

Basic Tools

Using psql

16

Copyright
© Postgres Professional, 2017–2025
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Alexey Beresnev
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and
losses, including loss ofincome, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations to
provide maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

Launching psql and Connecting to the Database

Getting Help

Working with psql

Configuring psql

3

Purpose of psql

Terminal client for working with PostgreSQL

Comes with the DBMS

Used by administrators and developers for interactive work and
script execution

There are other third-party tools available, but they are not considered in the
scope of the course.

The psql terminal client will be used throughout the course. Those who are
used to working with GUI tools may find it uncomfortable at first.
Nevertheless, it is very powerful if you get used to it.

This is the only client supplied with the DBMS. The knowledge of psql will be
useful to both developers and DB administrators, regardless of which tool
they choose to work with at the end of the day.

https://postgrespro.com/docs/postgresql/16/app-psql

https://postgrespro.com/docs/postgresql/16/app-psql

4

Connection

Launch
$ psql -d database -U user -h host -p port

New connection in psql
=> \c[onnect] database user node port

Information about the current connection
=> \conninfo

The required connection parameters include: database name, user name,
server name, port number. If these parameters are not specified, psql will try
to connect using the default values:
● database — matches the user name;
● user — matches the OS user name;
● node — connection via Unix socket;
● port — usually 5432.

To make a new connection without leaving psql, run the \connect
command. It uses the current connection's parameters as defaults.

The \conninfo command provides information about the current
connection.

Additional information about connection configuration options:

https://postgrespro.com/docs/postgresql/16/libpq-envars

https://postgrespro.com/docs/postgresql/16/libpq-pgservice

https://postgrespro.com/docs/postgresql/16/libpq-pgpass

https://postgrespro.com/docs/postgresql/16/libpq-envars
https://postgrespro.com/docs/postgresql/16/libpq-pgservice
https://postgrespro.com/docs/postgresql/16/libpq-pgpass

5

Getting Help

In the OS command line
$ psql --help

$ man psql

In psql
=> \? list of psql commands

=> \? variables psql variables

=> \h[elp] list of SQL commands

=> \h command syntax of the SQL command

=> \q quit

Reference information on psql can be obtained not only from the
documentation, but also from within the system directly.

psql with the --help option displays a startup help message. If the
documentation package is installed with the system, you can view the
manual for psql using the man psql command.

psql can execute SQL commands as well as its own commands. All psql
commands start with a backslash and, as a rule, can be abbreviated to their
first letter.

Inside psql, you can get a list and a brief description of all psql
commands: \?.

The \help command provides a list of SQL commands that the server
supports, as well as the syntax of an SQL command (if specified).

Another command that is useful to know, although it has nothing to do with
the help, is \q — exit psql. Alternatively, you can use the exit and quit
commands to quit.

Executing	SQL	Commands	and	Formatting	the	Output

Run	psql:

student$	psql	

Check	the	connection:

=>	\conninfo

You	are	connected	to	database	"student"	as	user	"student"	via	socket	in	
"/var/run/postgresql"	at	port	"5432".

Using	the	default	parameters,	we	have	connected	to	the	student	database	as	the	student	user.	You	will	learn	more	about	databases	and	users	in	later	modules.

The	\c[onnect]	command	creates	a	new	connection	without	leaving	psql.

SQL	commands,	unlike	psql	ones,	may	span	multiple	rows.	To	send	an	SQL	command	for	execution,	end	it	with	a	semicolon:

=>	SELECT	schemaname,	tablename,	tableowner	
FROM	pg_tables	
LIMIT	5;

	schemaname	|							tablename							|	tableowner	
------------+-----------------------+------------
	pg_catalog	|	pg_statistic										|	postgres
	pg_catalog	|	pg_type															|	postgres
	pg_catalog	|	pg_foreign_table						|	postgres
	pg_catalog	|	pg_authid													|	postgres
	pg_catalog	|	pg_statistic_ext_data	|	postgres
(5	rows)

psql	can	give	output	in	different	formats.	Here	are	some	of	them:

Aligned	format
Unaligned	format
Extended	format

The	aligned	format	is	the	default.	It	sets	each	column’s	width	based	on	its	contents.	There	is	also	the	header	and	the	total	row.

psql	commands	to	switch	display	modes:

\a	—	switches	aligned	format	and	unaligned	format	mode
\t	—	switches	the	header	and	footer	display

Let’s	switch	to	non-aligned,	turn	the	header	and	the	total	row	off,	and	use	a	whitespace	as	the	separator:

=>	\t	\a

Tuples	only	is	on.
Output	format	is	unaligned.

