PL/pgSQL
Error Handling

Copyright

© Postgres Professional, 2017-2025

Authors Egor Rogov, Pavel Luzanov, llya Bashtanov, Igor Gnatyuk
Translated by Liudmila Mantrova and Alexander Meleshko

Photo by Oleg Bartunov (Tukuche peak, Nepal)

Use of course materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.com

Disclaimer

In no event shall Postgres Professional company be liable for any damages
or loss, including loss of profits, that arise from direct or indirect, special or
incidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations
to provide maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

Topics

Error handling in PL/pgSQL blocks
Error names and codes
Choosing an error handler

Error handling overhead

rt"

N

Error handling in a block (¢

Error handling is performed if there is an EXCEPTION section
Changes roll back to the savepoint at the beginning of the block

an implicit savepoint is set if the block contains an EXCEPTION section

If there is a handler that matches the error

error handler commands are executed
the block completes successfully

If there is no suitable handler

the block completes with an error

If a run-time error occurs within a block, the program (block, function) is
usually aborted, and the current transaction enters the failure mode: it
cannot be committed and can only be rolled back.

But an error can be caught and processed. It can be done by extending the
block with an additional EXCEPTION section, which lists error conditions
and provides operators to handle each of them.

In general, EXCEPTION is similar to the try-catch construct available in
some programming languages (except for specifics related to transactions,
or course).

A savepoint is implicitly set at the start of every block containing an
EXCEPTION section. Before an error is processed, all changes are rolled
back to the savepoint and all locks are removed.

Because of the savepoint, COMMIT and ROLLBACK commands cannot be
used in procedures with EXCEPTION. But although SAVEPOINT and
ROLLBACK TO SAVEPOINT commands are not supported by PL/pgSQL,
you can still use savepoints and rollbacks to savepoints both in functions
and procedures implicitly.

https://postgrespro.com/docs/postgresqgl/17/plpgsql-control-structures#PLP
GSOL-ERROR-TRAPPING

https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLPGSQL-ERROR-TRAPPING
https://postgrespro.com/docs/postgresql/17/plpgsql-control-structures#PLPGSQL-ERROR-TRAPPING

Handling errors in a block

Let’s take a look at a simple example.

=> CREATE TABLE t(id integer);

CREATE TABLE

=> INSERT INTO t(id) VALUES (1);

INSERT 0 1

If there are no errors, all operators in a block are executed as usual:

=> DO $$%
DECLARE
n integer;
BEGIN
SELECT id INTO STRICT n FROM t;
RAISE NOTICE 'The SELECT INTO operator has completed, n = %', n;
END
$$;

NOTICE: The SELECT INTO operator has completed, n = 1
DO

Now let’s insert a “redundant” row to trigger an error.
=> INSERT INTO t(id) VALUES (2);
INSERT 0 1

If there is no EXCEPTION section in a block, the operator execution is interrupted, and the whole block is considered to be
completed with an error:

=> DO $%
DECLARE
n integer;
BEGIN
SELECT id INTO STRICT n FROM t;
RAISE NOTICE 'The SELECT INTO operator has completed, n = %', n;
END
$$;

ERROR: query returned more than one row
HINT: Make sure the query returns a single row, or use LIMIT 1.
CONTEXT: PL/pgSQL function inline_code block line 5 at SQL statement

To catch an error, a block must have an EXCEPTION section, which defines one or more error handlers.

This construct works similar to CASE: conditions are parsed from top to bottom, the first suitable code path is selected, and its
operators are executed.

What will be displayed?

