PL/pgSQL
Triggers

Copyright

© Postgres Professional, 2017-2025

Authors Egor Rogov, Pavel Luzanov, llya Bashtanov, Igor Gnatyuk
Translated by Liudmila Mantrova and Alexander Meleshko

Photo by Oleg Bartunov (Tukuche peak, Nepal)

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.com

Disclaimer

In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

Topics

Triggers and trigger functions

Trigger behavior

Execution context of a trigger function
Return values

Do’s and Don’ts

rt"

N

Triggers and functions (¢

Trigger

a database object: a list of events to process

once an event occurs, the trigger function is called, and the call context is
passed to this function

Trigger function

a database object: event-processing code
executed in the same transaction as the main operation

convention: the function does not take any parameters,
returns a value of the trigger pseudotype (which is virtually record)

can be reused with multiple triggers

Triggers are used to set off particular actions in response to particular
events. A trigger consists of two parts: the trigger itself (which defines the
events) and a trigger function (which defines the actions). Both the trigger
and the function are independent database objects.

When an event occurs which the trigger is waiting for, the trigger function is
called. It receives the context of the call, which defines the exact trigger that
has called the function and the exact conditions that have led to this call.

A trigger function is a regular function that follows some conventions:
* [t can be written in any language except pure SQL.
* It must have no parameters.

 Its return value is of the trigger type (which is actually a pseudotype; a
record corresponding to a table row is returned instead).

The trigger function is executed in the same transaction as the main
operation. Thus, if a trigger function results in an error, the whole transaction
is aborted.

https://postgrespro.com/docs/postgresqgl/17/trigger-definition

https://postgrespro.com/docs/postgresql/17/trigger-definition

Events Y

INSERT, UPDATE, DELETE

tables before/after statement
before/after row

views before/after statement
instead of row

TRUNCATE

tables before/after statement

WHEN condition

sets an additional filter

Triggers can fire for INSERT, UPDATE, or DELETE operations performed
on tables or views, as well as for the TRUNCATE operation on tables.

A trigger can fire before the specified action (BEFORE), after the action
(AFTER), or instead of the action (INSTEAD OF).

A trigger can fire once for the whole operation (FOR EACH STATEMENT)
or for each affected row (FOR EACH ROW).

There are some combinations of these conditions that are not supported.
For example, INSTEAD OF triggers can be defined only for views at the row
level, while TRUNCATE triggers can be defined only for tables and only at
the statement level. Possible combinations are listed on this slide.

Besides, you can limit the area controlled by the trigger by specifying the
WHEN condition: if this condition is false, the trigger does not fire.

https://postgrespro.com/docs/postgresqgl/17/sql-createtrigger

https://postgrespro.com/docs/postgresql/17/sql-createtrigger

Before statement Y

Triggers BEFORE STATEMENT
before the operation
Return values 15
=]
is ignored §
(]
Context s
kS
TG variables E_
o
\

Let's take a closer look at different trigger types.

The BEFORE STATEMENT trigger fires only once per operation, regardless
of the number of affected rows (even if there are none). It happens before
the start of the operation.

The return value of the trigger function is ignored. If there is an error in the
trigger, the operation is canceled. Since the trigger function has no
parameters, the call context in PL/pgSQL is passed via predefined TG
variables, such as:

* TG_WHEN = BEFORE
* TG_LEVEL = STATEMENT
* TG_OP = INSERT/UPDATE/DELETE/TRUNCATE

etc. You can also pass a user-defined context (which is analogous to the
absent parameters) via the TG_ARGV variable, although it is usually
advisable to create several specialized functions instead of a single generic
one.

https://postgrespro.com/docs/postgresqgl/17/plpgsal-trigger

https://postgrespro.com/docs/postgresql/17/plpgsql-trigger

Before row o

Triggers BEFORE STATEMENT

before the action on the row is taken
during the statement execution

Return values

a row (possibly modified) BEFORE ROW

null cancels the action

operation execution ——+——

Context

OLD update, delete
NEW insert, update

TG variables

BEFORE ROW triggers fire each time an operation is about to process a
row. It happens right during the operation execution.

