is	more	efficient.

11

Takeaways

Composite types combine values of other types

Simplify and enrich function operations on tables

Implement computed fields and views with parameters

Functions can return multiple rows

12

Practice

1. Create a function onhand_qty to calculate books in stock.
 The function takes a composite type parameter (books) and
returns an integer number.

Use this function in the catalog_v view as a computed field.

Verify that the application can now display the number of books.

2. Create a table function get_catalog for book search.
The function takes values from the search fields (“author”, “book
title”, “in stock”) and returns matching books in the catalog_v
format.

Verify that you can now browse and search for books in the Store
tab.

1.
FUNCTION onhand_qty(book books) RETURNS integer

2.
FUNCTION get_catalog(
 author_name text, book_title text, in_stock boolean
)
RETURNS TABLE(
 book_id integer, display_name text, onhand_qty integer
)

The obvious solution is to use the existing view catalog_v, just with some
row filters. But this view displays book titles and authors in the same field,
and authors’ names are abbreviated. Clearly, searching for "Reuel" in the
“J. R. R. Tolkien” field will yield no results.

The get_catalog function could repeat the query from the catalog_v view, but
it is code duplication, which is a bad practice. So you should extend the
catalog_v view by adding the following fields: the book title and the full list of
authors.

Verify that the empty fields in the form are handled correctly. When calling
the get_catalog function, does the client pass empty strings or null values?

Task	1.	The	onhand_qty	function

=>	CREATE	FUNCTION	onhand_qty(book	books)	RETURNS	integer
STABLE	LANGUAGE	sql
BEGIN	ATOMIC
				SELECT	coalesce(sum(o.qty_change),0)::integer
				FROM	operations	o
				WHERE	o.book_id	=	book.book_id;
END;

CREATE	FUNCTION

=>	CREATE	OR	REPLACE	VIEW	catalog_v	AS
SELECT	b.book_id,
							book_name(b.book_id,	b.title)	AS	display_name,
							b.onhand_qty
FROM			books	b
ORDER	BY	display_name;

CREATE	VIEW

Task	2.	The	get_catalog	function

Let’s	extend	the	catalog_v	view	by	adding	book	titles	and	the	full	list	of	authors	(the	application	ignores	unknown	fields).

Here	is	the	function	that	returns	the	full	list	of	authors:

=>	CREATE	FUNCTION	authors(book	books)	RETURNS	text
STABLE	LANGUAGE	sql
BEGIN	ATOMIC
				SELECT	string_agg(
															a.first_name	||
															coalesce('	'	||	nullif(a.middle_name,''),	'')	||	'	'	||
															a.last_name,
															',	'
															ORDER	BY	ash.seq_num
)
				FROM			authors	a
											JOIN	authorship	ash	ON	a.author_id	=	ash.author_id
				WHERE		ash.book_id	=	book.book_id;
END;

CREATE	FUNCTION

Let’s	use	this	function	in	the	catalog_v	view.	The	view	already	exists,	but	we	will	recreate	it	with	a	different	row	order	and	use	a
new	query:

=>	DROP	VIEW	catalog_v;

DROP	VIEW

=>	CREATE	VIEW	catalog_v	AS
SELECT	b.book_id,
							b.title,
							b.onhand_qty,
							book_name(b.book_id,	b.title)	AS	display_name,
							b.authors
FROM			books	b
ORDER	BY	display_name;

CREATE	VIEW

The	get_catalog	function	now	uses	the	extended	view:

=>	CREATE	FUNCTION	get_catalog(
				author_name	text,
				book_title	text,
				in_stock	boolean
)
RETURNS	TABLE(book_id	integer,	display_name	text,	onhand_qty	integer)
STABLE	LANGUAGE	sql
BEGIN	ATOMIC
				SELECT	cv.book_id,
											cv.display_name,
											cv.onhand_qty
				FROM			catalog_v	cv
				WHERE		cv.title			ILIKE	'%'||coalesce(book_title,'')||'%'

				AND				cv.authors	ILIKE	'%'||coalesce(author_name,'')||'%'
				AND				(in_stock	AND	cv.onhand_qty	>	0	OR	in_stock	IS	NOT	TRUE)
				ORDER	BY	display_name;
END;

CREATE	FUNCTION