=> DO $$
DECLARE
n integer;
BEGIN
n := 3;
INSERT INTO t(id) VALUES (n);
SELECT id INTO STRICT n FROM t;
RAISE NOTICE 'The SELECT INTO operator has completed, n = %', n;
EXCEPTION
WHEN no_data_found THEN
RAISE NOTICE ‘No data';
WHEN too_many_rows THEN
RAISE NOTICE 'Too much data';
RAISE NOTICE 'Rows in a table: %, n = %', (SELECT count(*) FROM t), n;
END
$$;

NOTICE: Too much data
NOTICE: Rows in a table: 2, n =3
DO

The executed handler corresponds to the too_many_rows error. Note: if a handler is executed, the table contains two rows because
of a rollback to an implicit savepoint at the beginning of the block.

Also note that the local variable keeps the value that was there when the error occured.

Note the following subtlety: if an error occurs in the DECLARE section or within the EXCEPTION section of the handler itself, it will
be impossible to catch it in this block.

=> DO $%
DECLARE

n integer := 1/ 0; -- an error is not trapped here
BEGIN

RAISE NOTICE 'Success';
EXCEPTION

WHEN division_by_zero THEN

RAISE NOTICE 'Division by zero';

END
$$;

ERROR: division by zero

CONTEXT: SQL expression "1 / 0"

PL/pgSQL function inline_code block line 3 during statement block local variable
initialization

Error names and codes o

Error info

error name
five-character error code

additional info: a short message, a detailed message, a hint, names of objects
related to this error

Two-level hierarchy

000 - plpgsql_error 000 — internal_error
—> PO0001 — raise_exception —>» XXO001 — data_corrupted
— P0002 — no_data_found —>» XX002 — index_corrupted

—> PO0003 — too_many_rows

—> P0004 — assert_failure

Each possible error has a name and a code (a five-character string). WHEN
clauses accept both error names and error codes.

All errors are classified into a two-level hierarchy of sorts. Each error class
has a code that ends with three zeros; it corresponds to any error with the
same first two characters in its code.

For example, the code 23000 defines the class that includes all errors
dealing with violations of integrity constraints (such as 23502, which stands
for NOT NULL constraint violation, or 23505, which indicates a UNIQUE
constraint violation).

Thus, apart from regular errors, you can specify the whole error class by its
name or code. Besides, you can use a special name OTHERS to catch any
errors (except for the fatal ones).

Apart from the name and code, each error can provide additional debug
information: a short error message, a detailed message, and a hint.

All errors are described in documentation in Appendix A:
https://postgrespro.com/docs/postgresgl/17/errcodes-appendix
Errors can be not only trapped, but also raised programmatically.

https://postgrespro.com/docs/postaresqgl/17/plpgsql-errors-and-messages

https://postgrespro.com/docs/postgresql/17/errcodes-appendix
https://postgrespro.com/docs/postgresql/17/plpgsql-errors-and-messages

Error names and codes

We have already seen error names; error codes are specified using SQLSTATE.

An error handler can return an error code and the corresponding message using the predefined variables SQLSTATE and SQLERRM
(the variables are undefined outside of the EXCEPTION block).

=> DO $$
DECLARE
n integer;
BEGIN
SELECT id INTO STRICT n FROM t;
EXCEPTION
WHEN SQLSTATE 'P0003' OR no_data_found THEN -- there can be several conditions
RAISE NOTICE '%: %', SQLSTATE, SQLERRM;
END
$$;

NOTICE: P0O003: query returned more than one row
DO

Which error handler will be used?

=> DO $$
DECLARE
n integer;
BEGIN
SELECT id INTO STRICT n FROM t;
EXCEPTION
WHEN no_data_found THEN
RAISE NOTICE 'No data. %: %', SQLSTATE, SQLERRM;
WHEN plpgsql_error THEN
RAISE NOTICE 'Another error. %: %', SQLSTATE, SQLERRM;
WHEN too_many_rows THEN
RAISE NOTICE 'Too much data. %: %', SQLSTATE, SQLERRM;
END
$%;

NOTICE: Another error. PO003: query returned more than one row
DO

The first applicable handler is selected, plpgsql_error in this case (remember: this is not a specific error, but an error category). We
will never get to the last error handler.

You can force an error using either its code or its name.