Trigger functions get the context via variables, such as:
 OLD — an old state of the row (undefined for insertion)

* NEW — an updated state of the row (undefined for deletion)
« TG_WHEN = BEFORE

* TG_LEVEL = ROW

* TG_OP = INSERT/UPDATE/DELETE

etc.

The NULL return value is interpreted as cancellation of the action for the
current row. The execution of the operation itself will continue, but the
current row won'’t be processed, and other triggers won't fire for this row.

To avoid interfering with the operation, the trigger must return the received
row without any modifications, so it must always return NEW for insert and
update operations. For delete operations, it can return any value except
NULL (usually OLD is used).

But the trigger function can also change the NEW value to affect the result
of the operation; this trigger is often defined exactly for this purpose.

rt"

Instead of row N
Triggers BEFORE STATEMENT
instead of the action on the row
for views
5
Return values 3
<>1<.> BEFORE ROW
a row (possibly modified) @ INSTEAD OF ROW
is shown in RETURNING S
null cancels the action g
o
Context
OLD update, delete
NEW insert, update
TG variables v

INSTEAD OF triggers are very similar to BEFORE triggers, but they can
be defined only for views and fire instead of the specified operation, not
before it.

Such triggers usually perform operations on the base tables for views. The
trigger can also return a modified NEW value: this value will be available
when performing an operation with the RETURNING clause.

After row Y

Triggers BEFORE STATEMENT

after operation execution
queue of rows satisfying the WHEN condition

Return values BEFORE ROW

are ignored INSTEAD OF ROW

Context
OLD, OLD TABLE update, delete
NEW, NEW TABLE insert, update AFTER ROW
TG variables

<«——+—— operation execution ——

Just as BEFORE ROW, AFTER ROW triggers fire for each affected row; but
it happens only after the whole operation is complete, not immediately after
processing the row, to avoid any inconsistencies due to the order the rows
were processed in. For this purpose, all events are placed in a queue and
processed after the operation has finished. The fewer events get queued,
the smaller overhead will be incurred; that's why it is recommended to use
the WHEN clause in this case, which can filter out the rows that we
definitely won't need.

The return value of the AFTER ROW triggers is ignored (because the
operation is already complete).

The context of the trigger function is constituted by the following variables:
* OLD — an old state of the row (undefined for insertion)
* NEW — an updated value of the row (undefined for deletion)

Apart from these variables, the trigger function can access special transition
tables. The table specified as OLD TABLE when creating the trigger
contains the old values of the rows processed by the trigger, and the NEW
TABLE contains the new values of the same rows.

Regular TG variables are also available, including the following ones:
« TG_WHEN =AFTER

* TG_LEVEL = ROW

« TG_OP = INSERT/UPDATE/DELETE

After statement Y

Triggers BEFORE STATEMENT

after the operation
(even if none of the rows are affected)

BEFORE ROW

Return values INSTEAD OF ROW

are ignored

Context
OLD TABLE update, delete
NEW TABLE insert, update AFTER ROW
TG variables AFTER STATEMENT

<«—+—+— operation execution ——+——

The AFTER STATEMENT trigger fires after the operation has completed
(including all the AFTER ROW triggers, if any). This trigger fires only once
regardless of the number of the affected rows.

The return value of the trigger function is ignored.

The call context is passed using transition tables. The trigger function can
access these table to analyze all the affected rows. Transition tables are
usually used with AFTER STATEMENT, not with AFTER ROW triggers.

Besides, regular TG variables are defined, such as:

e TG_WHEN =AFTER

e TG _LEVEL = STATEMENT

* TG_OP = INSERT/UPDATE/DELETE/TRUNCATE
etc.

The triggers’ firing order

Let’s create a “universal” trigger function that describes the context in which it is called. The context is passed in various TG
variables.

We are going to define triggers for various events and observe the order in which the triggers are fired during execution.

