

Data Organization

Databases and Schemas

16

Copyright
© Postgres Professional, 2017–2025
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Alexey Beresnev
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is,”
and Postgres Professional company has no obligations to provide
maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

Databases and Templates

Schemas and Search Path

Special Schemas, Temporary Objects

Managing Databases, Schemas, and Objects

3

Database Cluster

Cluster initialization creates three databases

A new database is always cloned from an existing one

postgres

tabletableobject

template0

tabletableobject

template1

tabletableobject

new DB

tabletableobject

does not change

connection
by default

common
changes

A PostgreSQL instance manages a database cluster which comprises
multiple databases. When a cluster is initialized, three identical databases
are created in a specific way.

https://postgrespro.com/docs/postgresql/16/bki

All other databases created by users are cloned from an existing one.

The template1 database is used by default when creating new databases.
Any objects and extensions added to the template will be copied into any
database created from it.

The template0 must never be modified. It is required in at least two
scenarios. Firstly, it is necessary when restoring a database from a backup
created via pg_dump (since the copy will include not only the database
objects, but also any objects from template1). Secondly, it is used when
creating a new database with an encoding different from the one specified
during cluster initialization.

The postgres database is used to connect to by default by the postgres user.
It is not a hard requirement to have it, but some utilities expect it to be there,
so removing it is not a good idea, even if you never use the database
directly.

https://postgrespro.com/docs/postgresql/16/manage-ag-templatedbs

https://postgrespro.com/docs/postgresql/16/bki
https://postgrespro.com/docs/postgresql/16/manage-ag-templatedbs

Databases

The	\l[ist]	command	shows	a	list	of	all	databases:

=>	\l

																																																							List	of	databases
			Name				|		Owner			|	Encoding	|	Locale	Provider	|			Collate			|				Ctype				|	ICU	
Locale	|	ICU	Rules	|			Access	privileges			
-----------+----------+----------+-----------------+-------------+-------------+----------
--+-----------+-----------------------
	postgres		|	postgres	|	UTF8					|	libc												|	en_US.UTF-8	|	en_US.UTF-8	|										
		|											|	
	student			|	student		|	UTF8					|	libc												|	en_US.UTF-8	|	en_US.UTF-8	|										
		|											|	
	template0	|	postgres	|	UTF8					|	libc												|	en_US.UTF-8	|	en_US.UTF-8	|										
		|											|	=c/postgres										+
											|										|										|																	|													|													|										
		|											|	postgres=CTc/postgres
	template1	|	postgres	|	UTF8					|	libc												|	en_US.UTF-8	|	en_US.UTF-8	|										
		|											|	=c/postgres										+
											|										|										|																	|													|													|										
		|											|	postgres=CTc/postgres
(4	rows)

The	list	includes	a	fourth	database,	student,	which	is	not	created	during	cluster	initialization.	This	database	was	specifically	added
for	course	purposes	—	it	allows	users	to	omit	the	database	name	when	launching	psql,	as	it	defaults	to	a	database	matching	the	OS
username.

You	can	also	view	the	list	of	databases	in	the	database	itself:

=>	SELECT	datname,	datistemplate,	datallowconn,	datconnlimit	FROM	pg_database;

		datname		|	datistemplate	|	datallowconn	|	datconnlimit	
-----------+---------------+--------------+--------------
	postgres		|	f													|	t												|											-1
	student			|	f													|	t												|											-1
	template1	|	t													|	t												|											-1
	template0	|	t													|	f												|											-1
(4	rows)

datistemplate	—	whether	the	database	is	a	template
datallowconn	—	whether	database	connections	are	allowed
datconnlimit	—	maximum	number	of	connections	(-1	=	unlimited)

Creating	a	Database	from	a	Template

Connect	to	the	template1	database:

=>	\c	template1

You	are	now	connected	to	database	"template1"	as	user	"student".

Check	if	we	can	use	the	digest	function,	which	calculates	the	hash	code	of	a	text	string:

=>	SELECT	digest('Hello,	world!',	'md5');

ERROR:		function	digest(unknown,	unknown)	does	not	exist
LINE	1:	SELECT	digest('Hello,	world!',	'md5');
															^
HINT:		No	function	matches	the	given	name	and	argument	types.	You	might	need	to	add	
explicit	type	casts.

There	is	no	such	function.