Here we use a special name “others,” which corresponds to any error that should be trapped (except for assertion failures and cases
when the execution is aborted by user — you can catch them separately, but you almost never need to).

=> DO $$
BEGIN

RAISE no_data_found;
EXCEPTION

WHEN others THEN

RAISE NOTICE '%: %', SQLSTATE, SQLERRM;

END
$$;

NOTICE: PO002: no_data found
DO

If required, it is also possible to incorporate user-provided error codes that are not predefined, as well as pass some additional
information (the example illustrates only some of the supported features):

=> DO $%
BEGIN
RAISE SQLSTATE 'ERRO1' USING
message := 'Matrix failure',
detail := 'Irrecoverable matrix failure has occurred during execution',
hint := 'Contact your system administrator’;
END
$$;

ERROR: Matrix failure

DETAIL: Irrecoverable matrix failure has occurred during execution
HINT: Contact your system administrator

CONTEXT: PL/pgSQL function inline code block line 3 at RAISE

Error handlers cannot get this information from variables; there is a special construct for analyzing such data in the code:

=> DO $$

DECLARE
message text;
detail text;

hint text;
BEGIN
RAISE SQLSTATE 'ERRO1l' USING
message := 'Matrix failure',
detail := 'Irrecoverable matrix failure has occurred during execution',
hint := 'Contact your system administrator';
EXCEPTION

WHEN others THEN
GET STACKED DIAGNOSTICS
message := MESSAGE_TEXT,
detail := PG_EXCEPTION_DETAIL,
hint := PG_EXCEPTION_HINT;
RAISE NOTICE E'\nmessage = %\ndetail = %\nhint = %',
message, detail, hint;
END
$$;

NOTICE:

message = Matrix failure

detail = Irrecoverable matrix failure has occurred during execution
hint = Contact your system administrator

DO

Choosing a handler (¢

An unhandled error is sent one level up

into the outer PL/pgSQL block, if available
into the calling routine, if available

The search path of a handler is determined by the call stack

it is not defined statically, but depends on how the program executes

An unhandled error is passed to the client

the transaction enters the failure mode and has to be rolled back by the client
the error is registered in the server log

If none of the conditions listed in the EXCEPTION section is triggered, the
error goes one level up.

If an error has occurred in the inner block of a nested structure, the server
will search for a handler in the outer block. If there is no suitable handler
either, the whole outer block will be treated as failed, while the error will be
passed to the next nesting level, and so on.

If the error goes through the whole nested structure and does not find an
appropriate handler, it goes further up to the level of the routine that has
called the outermost block. Therefore, you have to analyze the call stack to
determine the order in which different error handlers will be applied.

If none of the available error handlers is triggered:

* The error message usually gets into the server log (the exact behavior
depends on the server settings),

* The error is reported to the client that has initiated this operation in the
database. The client cannot do anything about the cause of the error at
this point: the transaction enters the failure mode, and it can only be
rolled back.

It is up to the client to choose how to handle the error from there. For
example, psgl will display the error message and all the debugging
information available. An end-user client may display a generic message
like “contact your system administrator”.

Choosing a handler

Let’s take a look at several examples of choosing a handler in nested blocks. What will be displayed?

=> DO $$
BEGIN
BEGIN
SELECT 1/0;
RAISE NOTICE 'The inner block has completed';
EXCEPTION
WHEN division_by_zero THEN
RAISE NOTICE 'Error in the inner block';
END;
RAISE NOTICE 'The outer block has completed';
EXCEPTION
WHEN division_by_zero THEN
RAISE NOTICE 'Error in the outer block';
END
$$;

NOTICE: Error in the inner block
NOTICE: The outer block has completed
DO

An error is handled in the same block where it has occurred. The outer block is executed as if there has been no error at all.