=> CREATE OR REPLACE FUNCTION describe() RETURNS trigger

AS $%
DECLARE
rec record;
str text := '';
BEGIN
IF TG_LEVEL = 'ROW' THEN
CASE TG_OP
WHEN 'DELETE' THEN rec := OLD; str := OLD::text;
WHEN 'UPDATE' THEN rec := NEW; str := OLD || ' -> ' || NEW;
WHEN 'INSERT' THEN rec := NEW; str := NEW::text;
END CASE;
END IF;

RAISE NOTICE '% % % %: %',
TG_TABLE_NAME, TG_WHEN, TG_OP, TG_LEVEL, str;
RETURN rec;

END

$$ LANGUAGE plpgsql;
CREATE FUNCTION
A table:

=> CREATE TABLE t(
id integer PRIMARY KEY,
s text

)i

CREATE TABLE
Triggers at the statement level:

=> CREATE TRIGGER t_before_stmt
BEFORE INSERT OR UPDATE OR DELETE -- events

ON t -- table
FOR EACH STATEMENT -- level
EXECUTE FUNCTION describe(); -- trigger function

CREATE TRIGGER

=> CREATE TRIGGER t_after_stmt
AFTER INSERT OR UPDATE OR DELETE ON t
FOR EACH STATEMENT EXECUTE FUNCTION describe();

CREATE TRIGGER
Triggers at the row level:

=> CREATE TRIGGER t_before_row
BEFORE INSERT OR UPDATE OR DELETE ON t
FOR EACH ROW EXECUTE FUNCTION describe();

CREATE TRIGGER

=> CREATE TRIGGER t_after_row
AFTER INSERT OR UPDATE OR DELETE ON t
FOR EACH ROW EXECUTE FUNCTION describe();

CREATE TRIGGER
Let’s perform an insert operation:

=> INSERT INTO t VALUES (1,'aaa'), (2, 'bbb');

NOTICE: +t BEFORE INSERT STATEMENT:
NOTICE: t BEFORE INSERT ROW: (1,aaa)
NOTICE: +t BEFORE INSERT ROW: (2,bbb)
NOTICE: t AFTER INSERT ROW: (1,aaa)
NOTICE: t AFTER INSERT ROW: (2,bbb)
NOTICE: t AFTER INSERT STATEMENT:
INSERT 0 2

And now run an update operation:
=> UPDATE t SET s = 'ccc' WHERE id = 1;

NOTICE: t BEFORE UPDATE STATEMENT:

NOTICE: t BEFORE UPDATE ROW: (1,aaa) -> (1,ccc)
NOTICE: t AFTER UPDATE ROW: (1,aaa) -> (1,ccc)
NOTICE: t AFTER UPDATE STATEMENT:

UPDATE 1

Statement-level triggers will fire even if the command has not processed any rows at all:
=> UPDATE t SET s = 'ddd' WHERE id = 0;

NOTICE: t BEFORE UPDATE STATEMENT:
NOTICE: t AFTER UPDATE STATEMENT:
UPDATE 0

Here is a subtle point: the INSERT statement with the ON CONFLICT clause activates BEFORE triggers both on inserts and updates:

=> INSERT INTO t VALUES (1,'ddd'), (3,'eee')
ON CONFLICT(id) DO UPDATE SET s = EXCLUDED.s;

NOTICE: t BEFORE INSERT STATEMENT:

NOTICE: t BEFORE UPDATE STATEMENT:

NOTICE: +t BEFORE INSERT ROW: (1,ddd)

NOTICE: t BEFORE UPDATE ROW: (1,ccc) -> (1,ddd)
NOTICE: t BEFORE INSERT ROW: (3,eee)

NOTICE: t AFTER UPDATE ROW: (1,ccc) -> (1,ddd)
NOTICE: t AFTER INSERT ROW: (3,eee)

NOTICE: t AFTER UPDATE STATEMENT:

NOTICE: t AFTER INSERT STATEMENT:

2

INSERT 0

And finally, let’s try out deletion:
=> DELETE FROM t WHERE id = 2;

NOTICE: t BEFORE DELETE STATEMENT:
NOTICE: t BEFORE DELETE ROW: (2,bbb)
NOTICE: t AFTER DELETE ROW: (2,bbb)
NOTICE: t AFTER DELETE STATEMENT:
DELETE 1