=>	\pset	fieldsep	'	'

Field	separator	is	"	".

=>	SELECT	schemaname,	tablename,	tableowner	FROM	pg_tables	LIMIT	5;

pg_catalog	pg_statistic	postgres
pg_catalog	pg_type	postgres
pg_catalog	pg_foreign_table	postgres
pg_catalog	pg_authid	postgres
pg_catalog	pg_statistic_ext_data	postgres

=>	\t	\a

Tuples	only	is	off.
Output	format	is	aligned.

The	extended	format	is	convenient	for	displaying	multiple	columns	for	one	or	several	records:

=>	\x

Expanded	display	is	on.

=>	SELECT	*	FROM	pg_tables	WHERE	tablename	=	'pg_class';

-[RECORD	1]-----------
schemaname		|	pg_catalog
tablename			|	pg_class
tableowner		|	postgres
tablespace		|	
hasindexes		|	t
hasrules				|	f
hastriggers	|	f
rowsecurity	|	f

=>	\x

Expanded	display	is	off.

The	extended	mode	can	be	set	for	a	single	query.	To	do	that,	add	\gx	at	the	end	instead	of	a	semicolon:

=>	SELECT	*	FROM	pg_tables	WHERE	tablename	=	'pg_proc'	\gx

-[RECORD	1]-----------
schemaname		|	pg_catalog
tablename			|	pg_proc
tableowner		|	postgres
tablespace		|	
hasindexes		|	t
hasrules				|	f
hastriggers	|	f
rowsecurity	|	f

You	can	see	all	the	formatting	options	by	using	the	\pset	command.	If	used	with	no	parameters,	it	will	display	current	settings:

=>	\pset

border																			1
columns																		0
csv_fieldsep													','
expanded																	off
fieldsep																	'	'
fieldsep_zero												off
footer																			on
format																			aligned
linestyle																ascii
null																					''
numericlocale												off
pager																				1
pager_min_lines										0
recordsep																'\n'
recordsep_zero											off
tableattr																
title																				
tuples_only														off
unicode_border_linestyle	single
unicode_column_linestyle	single
unicode_header_linestyle	single
xheader_width												full

Interacting	with	the	OS

psql	can	run	shell	commands:

=>	\!	pwd

/home/student

You	can	set	OS	environment	variables:

=>	\setenv	HELLO	Hello

=>	\!	echo	$HELLO

Hello

It	can	write	output	into	a	file	with	the	\o[ut]	command:

=>	\o	tmp/dba1_log

=>	SELECT	schemaname,	tablename,	tableowner	FROM	pg_tables	LIMIT	5;

There	is	nothing	on	the	screen!	Let’s	check	the	file:

=>	\!	cat	tmp/dba1_log

	schemaname	|							tablename							|	tableowner	
------------+-----------------------+------------
	pg_catalog	|	pg_statistic										|	postgres
	pg_catalog	|	pg_type															|	postgres
	pg_catalog	|	pg_foreign_table						|	postgres
	pg_catalog	|	pg_authid													|	postgres
	pg_catalog	|	pg_statistic_ext_data	|	postgres
(5	rows)

Let’s	get	the	output	back	to	the	screen:

=>	\o

Executing	Scripts

Another	way	to	run	a	query	is	with	the	\g	command.	You	can	specify	parameters	for	this	particular	query	in	the	brackets.