SELECT 1/0;
RAISE NOTICE 'The inner block has completed';
EXCEPTION
WHEN no_data_found THEN
RAISE NOTICE 'Error in the inner block';
END;
RAISE NOTICE 'The outer block has completed';
EXCEPTION
WHEN division_by_zero THEN
RAISE NOTICE 'Error in the outer block';
END
$$;

NOTICE: Error in the outer block
DO

The handler in the inner block is not applicable; the block completes with an error that is handled in the outer block.

Remember that the block containing an EXCEPTION section is rolled back to the implicit savepoint at the beginning of this block. In
this case, all changes made in both blocks will be rolled back.

SELECT 1/0;
RAISE NOTICE 'The inner block has completed';
EXCEPTION
WHEN no_data_found THEN
RAISE NOTICE 'Error in the inner block';
END;
RAISE NOTICE 'The outer block has completed';
EXCEPTION
WHEN no_data_found THEN
RAISE NOTICE 'Error in the outer block';
END
$$;

ERROR: division by zero
CONTEXT: SQL statement "SELECT 1/0"
PL/pgSQL function inline _code block line 4 at SQL statement

None of the handlers is triggered, and the whole transaction is aborted.

There is usually no need to handle all possible errors in the server code. There is nothing wrong in passing an error to the client. In
general, an error should be handled at the level where something meaningful can be done about it. So it makes sense to process an
error within the database if it can be addressed on the server side (e.g., the operation can be repeated in case of a serialization
failure).

Now let’s take a look at an example that uses routines.

=> CREATE PROCEDURE foo()
AS $%
BEGIN
CALL bar();
END
$$ LANGUAGE plpgsql;

CREATE PROCEDURE

=> CREATE PROCEDURE bar()
AS $$
BEGIN
CALL baz();
END
$$ LANGUAGE plpgsql;

CREATE PROCEDURE

=> CREATE PROCEDURE baz()
AS $$
BEGIN
PERFORM 1 / 0;
END
$$ LANGUAGE plpgsql;

CREATE PROCEDURE
What will happen if we call this procedure?
=> CALL foo();

ERROR: division by zero

CONTEXT: SQL statement "SELECT 1 / 0"
PL/pgSQL function baz() line 3 at PERFORM
SQL statement "CALL baz()"

PL/pgSQL function bar() line 3 at CALL
SQL statement "CALL bar()"

PL/pgSQL function foo() line 3 at CALL

The error message displays the call stack: top to bottom means inside out.

Note that this message (like many others) uses the term “function” instead of “procedure”.

An error handler can also provide access to the call stack, but it will be presented as a single string:

=> CREATE OR REPLACE PROCEDURE bar()
AS $$
DECLARE
msg text;
ctx text;
BEGIN
CALL baz();
EXCEPTION
WHEN others THEN
GET STACKED DIAGNOSTICS
msg := MESSAGE_TEXT,
ctx := PG_EXCEPTION_CONTEXT;
RAISE NOTICE E'\nError: %\nError stack:\n%\n', msg, ctx;
END
$$ LANGUAGE plpgsql;

CREATE PROCEDURE
Let’s check the result:

=> CALL foo();

NOTICE:

Error: division by zero

Error stack:

SQL statement "SELECT 1 / 0"

PL/pgSQL function baz() line 3 at PERFORM
SQL statement "CALL baz()"

PL/pgSQL function bar() line 6 at CALL
SQL statement "CALL bar()"

PL/pgSQL function foo() line 3 at CALL

Since a block with an EXCEPTION section creates an implicit savepoint, procedures cannot use COMMIT and ROLLBACK commands
both in this block and in all the blocks up the call stack.