There is no dedicated trigger for the MERGE operator (introduced in PostgreSQL 15), use regular triggers for UPDATE, INSERT,
DELETE:

=> MERGE INTO t
USING (VALUES (1, 'fff'), (3, 'ggg'), (4, 'hhh')) AS vals(id, s)
ON t.id = vals.id
WHEN MATCHED AND t.id = 1 THEN
UPDATE SET s = vals.s
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED THEN
INSERT (id, s)
VALUES (vals.id, vals.s);

NOTICE: +t BEFORE INSERT STATEMENT:
NOTICE: +t BEFORE UPDATE STATEMENT:

NOTICE: +t BEFORE DELETE STATEMENT:

NOTICE: +t BEFORE UPDATE ROW: (1,ddd) -> (1,fff)
NOTICE: +t BEFORE DELETE ROW: (3,eee)

NOTICE: +t BEFORE INSERT ROW: (4,hhh)

NOTICE: +t AFTER UPDATE ROW: (1,ddd) -> (1,fff)
NOTICE: +t AFTER DELETE ROW: (3,eee)

NOTICE: +t AFTER INSERT ROW: (4,hhh)

NOTICE: t AFTER DELETE STATEMENT:

NOTICE: +t AFTER UPDATE STATEMENT:

NOTICE: +t AFTER INSERT STATEMENT:

MERGE 3

Transition tables

Let’s create a trigger function that shows the contents of transition tables. Here we use old_table and new_table names: they will be
declared as part of the trigger definition.

Transition tables look just like regular ones, but they are not included into the system catalog and are located in RAM (although

they can be flushed to disk if they get too large).

=> CREATE OR REPLACE FUNCTION transition() RETURNS trigger
AS $$
DECLARE
rec record;
BEGIN
IF TG_OP = 'DELETE' OR TG_OP = 'UPDATE' THEN
RAISE NOTICE 'Old state:';
FOR rec IN SELECT * FROM old_table LOOP
RAISE NOTICE '%', rec;
END LOOP;
END IF;
IF TG_OP = 'UPDATE' OR TG_OP = 'INSERT' THEN
RAISE NOTICE 'New state:';
FOR rec IN SELECT * FROM new_table LOOP
RAISE NOTICE 'S%', rec;
END LOOP;
END IF;
RETURN NULL;
END
$$ LANGUAGE plpgsql;

CREATE FUNCTION
Let’s create a new table:

=> CREATE TABLE trans(
id integer PRIMARY KEY,
n integer

);

CREATE TABLE

=> INSERT INTO trans VALUES (1,10), (2,20), (3,30);

INSERT 0 3

To create transition tables for an operation, you have to specify their names in the trigger definition:

=> CREATE TRIGGER t_after_upd_trans
AFTER UPDATE ON trans -- one event per trigger
REFERENCING
OLD TABLE AS old_table -- it’s OK to specify only one table,
NEW TABLE AS new_table -- there is no need to provide bhoth
FOR EACH STATEMENT
EXECUTE FUNCTION transition();

CREATE TRIGGER
Let’s check the result:
=> UPDATE trans SET n = n + 1 WHERE n <= 20;

NOTICE: O0ld state:
NOTICE: (1,10)
NOTICE: (2,20)
NOTICE: New state:
NOTICE: (1,11)
NOTICE: (2,21)
UPDATE 2

Transition tables contain only those rows that have been affected by the operation.

In addition to updates, transition tables are also supported for INSERT and DELETE operations, although only one table will be
available at a time: OLD TABLE is unavailable for inserts, while NEW TABLE is unavailable for deletes.

Since AFTER ROW triggers fire after the whole operation is completed, they can also use transition tables. But there is usually no
point in it.

Possible use cases Al

BEFORE STATEMENT ---------------- operation applicability checks

validation,
BEFORE ROW - A
row modifications

INSTEAD OF ROW -~ changing the base tables for views

consistency checks,
including table-level checks;
AFTER ROW - . logging operations for audit purposes;

cascading table updates (denormalization,

AFTER STATEMENT .
asynchronous processing...)

<«—+—+— operation execution —+—

11

What are triggers actually used for?