Query	output	can	be	redirected	to	OS	command	by	appending	the	command	after	a	vertical	bar.	For	example,	display	query	output	with	line	numbers:

=>	SELECT	format('SELECT	count(*)	FROM	%I;',	tablename)
FROM	pg_tables
LIMIT	3
\g	(tuples_only=on	format=unaligned)	|	cat	-n

					1	 SELECT	count(*)	FROM	pg_statistic;
					2	 SELECT	count(*)	FROM	pg_type;
					3	 SELECT	count(*)	FROM	pg_foreign_table;

The	\g	command	can	specify	a	filename	to	redirect	output:

=>	SELECT	format('SELECT	count(*)	FROM	%I;',	tablename)
FROM	pg_tables
LIMIT	3
\g	(tuples_only=on	format=unaligned)	tmp/dba1_log

This	is	what	we	get:

=>	\!	cat	tmp/dba1_log

SELECT	count(*)	FROM	pg_statistic;
SELECT	count(*)	FROM	pg_type;
SELECT	count(*)	FROM	pg_foreign_table;

We	can	execute	this	file	as	a	script	using	\i[nclude]:

=>	\i	tmp/dba1_log

	count	

			409
(1	row)

	count	

			613
(1	row)

	count	

					0
(1	row)

Other	ways	to	run	commands	from	a	file:

psql	<	filename
psql	-f	filename

You	can	skip	creating	a	file	in	the	last	example	if	you	end	the	query	with	\gexec:

=>	SELECT	format('SELECT	count(*)	FROM	%I;',	tablename)
FROM	pg_tables
LIMIT	3
\gexec

	count	

			409
(1	row)

	count	

			613
(1	row)

	count	

					0
(1	row)

gexec	considers	the	contents	of	each	column	of	each	row	an	SQL-operator,	and	tries	to	execute	them	one	by	one.

psql	Variables	and	Control	Structures

Not	unlike	shell,	psql	has	its	own	variables,	including	some	pre-defined	ones	(with	special	meaning	for	psql).

Store	the	value	of	the	OS	USER	environment	variable	in	a	psql	variable:

=>	\getenv	User	USER

Set	a	variable	Test:

=>	\set	Test	Hi

To	substitute	a	variable’s	value,	use	a	colon	prefix	before	the	variable	name:

=>	\echo	:Test	:User!

Hi	student!

To	reset	a	variable,	use:

=>	\unset	Test

=>	\echo	:Test

:Test

Query	results	can	be	saved	to	variables.	For	this	purpose	use	the	\gset	command	termination:

=>	SELECT	now()	AS	curr_time	\gset

=>	\echo	:curr_time

2025-09-24	16:56:30.481473+03

The	query	must	return	only	one	record.

If	used	with	no	parameters,	\set	displays	all	currently	set	variables	and	their	values:

=>	\set

AUTOCOMMIT	=	'on'
COMP_KEYWORD_CASE	=	'preserve-upper'
DBNAME	=	'student'
ECHO	=	'none'
ECHO_HIDDEN	=	'off'
ENCODING	=	'UTF8'
ERROR	=	'false'
FETCH_COUNT	=	'0'
HIDE_TABLEAM	=	'off'
HIDE_TOAST_COMPRESSION	=	'off'
HISTCONTROL	=	'none'
HISTFILE	=	'hist'
HISTSIZE	=	'500'
HOST	=	'/var/run/postgresql'
IGNOREEOF	=	'0'
LAST_ERROR_MESSAGE	=	''
LAST_ERROR_SQLSTATE	=	'00000'
ON_ERROR_ROLLBACK	=	'off'
ON_ERROR_STOP	=	'off'
PORT	=	'5432'
PROMPT1	=	'%/%R%x%#	'
PROMPT2	=	'%/%R%x%#	'
PROMPT3	=	'>>	'
QUIET	=	'off'
ROW_COUNT	=	'1'
SERVER_VERSION_NAME	=	'16.10	(Ubuntu	16.10-1.pgdg24.04+1)'
SERVER_VERSION_NUM	=	'160010'
SHELL_ERROR	=	'false'
SHELL_EXIT_CODE	=	'0'
SHOW_ALL_RESULTS	=	'on'
SHOW_CONTEXT	=	'errors'
SINGLELINE	=	'off'
SINGLESTEP	=	'off'
SQLSTATE	=	'00000'
USER	=	'student'
User	=	'student'
VERBOSITY	=	'default'
VERSION	=	'PostgreSQL	16.10	(Ubuntu	16.10-1.pgdg24.04+1)	on	x86_64-pc-linux-gnu,	compiled	
by	gcc	(Ubuntu	13.3.0-6ubuntu2~24.04)	13.3.0,	64-bit'
VERSION_NAME	=	'16.10	(Ubuntu	16.10-1.pgdg24.04+1)'
VERSION_NUM	=	'160010'
curr_time	=	'2025-09-24	16:56:30.481473+03'

In	scripts,	you	can	use	conditional	operators.