In	fact,	the	digest	function	is	defined	in	the	pgcrypto	extension.	Install	it:

=>	CREATE	EXTENSION	pgcrypto;

CREATE	EXTENSION

Now,	we	can	use	the	functions	provided	by	the	pgcrypto	extension.	For	example,	the	MD5	digest	calculation	function:

=>	SELECT	digest('Hello,	world!',	'md5');

															digest															

	\x6cd3556deb0da54bca060b4c39479839
(1	row)

In	order	to	be	used	to	create	a	database	from,	the	template	must	have	no	active	connections.	So,	disconnect	from	template1	first.

=>	\c	student

You	are	now	connected	to	database	"student"	as	user	"student".

New	databases	are	created	with	the	CREATE	DATABASE	command:

=>	CREATE	DATABASE	db;

CREATE	DATABASE

=>	\c	db

You	are	now	connected	to	database	"db"	as	user	"student".

A	new	database	can	also	be	created	from	the	OS	by	using	the	createdb	tool.

=>	SELECT	datname,	datistemplate,	datallowconn,	datconnlimit	FROM	pg_database;

		datname		|	datistemplate	|	datallowconn	|	datconnlimit	
-----------+---------------+--------------+--------------
	postgres		|	f													|	t												|											-1
	student			|	f													|	t												|											-1
	template1	|	t													|	t												|											-1
	template0	|	t													|	f												|											-1
	db								|	f													|	t												|											-1
(5	rows)

Since	template1	is	the	template	used	by	default,	the	newly	created	database	will	have	the	pgcrypto	extension	already	installed:

=>	SELECT	digest('Hello,	world!',	'md5');

															digest															

	\x6cd3556deb0da54bca060b4c39479839
(1	row)

Database	Management

The	created	database	can	be	renamed	(must	have	no	active	connections):

=>	\c	student

You	are	now	connected	to	database	"student"	as	user	"student".

=>	ALTER	DATABASE	db	RENAME	TO	appdb;

ALTER	DATABASE

=>	SELECT	datname,	datistemplate,	datallowconn,	datconnlimit	FROM	pg_database;

		datname		|	datistemplate	|	datallowconn	|	datconnlimit	
-----------+---------------+--------------+--------------
	postgres		|	f													|	t												|											-1
	student			|	f													|	t												|											-1
	template1	|	t													|	t												|											-1
	template0	|	t													|	f												|											-1
	appdb					|	f													|	t												|											-1
(5	rows)

Other	parameters	can	also	be	changed,	such	as	the	maximum	number	of	concurrent	connections:

=>	ALTER	DATABASE	appdb	CONNECTION	LIMIT	10;

ALTER	DATABASE

=>	SELECT	datname,	datistemplate,	datallowconn,	datconnlimit	FROM	pg_database;

		datname		|	datistemplate	|	datallowconn	|	datconnlimit	
-----------+---------------+--------------+--------------
	postgres		|	f													|	t												|											-1
	student			|	f													|	t												|											-1
	template1	|	t													|	t												|											-1
	template0	|	t													|	f												|											-1
	appdb					|	f													|	t												|											10
(5	rows)

Database	Size

A	database	size	is	shown	by	the	following	function:

=>	SELECT	pg_database_size('appdb');

	pg_database_size	

										7729635
(1	row)

The	output	can	be	displayed	in	a	more	readable	form:

=>	SELECT	pg_size_pretty(pg_database_size('appdb'));

	pg_size_pretty	

	7548	kB
(1	row)

The	database	has	no	user	objects	so	far	(except	for	pgcrypto),	so	this	is	the	size	of	an	“empty”	database.

5

Schemas

Database object namespace
each object belongs to a schema

Purposes
dividing objects into logical groups
prevent name conflicts between applications

Schemas and users are different entities

Schemas are namespaces for database objects. They separate objects into
groups for easier management and serve to prevent name conflicts when
multiple users or applications access the same database.

Every object that exists in the database belongs to a schema.

In PostgreSQL, schema and user are different entities (although the default
settings allow users to conveniently operate schemas of the same name).

https://postgrespro.com/docs/postgresql/16/ddl-schemas

https://postgrespro.com/docs/postgresql/16/ddl-schemas

6

Databases and Schemas

appdb

pg_catalog public

postgres

pg_catalog public

tabletableobject tabletableobject tabletableobject tabletableobject

app

tabletableobject

schema
created by

a user

$ psql -d appdb
SELECT * FROM app.t;

system
catalog

“shared”
schema

A cluster comprises multiple databases. Each database contains various
schemas across which database objects are distributed.

There are several standard schemas that exist in any database. More
schemas can be added by users.