BEFORE triggers can be used to check if the operation is valid and to raise
errors if required.

BEFORE ROW triggers can be used to modify a row (for example, fill an
empty field with the required value). It is convenient to use such triggers to
avoid repeating the logic of filling out “technical” fields in each operation, as
well as tweak the application behavior if its code cannot be modified.

INSTEAD OF ROW triggers are used to translate operations on views into
the corresponding operations on the underlying base tables.

AFTER ROW and AFTER STATEMENT triggers can be useful for getting
the exact state after the operation (BEFORE triggers may affect the result,
so the state is not yet clear at this stage):

* To check consistency of the operation.

* To perform audit operations, i.e., logging all changes in a separate
storage.

* To cascade changes to other tables (for example, to update
denormalized data if the base tables have changed, or queue changes
for subsequent processing outside of the current transaction).

If the operation affects multiple rows, it may be more efficient to use AFTER
STATEMENT on transition tables instead of AFTER ROW as it can process
changes in batches.

Challenges (<r

The code is called implicitly

the execution logic is hard to track
Visibility rules for volatile trigger functions
the result of BEFORE ROW and INSTEAD OF ROW triggers is visible
The order of calling triggers for one and the same event
triggers fire in the alphabetical order
Infinite looping can occur

a trigger can activate other triggers

Integrity constraints can be broken

for example, by excluding rows that have to be deleted

12

Triggers should not be overused. As they fire implicitly, the logic of the
application becomes obscure, thus making its maintenance hugely
complicated. Attempts to use triggers for implementing complex logic are
usually quite unfortunate.

In some cases, you can use generated columns instead of triggers
(GENERATED ALWAYS AS ... STORED). If applicable, this solution is sure
to be more transparent and easier to implement.

There is a number of subtle points related to using triggers; we consciously
skip their detailed discussion here:

visibility rules of volatile functions in BEFORE ROW and INSTEAD OF
ROW triggers (do not rely on the order of triggers when accessing a
table)

the order of calling several triggers on one and the same event (do not
aggravate implicit firing of triggers by relying on their exact processing
seguence)

a possibility of infinite looping if cascade firing of triggers leads to another
activation of the first trigger

a risk of integrity constraint violation (for example, referential integrity can
be compromised when skipping a row deleted by the ON DELETE
CASCADE condition)

If you see that these subtleties are important for your application, you
should seriously consider redesigning it.

Examples of using triggers

Example 1: saving the history of row changes.

Suppose we have a table that contains the current data. The task is to save the main table’s history of all row changes into a
separate table.

Historical table support could be delegated to the application, but chances are high that some part of the history won’t be saved if
an error occurs. That’s why we are going to solve this problem using triggers.

As an example, we will create two tables: one with actual, up-to-date data, and the other with historical data tracking all changes
made to the first table.

The main table will store various British coins and the materials they are made of:

=> CREATE TABLE coins(
name text PRIMARY KEY,
material text

)i

CREATE TABLE

Let's create a clone of the main table and add "_history" to its name...
=> CREATE TABLE coins_history(LIKE coins);

CREATE TABLE

..and then add columns for validity range:

=> ALTER TABLE coins_history
ADD start_date timestamp,
ADD end_date timestamp;

ALTER TABLE

The first trigger function will be inserting a row into the historical table. Validity end date is left undefined, meaning that the row is
the current one:

=> CREATE OR REPLACE FUNCTION history_insert() RETURNS trigger
AS $%
BEGIN
EXECUTE format(
'INSERT INTO %I SELECT ($1).*, current_timestamp, NULL',
TG_TABLE_NAME| | ' _history"'
) USING NEW;

RETURN NEW;
END
$$ LANGUAGE plpgsql;

CREATE FUNCTION
The second function will be turning the current row into a historical one by setting the end date of its validity:

=> CREATE OR REPLACE FUNCTION history_delete() RETURNS trigger
AS $%
BEGIN
EXECUTE format(
'UPDATE %I SET end_date = current_timestamp WHERE name = $1 AND end_date IS NULL',
TG_TABLE_NAME| | '_history"
) USING OLD.name;

RETURN OLD;
END
$$ LANGUAGE plpgsql;

CREATE FUNCTION

Now let’s define triggers. Some important points to keep in mind:

e An update is treated as deletion followed by insertion; the order of triggers is important here (they fire in the alphabetical
order).

e Current_timestamp returns the time of the transaction start, so if an update is performed, the start_date of one row will be
the same as the end_date of another row.

e Using AFTER triggers allows avoiding issues with INSERT ... ON CONFLICT and potential conflicts with other triggers that may
be defined on the main table.