=> CREATE OR REPLACE PROCEDURE baz()
AS $$
BEGIN
COMMIT;
END
$$ LANGUAGE plpgsql;

CREATE PROCEDURE
=> CALL foo();

NOTICE:

Error: invalid transaction termination
Error stack:

PL/pgSQL function baz() line 3 at COMMIT
SQL statement "CALL baz()"

PL/pgSQL function bar() line 6 at CALL
SQL statement "CALL bar()"

PL/pgSQL function foo() line 3 at CALL

CALL

Overhead Y

Any block with an EXCEPTION section is executed slower

because of setting an implicit savepoint

Additional costs are incurred in case of an error

because of the rollback to the savepoint

Error handling can and should be used, but not overused

PL/pgSQL is an interpreted language that uses SQL to compute expressions
anyway
the speed is more than enough for most tasks

performance issues are usually related to queries, not to PL/pgSQL code

The mere inclusion of an EXCEPTION section already incurs overhead
because it requires setting an implicit savepoint at the beginning of the
block. If an error occurs, the rollback to the savepoint increases the
overhead even more.

So if there is a simple way to avoid exception handling, it's better to do
without it; you should not base your application logic on “exception juggling.”

However, if error handing is really required, you should use it without doubt:
errors can and must be handled regardless of the overhead.

First, the PL/pgSQL language itself is quite slow because of interpreting
Instructions and constantly calling SQL to compute expressions.

Second, its speed is usually still adequate. Yes, you can create a faster
implementation in C, but what'’s the point?

And third, the main performance issues are usually caused by bad query
plans that affect query speed, not by the execution speed of procedural
code (for details, see the QPT course that deals with query performance
tuning).

But if there is an alternative that is both simpler and faster, it should certainly
be preferred.

Overhead

To estimate the overhead, let’s take a look at the following simple example.

Suppose we have a table with a text field that stores arbitrary data inserted by users (although usually a sign of bad design, it may
sometimes be required). We need to extract all numbers into a separate column of a numeric type.

=> CREATE TABLE data(comment text, n integer);
CREATE TABLE

=> INSERT INTO data(comment)
SELECT CASE
WHEN random() < 0.01 THEN 'not a number' -- 1%
ELSE (random()*1000)::integer::text -- 99%
END
FROM generate_series(1l,1_000_000);

INSERT 0 1000000
Let’s solve this problem using error handling that comes up when converting text to integer:

=> CREATE FUNCTION safe_to_integer_ex(s text) RETURNS integer
AS $%
BEGIN

RETURN s::integer;
EXCEPTION

WHEN invalid_text_representation THEN

RETURN NULL;

END
$$ IMMUTABLE LANGUAGE plpgsql;

CREATE FUNCTION

Let’s check the result:

=> \timing on

Timing is on.

=> UPDATE data SET n = safe_to_integer_ex(comment);

UPDATE 1000000
Time: 6227.565 ms (00:06.228)

=> \timing off
Timing is off.

=> SELECT count(*) FROM data WHERE n IS NOT NULL;

990088
(1 row)

The following implementation of our function will check the format using a (slightly simplified) regular expression, without error
handling. The body can be written in SQL:

=> CREATE FUNCTION safe_to_integer_re(s text) RETURNS integer
IMMUTABLE
RETURN CASE
WHEN s ~ '~\d+$' THEN s::integer
ELSE NULL
END;

CREATE FUNCTION

Let’s check this implementation:

=> \timing on

Timing is on.

=> UPDATE data SET n = safe_to_integer_re(comment);

UPDATE 1000000
Time: 4302.734 ms (00:04.303)

=> \timing off

Timing is off.

=> SELECT count(*) FROM data WHERE n IS NOT NULL;

990088
(1 row)

This implementation is significantly faster. In this example, the exception has occurred in 1% of cases only. The more often it
occurs, the more overhead will be incurred by rollbacks to the savepoint.

=> UPDATE data SET comment = 'not a number'; -- 100%
UPDATE 1000000

=> \timing on

Timing is on.

=> UPDATE data SET n = safe_to_integer_ex(comment);

UPDATE 1000000
Time: 9516.687 ms (00:09.517)

=> \timing off

Timing is off.

In some cases (which are not infrequent), you can do without error handling if you choose other suitable means.
Problem: update a table row with the specified ID; if there is no such row, insert it.