Clients may connect to only one database at a time, but within the database,
the client can work with objects in any schema.

Schemas

=>	\c	appdb

You	are	now	connected	to	database	"appdb"	as	user	"student".

The	psql	command	(dn	=	describe	namespace)	shows	a	list	of	schemas	in	a	database:

=>	\dn

						List	of	schemas
		Name		|							Owner							
--------+-------------------
	public	|	pg_database_owner
(1	row)

Create	a	new	schema:

=>	CREATE	SCHEMA	app;

CREATE	SCHEMA

=>	\dn

						List	of	schemas
		Name		|							Owner							
--------+-------------------
	app				|	student
	public	|	pg_database_owner
(2	rows)

Now	create	a	table	(it	will	get	into	the	public	schema	by	default):

=>	CREATE	TABLE	t(s	text);

CREATE	TABLE

=>	INSERT	INTO	t	VALUES	('I	am	table	t');

INSERT	0	1

You	can	get	a	list	of	tables	with	the	\dt	command:

=>	\dt

								List	of	relations
	Schema	|	Name	|	Type		|		Owner		
--------+------+-------+---------
	public	|	t				|	table	|	student
(1	row)

Objects	can	be	moved	between	schemas.	Since	this	is	the	logical	level,	the	moving	takes	place	only	in	the	system	catalog;	physically,
the	data	remains	in	place.

=>	ALTER	TABLE	t	SET	SCHEMA	app;

ALTER	TABLE

Now,	the	table	t	can	be	accessed	using	its	schema	name:

=>	SELECT	*	FROM	app.t;

						s							

	I	am	table	t
(1	row)

Without	the	schema	name,	the	table	is	not	found.

=>	SELECT	*	FROM	t;

ERROR:		relation	"t"	does	not	exist
LINE	1:	SELECT	*	FROM	t;
																						^

So,	how	do	you	access	objects	located	in	various	schemas?

8

Search Path

Determining an object’s schema
a schema is explicitly defined by a qualified name (schema.name)

a name without a qualifier is looked up in the schemas specified in the search
path

Search path
defined by the search_path parameter

non-existent schemas and schemas with restricted access are excluded;
implicit schemas are included

the actual value is shown by the current_schemas function

the first explicitly specified schema in the path is where objects are created

When specifying an object, the schema it belongs to must be determined,
since different schemas may contain objects of the same name.

When the object name is qualified (with the schema name), the object is
looked up in the given schema, as shown on the previous slide. If the name
is used without a qualifier, PostgreSQL tries to look the name up in one of
the schemas listed in the search path, which is determined by the
search_path configuration parameter.

The actual search path may differ from the search_path parameter value:
any non-existent schemas are excluded, as well as schemas to which the
user does not have access (see the Access Control module for details). In
addition, some special schemas are implicitly added to the beginning of the
search path.

The actual search path, including implicit schemas, is returned by a call to
the current_schemas(true) function. The schemas are searched in the order
specified in the search path, from left to right. If the desired object name is
not found in the first schema, the next one is searched, and so on.

When an object is created with an unqualified name, it is placed into the first
explicitly defined schema in the path.

The concept of search_path is similar to the PATH variable in operating
systems.

https://postgrespro.com/docs/postgresql/16/ddl-schemas#DDL-SCHEMAS-P
ATH

https://postgrespro.com/docs/postgresql/16/runtime-config-client#GUC-SEA
RCH-PATH

https://postgrespro.com/docs/postgresql/16/ddl-schemas#DDL-SCHEMAS-PATH
https://postgrespro.com/docs/postgresql/16/ddl-schemas#DDL-SCHEMAS-PATH
https://postgrespro.com/docs/postgresql/16/runtime-config-client#GUC-SEARCH-PATH
https://postgrespro.com/docs/postgresql/16/runtime-config-client#GUC-SEARCH-PATH

9

Special Schemas

Public schema
included in the search path by default
all objects will belong to this schema, unless configured otherwise

Schema named after the user
included in the search path by default but is not created automatically
if created, the user objects will belong to this schema

pg_catalog schema
a schema for system catalog objects
if not explicitly included in the path, implicitly included as the first one

There are several special schemas usually present in any database.

The public schema is used by default for storing objects, unless intentionally
configured otherwise.

The pg_catalog schema contains system catalog objects. The system
catalog is a collection of tables containing metadata about objects belonging
to the cluster. information_schema is another schema with an alternative
representation of the system catalog (as defined in the SQL standard).