=> CREATE TRIGGER coins_history_insert
AFTER INSERT OR UPDATE ON coins
FOR EACH ROW EXECUTE FUNCTION history_insert();

CREATE TRIGGER

=> CREATE TRIGGER coins_history_delete
AFTER UPDATE OR DELETE ON coins
FOR EACH ROW EXECUTE FUNCTION history_delete();

CREATE TRIGGER

Let’s check our trigger implementation:

=> INSERT INTO coins VALUES ('penny', ‘'silver'), ('farthing', ‘'silver');
INSERT 0 2

=> UPDATE coins SET material = 'copper' WHERE name = 'penny';
UPDATE 1

=> UPDATE coins SET material = 'bronze' WHERE name = 'penny';
UPDATE 1

=> DELETE FROM coins WHERE name = 'farthing';

DELETE 1

=> INSERT INTO coins VALUES ('twentypence', 'sterling silver');
INSERT 0 1

=> UPDATE coins SET material = 'steel' WHERE name = 'penny’;
UPDATE 1

=> SELECT * FROM coins;

name | material
_____________ e m e e e e e e e
twentypence | sterling silver
penny | steel
(2 rows)

The historical table stores the whole history of changes:

=> SELECT * FROM coins_history ORDER BY name, start_date;

name | material | start date | end date
------------- R e T T S
farthing | silver | 2025-04-16 21:42:53.582767 | 2025-04-16 21:42:58.790835
penny | silver | 2025-04-16 21:42:53.582767 | 2025-04-16 21:42:55.660552
penny | copper | 2025-04-16 21:42:55.660552 | 2025-04-16 21:42:56.724341
penny | bronze | 2025-04-16 21:42:56.724341 | 2025-04-16 21:43:02.9088
penny | steel | 2025-04-16 21:43:02.9088
twentypence | sterling silver | 2025-04-16 21:43:00.850386 |
(6 rows)

And now we can use it to restore the state at any point in time (slightly similar to the MVCC mechanism). For example, at the very
beginning the table looked as follows:

=> \set d '2025-04-16 21:42:53.627213+03"'

=> SELECT name, material

FROM coins_history

WHERE start_date <= :'d' AND (end_date IS NULL OR :'d' < end_date)
ORDER BY name;

name | material
__________ I
farthing | silver
penny | silver
(2 rows)

Examples of using triggers

Example 2: an updatable view.

Suppose we have two tables: airports and flights:

=> CREATE TABLE airports(
code char(3) PRIMARY KEY,
name text NOT NULL

);

CREATE TABLE

=> INSERT INTO airports VALUES
('LHR', 'London. Heathrow'),
('CDG', 'Paris. Charles de Gaulle'),
('JFK', 'New York. John F. Kennedy');

INSERT 0 3

=> CREATE TABLE flights(
id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
airport_from char(3) NOT NULL REFERENCES airports(code),
airport_to char(3) NOT NULL REFERENCES airports(code),
UNIQUE (airport_from, airport_to)

)i

CREATE TABLE

=> INSERT INTO flights(airport_from, airport_to) VALUES
('LHR','CDG");

INSERT 0 1
For convenience, we can define a view:

=> CREATE VIEW flights_v AS
SELECT id,
(SELECT name
FROM airports
WHERE code = airport_from) airport_from,
(SELECT name
FROM airports
WHERE code = airport_to) airport_to
FROM flights;

CREATE VIEW
=> SELECT * FROM flights_v;
id | airport from | airport_to

1 | London. Heathrow | Paris. Charles de Gaulle
(1 row)

But such a view does not support updates. For example, you won’t be able to change the destination point using the following
command:

=> UPDATE flights_v
SET airport_to = 'New York. John F. Kennedy'
WHERE id = 1;

ERROR: cannot update column "airport to" of view "flights v"
DETAIL: View columns that are not columns of their base relation are not updatable.