For	example,	let’s	check	if	working_dir	has	a	value,	and	if	it	does	not,	set	it	as	the	current	directory.	The	following	command	checks	if	the	value	is	set	and	returns	a
Boolean	value:

=>	\echo	:{?working_dir}

FALSE

This	conditional	psql	operator	checks	if	the	variable	exists	and	sets	the	default	value	if	needed:

=>	\if	:{?working_dir}
			--	variable	is	defined
\else
			--	set	the	value	as	the	output	of	the	OS	command
			\set	working_dir	`pwd`
\endif

Now	we	can	be	sure	that	the	working_dir	variable	is	defined:

=>	\echo	:working_dir

/home/student

System	Catalog	Commands

There	is	a	set	of	commands	(mostly	starting	with	\d)	used	to	quickly	and	conveniently	get	information	about	database	objects.

Example:

=>	\d	pg_tables

														View	"pg_catalog.pg_tables"
			Column				|		Type			|	Collation	|	Nullable	|	Default	
-------------+---------+-----------+----------+---------
	schemaname		|	name				|											|										|	
	tablename			|	name				|											|										|	
	tableowner		|	name				|											|										|	
	tablespace		|	name				|											|										|	
	hasindexes		|	boolean	|											|										|	
	hasrules				|	boolean	|											|										|	
	hastriggers	|	boolean	|											|										|	
	rowsecurity	|	boolean	|											|										|	

We	will	see	more	of	these	commands	later.

Configuring	psql

On	startup,	psql	runs	two	scripts	(if	they	exist):

First	a	common	system	psqlrc	script
Then	a	custom	.psqlrc	file

The	user	configuration	file	must	be	in	the	home	directory.	The	system	script’s	location	can	be	discovered	with	the	following	command:

student$	pg_config	--sysconfdir

/etc/postgresql-common

Neither	file	exists	by	default.

You	can	use	the	files	to	configure	your	session	parameters,	for	example:

psql	prompt
Program	for	page-by-page	viewing	of	query	results
Variables	for	storing	the	text	of	frequently	used	commands

For	example,	let’s	store	a	query	that	returns	5	largest	tables	in	a	variable	top5:

=>	\set	top5	'SELECT	tablename,	pg_total_relation_size(schemaname||''.''||tablename)	AS	bytes	FROM	pg_tables	ORDER	BY	bytes	DESC	LIMIT	5;'

Now	we	can	execute	the	query	by	just	typing:

=>	:top5

			tablename				|		bytes		
----------------+---------
	pg_proc								|	1245184
	pg_rewrite					|		745472
	pg_attribute			|		720896
	pg_description	|		630784
	pg_statistic			|		294912
(5	rows)

If	you	write	the	\set	command	into	the	~/.psqlrc	file,	the	top5	variable	will	be	available	immediately	after	psql	startup.

Thanks	to	readline	support,	psql	can	autocomplete	keywords	and	object	names,	and	it	also	stores	the	command	history.	The	name	and	the	size	of	the	history	file	are
set	by	HISTFILE	and	HISTSIZE	variables.

7

Takeaways

psql is a terminal client for working with PostgreSQL

Connection parameters are required at startup

Executes SQL and psql commands

Includes tools for interactive work, as well as for preparing and
executing scripts

8

Practice

1. Run psql and check the current connection information.
2. Display a detailed list of databases.
3. By default, psql uses less command for page-by-page output.

Replace it with less -XS and display the detailed database list
again.

4. The default prompt shows only the name of the database.
Configure the prompt to display in the following format:
user@database=#.

5. Configure psql to display the execution time for all commands.
Make sure that this setting is saved when you restart.

1. When starting psql, if you omit the connection parameters, the default
values will apply.

2. Use the \l+ command.

3. The pager program is configured using the PSQL_PAGER environment
variable. The setting can be configured in the .psqlrc file using the \setenv
command. This will set the value to 'less -XS' specifically for psql
sessions, while maintaining the OS default settings in all other cases. By
default, less wraps long lines during viewing and clears its output upon exit.
The -XS parameter disables this default behavior.