If pg_catalog is not specified in the search path, the schema will be implicitly
placed in the front of the path so that system objects remain visible.

Search	Path

First,	let’s	find	out	why	the	table	was	created	in	the	public	schema.	To	do	that,	look	at	the	search	path:

=>	SHOW	search_path;

			search_path			

	"$user",	public
(1	row)

Construction	"$user"	defines	the	schema	with	the	same	name	as	the	current	user	(in	this	case,	student).	Since	there	is	no	such
schema,	it	is	ignored,	and	the	table	is	created	in	public.

To	avoid	the	headache	of	tracking	which	schemas	exist,	which	do	not,	and	which	are	not	explicitly	declared,	use	the	following
function:

=>	SELECT	current_schemas(true);

			current_schemas			

	{pg_catalog,public}
(1	row)

When	the	function	is	called	with	a	true	argument,	the	result	includes	system	schemas	(e.g.,	pg_catalog).

We	can	define	the	search	path,	for	example:

=>	SET	search_path	=	public,	app;

SET

Now,	the	table	t	will	be	found:

=>	SELECT	*	FROM	t;

						s							

	I	am	table	t
(1	row)

We	have	just	set	a	configuration	parameter	at	the	session	level.	If	we	restart	the	session,	it	will	have	reverted	to	default.	Setting	it
on	the	cluster	level	would	not	be	a	good	solution	either,	since	this	path	may	not	be	needed	often	and	not	by	all	users.

Thankfully,	you	can	set	such	parameters	for	a	specific	database:

=>	ALTER	DATABASE	appdb	SET	search_path	=	public,	app;

ALTER	DATABASE

Now,	it	will	be	applied	for	all	new	connections	to	appdb.	Let’s	try:

=>	\c	appdb

You	are	now	connected	to	database	"appdb"	as	user	"student".

=>	SHOW	search_path;

	search_path	

	public,	app
(1	row)

=>	SELECT	current_schemas(true);

					current_schemas					

	{pg_catalog,public,app}
(1	row)

Another	function	current_schema()	returns	the	first	non-system	schema	name.	This	identifies	the	regular	schema	where	new
objects	will	be	created	by	default.

=>	SELECT	current_schema();

	current_schema	

	public
(1	row)

11

Special Schemas

Temporary tables
exist for the duration of the session or transaction
not logged (no recovery after a crash)
do not utilize the shared buffer cache

pg_temp_N schema
created automatically for temporary tables
pg_temp: a link to a specific temporary schema for the session
if not explicitly included in the path, implicitly included as the very first one
at the end of the session, all objects of the temporary schema are dropped;
the schema itself remains and is reused for other sessions

PostgreSQL can work with temporary tables. Temporary tables store data
that should only be available to the current session and only for as long as
the session is active (or even for the duration of a single transaction within
the session).

When recovering after a crash, previous sessions do not exist, so temporary
tables contents will be lost. Therefore, such tables are unlogged.
Additionally, temporary table pages are never stored in the shared buffer
cache, residing in the internal memory of their backend process instead.
Thanks to that, temporary tables can be accessed a bit more quickly than
regular ones.

Temporary tables are organized using schemas. When a session is started,
a temporary schema named pg_temp_N (pg_temp_1, pg_temp_2, etc.) is
created for it. It can be accessed by the name pg_temp (without a number,
the name will always refer to the temporary schema specific for the session).

If pg_temp is not specified in the path, it is searched before all others.
Otherwise, you can specify its position in the path explicitly, like with
pg_catalog.

After the session ends, all objects belonging to the temporary schema are
dropped, and the schema itself remains to be reused later on.

There are other special schemas, more technical in nature.

Temporary	Tables	and	pg_temp

Create	a	temporary	table:

=>	CREATE	TEMP	TABLE	t(s	text);

CREATE	TABLE

=>	\dt

									List	of	relations
		Schema			|	Name	|	Type		|		Owner		
-----------+------+-------+---------
	pg_temp_3	|	t				|	table	|	student
(1	row)

The	table	is	created	in	a	special	schema.	Each	session	has	its	own	temporary	schema,	so	that	sessions	cannot	access	each	other’s
temporary	schemas.

But,	where	did	the	regular	table	t	disappear?

The	answer	lies	in	the	extended	search	path.	Now,	the	search	path	includes	the	temporary	schema,	and	the	object	in	it
“overshadows”	the	object	in	the	app	schema	by	the	same	name.