But we can define a trigger. A trigger function can look as follows (for brevity, we’ll process only the destination airport, but it’s not
hard to add the departure airport as well):

=> CREATE OR REPLACE FUNCTION flights_v_update() RETURNS trigger
AS $%
DECLARE
code_to char(3);
BEGIN
BEGIN
SELECT code INTO STRICT code_to
FROM airports
WHERE name = NEW.airport_to;
EXCEPTION
WHEN no_data_found THEN
RAISE EXCEPTION 'Airport "%" is missing', NEW.airport_to;
END;
UPDATE flights
SET airport_to = code_to
WHERE id = OLD.id; -- ignore the id change
RETURN NEW;
END
$$ LANGUAGE plpgsql;

CREATE FUNCTION

And the trigger itself will look like this:

=> CREATE TRIGGER flights_v_upd_trigger
INSTEAD OF UPDATE ON flights_v
FOR EACH ROW EXECUTE FUNCTION flights_v_update();

CREATE TRIGGER
Let’s check the result:

=> UPDATE flights_v
SET airport_to = 'New York. John F. Kennedy'
WHERE id = 1;

UPDATE 1
=> SELECT * FROM flights_v;
id | airport from | airport to

1 | London. Heathrow | New York. John F. Kennedy
(1 row)

An attempt to update the airport to the one missing from the table:

=> UPDATE flights_v
SET airport_to = 'Amsterdam. Schiphol'’
WHERE id = 1;

ERROR: Airport "Amsterdam. Schiphol" is missing
CONTEXT: PL/pgSQL function flights v update() line 11 at RAISE

Takeaways (<r

A trigger is a way to address a particular event

Using triggers, you can cancel an operation, modify its outcome,
or perform additional actions

Triggers are executed as part of the main transaction; an error in
a trigger aborts this transaction

Using AFTER ROW triggers and transition tables makes
processing more expensive

Everything is good in moderation: complex logic is hard to
debug because of implicit trigger execution

14

Practice Y

1. Create a trigger that handles updates of the onhand_qty field in
the catalog_v view.

Check that the Catalog tab now allows ordering books.

2. Make sure that the following consistency requirement is met:
the amount of available books cannot be negative
(it is impossible to buy a book if it is not in stock).

Check your implementation carefully, keeping in mind that the
application can be accessed by several users simultaneously.

15

2. It may seem that it's enough to define the AFTER trigger on the
operations table to calculate the gty _change sum. However, at the READ
COMMITTED isolation level used in the Bookstore application, we will have
to acquire an exclusive lock on this table: otherwise, the check may not
function properly in some scenarios.

Here is a better approach: extend the books table with the onhand_qty
column and create a trigger that will be modifying onhand_qty values when
the operations table is changed (i.e., you should virtually perform data
denormalization). You can now define the CHECK constraint on the
onhand_qty field to ensure data consistency. The onhand_qty() function
created earlier is no longer required.

You should pay special attention to setting the initial value, keeping in mind
that the database system may be serving some users while we apply these
changes.

Task 1. Using a trigger to update the catalog

=> CREATE FUNCTION update_catalog() RETURNS trigger

AS $$

BEGIN
INSERT INTO operations(book_id, qty change) VALUES

(OLD.book_id, NEW.onhand_qty - coalesce(OLD.onhand_qty,0));

RETURN NEW;

END

$$ VOLATILE LANGUAGE plpgsql;

CREATE FUNCTION

=> CREATE TRIGGER update_catalog_trigger
INSTEAD OF UPDATE ON catalog_v

FOR EACH ROW

EXECUTE FUNCTION update_catalog();

CREATE TRIGGER

Task 2. Checking the quantity of books

Let’s extend the table with the column that will store the quantity of the books available.
=> ALTER TABLE books ADD COLUMN onhand_qty integer;
ALTER TABLE