4. Prompt customization is described in the documentation:

https://postgrespro.com/docs/postgresql/16/app-psql#APP-PSQL-PROMPTI
NG

5.The psql command to output the duration of a query execution can be
found in the PostgreSQL documentation or within psql itself with the \?
command.

https://postgrespro.com/docs/postgresql/16/app-psql#APP-PSQL-PROMPTING
https://postgrespro.com/docs/postgresql/16/app-psql#APP-PSQL-PROMPTING

1.	Running	psql	and	Displaying	Connection	Information

student$	psql	

=>	\conninfo

You	are	connected	to	database	"student"	as	user	"student"	via	socket	in	
"/var/run/postgresql"	at	port	"5432".

2.	Paging	Results	Using	less

When	query	output	exceeds	terminal	dimensions,	psql	sends	it	to	the	less	pager.	You	can	navigate	through	query	results	using
standard	navigation	keys.	The	h	command	displays	the	help	file.	The	q	command	exits	the	display	mode.

Note	that	by	default	less	will	wrap	long	lines,	which	can	make	the	results	difficult	to	read.	Besides,	the	output	will	be	cleared	after
quitting	less.

For	example,	\l+	output	becomes	unreadable	due	to	wrapping.

=>	\l+

																																																																																									
List	of	databases
			Name				|		Owner			|	Encoding	|	Locale	Provider	|			Collate			|				Ctype				|	ICU	
Locale	|	ICU	Rules	|			Access	privileges			|		Size			|	Tablespace	|																
Description																	
-----------+----------+----------+-----------------+-------------+-------------+----------
--+-----------+-----------------------+---------+------------+----------------------------

	postgres		|	postgres	|	UTF8					|	libc												|	en_US.UTF-8	|	en_US.UTF-8	|										
		|											|																							|	7361	kB	|	pg_default	|	default	administrative	
connection	database
	student			|	student		|	UTF8					|	libc												|	en_US.UTF-8	|	en_US.UTF-8	|										
		|											|																							|	7516	kB	|	pg_default	|	
	template0	|	postgres	|	UTF8					|	libc												|	en_US.UTF-8	|	en_US.UTF-8	|										
		|											|	=c/postgres										+|	7361	kB	|	pg_default	|	unmodifiable	empty	database
											|										|										|																	|													|													|										
		|											|	postgres=CTc/postgres	|									|												|	
	template1	|	postgres	|	UTF8					|	libc												|	en_US.UTF-8	|	en_US.UTF-8	|										
		|											|	=c/postgres										+|	7516	kB	|	pg_default	|	default	template	for	new	
databases
											|										|										|																	|													|													|										
		|											|	postgres=CTc/postgres	|									|												|	
(4	rows)

3.	Configuring	Page	View	in	.psqlrc

When	using	the	less	pager	with	-XS	flags,	long	lines	will	not	wrap	and	output	remains	visible	after	exiting	the	less	pager.	For	such
configuration,	simply	set	the	PSQL_PAGER	environment	variable	using	the	\setenv	command.	We	will	save	this	setting	in	the
~/.psqlrc	script:

student$	echo	"\setenv	PSQL_PAGER	'less	-XS'"	>	~/.psqlrc

4.	Customizing	Prompts

To	include	role	information	in	your	prompts,	prepend	%n@	to	both	PROMPT1	and	PROMPT2	variables.

student$	echo	"\set	PROMPT1	'%n@%/%R%x%#	'"	>>	~/.psqlrc

student$	echo	"\set	PROMPT2	'%n@%/%R%x%#	'"	>>	~/.psqlrc

The	PROMPT1	variable	controls	the	primary	prompt	displayed	for	the	first	line	of	a	user’s	query	input.	For	multi-line	queries,
PROMPT2	controls	the	prompt	display	from	the	second	line	onward.	While	both	variables	share	identical	default	values,	you	can
configure	distinct	prompts	for	initial	and	following	lines.	Note	that	PROMPT3	serves	only	for	COPY	command	operations.