=> CREATE TABLE categories(code text UNIQUE, description text);

CREATE TABLE

=> INSERT INTO categories VALUES ('books', 'Books'), ('discs','Disks');

INSERT 0 2

Here is the first approach. What is wrong with it?

=> CREATE OR REPLACE FUNCTION change(code text, description text)
RETURNS void
AS $$
DECLARE
cnt integer;
BEGIN
SELECT count(*) INTO cnt
FROM categories c WHERE c.code = change.code;

IF cnt = 0 THEN
INSERT INTO categories VALUES (code, description);
ELSE
UPDATE categories ¢
SET description = change.description
WHERE c.code = change.code;
END IF;
END
$$ VOLATILE LANGUAGE plpgsql;

CREATE FUNCTION

Almost everything is bad here, starting from the fact that such a function will not work correctly at the Read Committed isolation
level if there are several concurrent sessions. That’s because the data in the database can change between the executed SELECT
statement and the next operation.

It can be easily demonstrated by executing commands with a delay:

=> CREATE OR REPLACE FUNCTION change(code text, description text)
RETURNS void
AS $%
DECLARE
cnt integer;
BEGIN
SELECT count(*) INTO cnt
FROM categories ¢ WHERE c.code = change.code;

PERFORM pg_sleep(l); -- anything can happen here

IF cnt = 0 THEN
INSERT INTO categories VALUES (code, description);

ELSE
UPDATE categories ¢
SET description = change.description
WHERE c.code = change.code;
END IF;
END
$$ VOLATILE LANGUAGE plpgsql;

CREATE FUNCTION

Now let’s run this function in two different sessions, almost simultaneously:
=> SELECT change('games', 'Games');
| => SELECT change('games', 'Games');

ERROR: duplicate key value violates unique constraint "categories code key"
DETAIL: Key (code)=(games) already exists.

CONTEXT: SQL statement "INSERT INTO categories VALUES (code, description)"
PL/pgSQL function change(text,text) line 11 at SQL statement

A correct solution can be implemented using error handling:

=> CREATE OR REPLACE FUNCTION change(code text, description text)
RETURNS void
AS $%
BEGIN
LOOP

UPDATE categories c

SET description = change.description

WHERE c.code = change.code;

EXIT WHEN FOUND;
PERFORM pg_sleep(l); -- for the demo

BEGIN
INSERT INTO categories VALUES (code, description);
EXIT;
EXCEPTION
WHEN unique_violation THEN NULL;
END;
END LOOP;
END
$$ VOLATILE LANGUAGE plpgsql;

CREATE FUNCTION
Let’s check the result.
=> SELECT change('vynil', 'Vynil records');

| => SELECT change('vynil', 'Vynil records');

change

But there is an easier way: you can use a special flavor of the INSERT command that attempts to insert a row and performs an
update if a conflict occurs. Again, all you need is pure SQL.

=> CREATE OR REPLACE FUNCTION change(code text, description text)
RETURNS void
VOLATILE LANGUAGE sql
BEGIN ATOMIC

INSERT INTO categories VALUES (code, description)

ON CONFLICT(code)

DO UPDATE SET description = change.description;

END;

CREATE FUNCTION

Let’s see an example where we cannot do without error handling.
Problem: process a set of documents; a processing error of a particular document should not result in a general failure.

=> CREATE TYPE doc_status AS ENUM -- enumeration type
('READY', 'ERROR', 'PROCESSED');

CREATE TYPE

=> CREATE TABLE documents (
id integer,
version integer,
status doc_status,
message text

)i

CREATE TABLE

=> INSERT INTO documents(id, version, status)
SELECT id, 1, 'READY' FROM generate_series(1,100) id;

INSERT 0 100
A procedure that processes a single document can sometimes result in an error:

=> CREATE PROCEDURE process_one_doc(id integer)
AS $$
BEGIN
UPDATE documents d
SET version = version + 1
WHERE d.id = process_one_doc.id;
-- processing can take a while
IF random() < 0.05 THEN
RAISE EXCEPTION 'Catastrophic failure';
END IF;
END
$$ LANGUAGE plpgsql;

CREATE PROCEDURE

Now let’s create a procedure that processes all documents. It loops through the documents to process them one by one and catches
an error if required.