The trigger function for the AFTER trigger, which is fired on insertion to update the quantity of available books (we assume that the
onhand_qty field cannot be empty):

=> CREATE FUNCTION update_onhand_qty() RETURNS trigger
AS $$
BEGIN
UPDATE books
SET onhand_qty = onhand_qty + NEW.qty_change
WHERE book_id = NEW.book_id;
RETURN NULL;
END
$$ VOLATILE LANGUAGE plpgsql;

CREATE FUNCTION

The remaining operations are performed within a single transaction.
=> BEGIN;

BEGIN

Locking the table for the duration of the transaction:

=> LOCK TABLE operations;

LOCK TABLE

Providing the initial value:

=> UPDATE books b

SET onhand_qty = (
SELECT coalesce(sum(qty_change),0)
FROM operations o
WHERE o.book_id = b.book_id

)i

UPDATE 7

Defining constraints now that the field is non-empty:

=> ALTER TABLE books ALTER COLUMN onhand_qty SET DEFAULT 0;
ALTER TABLE

=> ALTER TABLE books ALTER COLUMN onhand_qty SET NOT NULL;
ALTER TABLE

=> ALTER TABLE books ADD CHECK(onhand_qty >= 0);

ALTER TABLE

Creating a trigger:

=> CREATE TRIGGER update_onhand_qty_trigger
AFTER INSERT ON operations

FOR EACH ROW

EXECUTE FUNCTION update_onhand_qty();

CREATE TRIGGER
Done.

=> COMMIT;
COMMIT

Now the books.onhand_qty column is being updated, but the catalog_v view still calls a function to calculate the number of books.
Although the syntax used for function access in the initial query is the same as that for the field access, the query has been stored in
a different form:

=> \d+ catalog_v

View "bookstore.catalog v"

Column | Type | Collation | Nullable | Default | Storage | Description
-------------- R i e R it R e
book_id | integer | | | | plain
title | text | | | | extended |
onhand gty | integer | | | | plain
display name | text | | | | extended |
authors | text | | | | extended |

View definition:
SELECT book id,
title,
onhand qty(b.*) AS onhand qty,
book name(book id, title) AS display name,
authors(b.*) AS authors
FROM books b
ORDER BY (book name(book id, title));
Triggers:
update catalog trigger INSTEAD OF UPDATE ON catalog v FOR EACH ROW EXECUTE FUNCTION
update catalog()

Let’s replace the view:

=> CREATE OR REPLACE VIEW catalog_v AS
SELECT b.book_id,
b.title,
b.onhand_qty,
book_name(b.book_id, b.title) AS display_name,
b.authors
FROM books b
ORDER BY display_name;

CREATE VIEW

Now the function can be deleted.

=> DROP FUNCTION onhand_qty(books);

DROP FUNCTION

Let’s run a small check:

=> SELECT * FROM catalog_v WHERE book_id = 1 \gx

<] RECORD 1 J4-cmmmmmmmmmom e e e e e et

book id | 1

title | The Tale of Tsar Saltan

onhand_qty | 19

display name | The Tale of Tsar Saltan. Alexander S. Pushkin
authors | Alexander Sergeyevich Pushkin

=> INSERT INTO operations(book_id, qty_change) VALUES (1,+10);
INSERT 0 1

=> SELECT * FROM catalog_v WHERE book_id = 1 \gx

<] RECORD 1 Ja-cmmmmmmmmmomm e e e ce e e

book id | 1

title | The Tale of Tsar Saltan

onhand_qty | 29

display _name | The Tale of Tsar Saltan. Alexander S. Pushkin
authors | Alexander Sergeyevich Pushkin

Incorrect operations are aborted:
=> INSERT INTO operations(book_id, qty_change) VALUES (1,-100);

ERROR: new row for relation "books" violates check constraint "books onhand qty check"
DETAIL: Failing row contains (1, The Tale of Tsar Saltan, -71).
CONTEXT: SQL statement "UPDATE books
SET onhand gty = onhand qty + NEW.qty change
WHERE book id = NEW.book id"
PL/pgSQL function update onhand qty() line 3 at SQL statement