=>	SELECT	current_schemas(true);

										current_schemas										

	{pg_temp_3,pg_catalog,public,app}
(1	row)

=>	INSERT	INTO	t	VALUES	('I	am	temporary	table');

INSERT	0	1

Still,	you	can	access	objects	in	either	schema	by	providing	the	schema	name	explicitly.	For	the	temporary	table,	use	the	pseudo-
schema	pg_temp:	it	will	automatically	transform	to	the	current	session’s	pg_temp_N:

=>	SELECT	*	FROM	app.t;

						s							

	I	am	table	t
(1	row)

=>	SELECT	*	FROM	pg_temp.t;

										s											

	I	am	temporary	table
(1	row)

Temporary	schemas	are	not	limited	to	just	tables.

=>	CREATE	VIEW	v	AS	SELECT	*	FROM	pg_temp.t;

NOTICE:		view	"v"	will	be	a	temporary	view
CREATE	VIEW

Temporary	schemas	and	data	in	them	may	have	different	scopes	of	life	(depending	on	the	clauses	ON	COMMIT	DELETE,	PRESERVE,
and	DROP).	In	any	case,	all	temporary	objects	are	deleted	upon	reconnecting	to	a	database:

=>	\c	appdb

You	are	now	connected	to	database	"appdb"	as	user	"student".

=>	SELECT	current_schemas(true);

					current_schemas					

	{pg_catalog,public,app}
(1	row)

=>	SELECT	*	FROM	pg_temp.v;

ERROR:		relation	"pg_temp.v"	does	not	exist
LINE	1:	SELECT	*	FROM	pg_temp.v;
																						^

=>	SELECT	*	FROM	pg_temp.t;

ERROR:		relation	"pg_temp.t"	does	not	exist
LINE	1:	SELECT	*	FROM	pg_temp.t;
																						^

Deleting	Objects

A	schema	cannot	be	deleted	as	long	as	any	objects	remain	in	it:

=>	DROP	SCHEMA	app;

ERROR:		cannot	drop	schema	app	because	other	objects	depend	on	it
DETAIL:		table	t	depends	on	schema	app
HINT:		Use	DROP	...	CASCADE	to	drop	the	dependent	objects	too.

But	you	can	delete	a	schema	together	with	all	its	objects:

=>	DROP	SCHEMA	app	CASCADE;

NOTICE:		drop	cascades	to	table	t
DROP	SCHEMA

If	the	database	is	no	longer	needed,	it	can	be	deleted	as	well.

=>	\conninfo

You	are	connected	to	database	"appdb"	as	user	"student"	via	socket	in	
"/var/run/postgresql"	at	port	"5432".

=>	\c	student

You	are	now	connected	to	database	"student"	as	user	"student".

=>	DROP	DATABASE	appdb;

DROP	DATABASE

13

Takeaways

On the logical level
cluster contains databases,
database contains schemas,
schema contains specific objects (tables, indexes etc.)

Databases are created by cloning existing ones

A schema can be specified explicitly or determined using the
search path

Some schemas have specific purposes

14

Practice

1. Create a new database and connect to it.

2. Check the size of the created database.

3. Create two schemas. Name one app, and the other after your user
name. Create several tables in both schemas and populate them
with data.

4. Check how much the database size has increased.

5. Modify the search path variable value so that when connecting to
the database, tables from both schemas are accessible by an
unqualified name. The “username” schema should have priority.

1.	Database

=>	CREATE	DATABASE	data_databases;

CREATE	DATABASE

=>	\c	data_databases

You	are	now	connected	to	database	"data_databases"	as	user	"student".

2.	Database	Size

=>	SELECT	pg_size_pretty(pg_database_size('data_databases'));

	pg_size_pretty	

	7516	kB
(1	row)

Save	the	value	in	a	psql	variable:

=>	SELECT	pg_database_size('data_databases')	AS	oldsize	\gset

3.	Schemas	and	Tables

=>	CREATE	SCHEMA	app;

CREATE	SCHEMA

=>	CREATE	SCHEMA	student;

CREATE	SCHEMA

Which	schema	receives	tables	created	without	explicit	schema	qualification?