Note that transactions are committed outside of the block that contains the EXCEPTION section.

=> CREATE PROCEDURE process_docs()
AS $$
DECLARE

doc record;
BEGIN

FOR doc IN (SELECT id FROM documents WHERE status = 'READY')

LooP

BEGIN
CALL process_one_doc(doc.id);

UPDATE documents d

SET status = 'PROCESSED'

WHERE d.id = doc.id;
EXCEPTION

WHEN others THEN

UPDATE documents d
SET status = 'ERROR', message = sqlerrm
WHERE d.id = doc.id;
END;
COMMIT; -- there is a separate transaction for each document
END LOOP;
END
$$ LANGUAGE plpgsql;

CREATE PROCEDURE

You can set up a similar processing using a function, but then all documents will be handled within a single common transaction,
which can be a problem if processing takes a long time. This question is discussed at length in the DEV2 course.

Let’s check the result:
=> CALL process_docs();
CALL

=> SELECT d.status, d.version, count(*)::integer
FROM documents d
GROUP BY d.status, d.version;

status | version | count
___________ L L T g,
PROCESSED | 2| 97
ERROR | 1| 3
(2 rows)

As you can see, some of the documents have not been processed, but it has not affected the processing of the others.
It is convenient that the information about the occurred errors is stored in the table itself:

=> SELECT * FROM documents d WHERE d.status = 'ERROR';

id | version | status | message

B LR L
33 | 1 | ERROR | Catastrophic failure
51 | 1 | ERROR | Catastrophic failure
56 | 1 | ERROR | Catastrophic failure
(3 rows)

Please note once again that if an error occurs, the changes are rolled back to the savepoint at the beginning of the block; that’s why
documents with the ERROR status have not changed and still have version 1.

Takeaways (~f

The search for an error handler is performed “inside out”:
starting from the innermost block in the nested structure and
going up the call stack

An implicit savepoint is set at the beginning of the block that
contains EXCEPTION; if an error occurs, a rollback to this
savepoint is performed

An unhandled error aborts the transaction; the error message is
passed to the client and registered in the server log

Error handling incurs overhead

11

Practice [/ Y

1. Attempting to put in the same author several times when adding
a book causes an error.
Modify the add_book function: catch the unique constraint
violation error and produce an error with a meaningful message
instead.

Try it out in the application.

12

1. To determine the name of the error that has to be caught, catch all errors
(WHEN OTHERS) and display the required information (by raising another
error with the corresponding text).

Then remember to replace WITH OTHERS with a specific error: let all other
error types be handled at a higher level if there is no opportunity to do
anything useful in this particular position in the code.

(In a real environment, unique constraint violations should not be handled
either: it is better to forbid entering the same author twice at the application
level.)

Task 1. Processing duplicated author names when adding books

=> CREATE OR REPLACE FUNCTION add_book(title text, authors integer[])
RETURNS integer
AS $%
DECLARE
book_id integer;
id integer;
seq_num integer := 1;
BEGIN
INSERT INTO books(title)
VALUES (title)
RETURNING books.book_id INTO book_id;
FOREACH id IN ARRAY authors LOOP
INSERT INTO authorship(book_id, author_id, seq_num)
VALUES (book_id, id, seq_num);
seq_num := seq_num + 1;
END LOOP;
RETURN book_id;
EXCEPTION
WHEN unique_violation THEN

RAISE EXCEPTION 'One and the same author cannot be specified twice';

END
$$ VOLATILE LANGUAGE plpgsql;

CREATE FUNCTION