5.	Output	of	SQL	Execution	Timing

student$	echo	'\timing	on'	>>	~/.psqlrc

The	complete	contents	of	your	.psqlrc	file	will	be	like	this:

student$	cat	~/.psqlrc

\setenv	PSQL_PAGER	'less	-XS'
\set	PROMPT1	'%n@%/%R%x%#	'
\set	PROMPT2	'%n@%/%R%x%#	'
\timing	on

For	the	changes	to	take	effect,	restart	your	psql	session.

=>	\q

student$	psql	

After	restarting,	verify	the	new	configuration:

Prompt	(must	include	role	name)
Displaying	detailed	information	about	databases
Output	of	command	execution	time

9

Practice+

1. Open a transaction and execute a command that ends with any
error. Make sure that no other commands can be executed inside
this transaction.

2. Set the ON_ERROR_ROLLBACK parameter to on and make
sure that after the error, you can continue executing commands
inside the transaction.

1. To open a transaction, run the command

BEGIN;

2. Setting the ON_ERROR_ROLLBACK parameter to ON causes psql to
create a SAVEPOINT before each SQL command inside an open
transaction and, in case of an error, roll back to this savepoint.

https://postgrespro.com/docs/postgresql/16/sql-savepoint

https://postgrespro.com/docs/postgresql/16/sql-savepoint

1.	psql	and	In-Transaction	Errors

student$	psql	

The	psql	tool	autocommits	transactions	by	default,	so	each	SQL	command	is	executed	within	a	separate	transaction.	So	each	SQL
command	is	executed	within	a	separate	transaction.

To	start	a	transaction	explicitly,	the	BEGIN	command	is	used:

student@student=#	BEGIN;

BEGIN

Note	that	the	psql	prompt	has	changed.	The	asterisk	character	shows	that	the	transaction	is	currently	open.

student@student=*#	CREATE	TABLE	t	(id	int);

CREATE	TABLE

Consider	that	we	have	made	a	typo	in	the	following	command:

student@student=*#	INSERTINTO	t	VALUES(1);

ERROR:		syntax	error	at	or	near	"INSERTINTO"
LINE	1:	INSERTINTO	t	VALUES(1);
								^

The	asterisk	will	change	to	an	exclamation	mark,	indicating	an	error.	Now,	rewrite	the	command:

student@student=!#	INSERT	INTO	t	VALUES(1);

ERROR:		current	transaction	is	aborted,	commands	ignored	until	end	of	transaction	block

But	PostgreSQL	cannot	roll	back	just	a	single	command,	so	it	terminates	and	rolls	back	the	whole	transaction.	To	continue,	we	must
send	a	command	that	says	that	the	transaction	is	complete.	It	can	be	either	COMMIT	or	ROLLBACK,	since	the	transaction	is	already
cancelled.

student@student=!#	COMMIT;

ROLLBACK

Creating	the	table	was	cancelled,	so	there	is	no	such	table	in	the	database:

student@student=#	SELECT	*	FROM	t;

ERROR:		relation	"t"	does	not	exist
LINE	1:	SELECT	*	FROM	t;
																						^

The	ON_ERROR_ROLLBACK	Variable

We	can	change	how	psql	behaves	here.

student@student=#	\set	ON_ERROR_ROLLBACK	on

Now,	before	every	transaction	command,	there	will	be	a	savepoint	created.	In	case	of	an	error,	it	will	roll	back	to	the	last	savepoint.
This	way,	transaction	commands	can	continue	executing.

student@student=#	BEGIN;

BEGIN

student@student=*#	CREATE	TABLE	t	(id	int);

CREATE	TABLE

student@student=*#	INSERTINTO	t	VALUES(1);

ERROR:		syntax	error	at	or	near	"INSERTINTO"
LINE	1:	INSERTINTO	t	VALUES(1);
								^

student@student=*#	INSERT	INTO	t	VALUES(1);

INSERT	0	1

student@student=*#	COMMIT;

COMMIT

student@student=#	SELECT	*	FROM	t;

	id	

		1
(1	row)

The	ON_ERROR_ROLLBACK	variable	can	be	set	to	interactive.	This	will	make	such	behavior	work	only	in	the	interactive	mode,	but
not	when	executing	scripts.

student@student=#	DROP	TABLE	t;

DROP	TABLE