=>	SELECT	current_schema();

	current_schema	

	student
(1	row)

student	schema	tables:

=>	CREATE	TABLE	a(s	text);

CREATE	TABLE

=>	INSERT	INTO	a	VALUES	('student');

INSERT	0	1

=>	CREATE	TABLE	b(s	text);

CREATE	TABLE

=>	INSERT	INTO	b	VALUES	('student');

INSERT	0	1

app	schema	tables:

=>	CREATE	TABLE	app.a(s	text);

CREATE	TABLE

=>	INSERT	INTO	app.a	VALUES	('app');

INSERT	0	1

=>	CREATE	TABLE	app.c(s	text);

CREATE	TABLE

=>	INSERT	INTO	app.c	VALUES	('app');

INSERT	0	1

4.	Database	Size	Change

=>	SELECT	pg_size_pretty(pg_database_size('data_databases'));

	pg_size_pretty	

	7612	kB
(1	row)

=>	SELECT	pg_database_size('data_databases')	AS	newsize	\gset

The	size	has	changed	to:

=>	SELECT	pg_size_pretty(:newsize::bigint	-	:oldsize::bigint);

	pg_size_pretty	

	96	kB
(1	row)

5.	Search	Path

With	the	current	search	path	configuration,	only	student	schema	tables	are	visible:

=>	SELECT	*	FROM	a;

				s				

	student
(1	row)

=>	SELECT	*	FROM	b;

				s				

	student
(1	row)

=>	SELECT	*	FROM	c;

ERROR:		relation	"c"	does	not	exist
LINE	1:	SELECT	*	FROM	c;
																						^

Modify	the	search	path:

=>	ALTER	DATABASE	data_databases	SET	search_path	=	"$user",app,public;

ALTER	DATABASE

=>	\c

You	are	now	connected	to	database	"data_databases"	as	user	"student".

=>	SHOW	search_path;

					search_path						

	"$user",	app,	public
(1	row)

Now,	tables	from	both	schemas	are	visible,	but	student	takes	priority:

=>	SELECT	*	FROM	a;

				s				

	student
(1	row)

=>	SELECT	*	FROM	b;

				s				

	student
(1	row)

=>	SELECT	*	FROM	c;

		s		

	app
(1	row)

15

Practice+

1. Create a database. For all sessions connecting to this database,
set the temp_buffers parameter to four times the default value.

1. Use the command ALTER DATABASE ... SET:

https://postgrespro.com/docs/postgresql/16/sql-alterdatabase

More about the temp_buffers parameter:

https://postgrespro.com/docs/postgresql/16/runtime-config-resource#GUC-T
EMP-BUFFERS

https://postgrespro.com/docs/postgresql/16/sql-alterdatabase
https://postgrespro.com/docs/postgresql/16/runtime-config-resource#GUC-TEMP-BUFFERS
https://postgrespro.com/docs/postgresql/16/runtime-config-resource#GUC-TEMP-BUFFERS

1.	Setting	the	temp_buffers	Parameter

=>	CREATE	DATABASE	data_databases;

CREATE	DATABASE

=>	\c	data_databases

You	are	now	connected	to	database	"data_databases"	as	user	"student".

The	temp_buffers	parameter	determines	the	amount	of	memory	allocated	for	the	local	cache	for	temporary	tables	during	any
session.	If	the	temporary	tables	data	does	not	fit	into	temp_buffers,	the	pages	are	evicted,	like	with	the	regular	buffer	cache.	Too
low	of	a	value	may	affect	the	server	performance	if	temporary	tables	are	used	frequently.

The	default	temp_buffers	value	is	8MB:

=>	SELECT	name,	setting,	unit,	boot_val,	reset_val
FROM	pg_settings
WHERE	name	=	'temp_buffers'	\gx

-[RECORD	1]-----------
name						|	temp_buffers
setting			|	1024
unit						|	8kB
boot_val		|	1024
reset_val	|	1024

Set	the	value	to	32MB	for	all	new	sessions:

=>	ALTER	DATABASE	data_databases	SET	temp_buffers	=	'32MB';

ALTER	DATABASE

=>	\c

You	are	now	connected	to	database	"data_databases"	as	user	"student".

=>	SHOW	temp_buffers;

	temp_buffers	

	32MB
(1	row)

The	parameter	changes	made	by	ALTER	DATABASE	are	stored	in	the	pg_db_role_setting	table.	You	can	view	them	in	psql	with	the
following	command:

=>	\drds

													List	of	settings
	Role	|				Database				|					Settings						
------+----------------+-------------------
						|	data_databases	|	temp_buffers=32MB
(1	row)

Naturally,	you	do	not	have	to	set	the	temp_buffers	parameter	just	at	the	database	level.	For	example,	you	can	set	them	for	the
whole	cluster	if	you	define	it	in	postgresql.conf.

