

Architecture

Isolation and MVCC

16

Copyright
© Postgres Professional, 2017–2025
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Igor Gnatyuk
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is”, and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

Multiversion Concurrency Control

Data Snapshot

Isolation Levels

Vacuuming and its Horizon

Locking

Transaction Status

3

Storing multiple versions of the same row
versions have different validity time
timestamp = transaction ID (IDs are given in ascending order)

Row:

xid
x

1
x

2
x

3
x

4

DELETEINSERT

UPDATE

version 1 version 2 version 3

UPDATE

MVCC

When multiple sessions are running at the same time, two transactions may
access the same row at the same time. If both transactions are just reading
the row, there is no problem. If both transactions try to write, no problem
either (in this case, they line up and make the changes one after the other).
The tricky part is when one transaction wants to read a row and another one
wants to change it at the same time.

There are two simple ways about it. You can let such transactions block
each other, but then performance suffers. Otherwise, you can let the reading
transaction immediately see the changes made by the writing transaction,
even if they are not committed (this is called a “dirty read”).
This is dangerous, because the changes can be rolled back.

PostgreSQL goes the hard way and utilizes what is known as Multiversion
concurrency control. In essence, the system stores multiple versions of
each row. So, a writing transaction operates on its own version, while a
reading transaction sees its own version.

To distinguish between the versions, PostgreSQL marks each one with two
timestamps, which together specify a version’s “validity time”.

The timestamps are essentially just transaction IDs, which always come in
ascending order. (In reality, the whole thing is a bit more complicated, but
not worth getting into right now.) Upon creation, a row version is marked
with the ID of the transaction that executed the INSERT command. When
deleted, the version is marked with the ID of the transaction that did the
DELETE command (but is not physically deleted). An UPDATE command is
a DELETE and an INSERT executed back to back.

https://postgrespro.com/docs/postgresql/16/mvcc-intro

https://postgrespro.com/docs/postgresql/16/mvcc-intro

4

Data Snapshot

Representation of database data in a consistent state
at a specific point in time

transaction ID defines the point in time
list of active transactions helps the system
to exclude changes that have not been committed

row 3:

xid
snapshot

row 2:

row 1:

PostgreSQL uses snapshot-based transaction isolation.

A transaction accessing a table should see only one of the versions of each
row (or none at all). To achieve this, PostgreSQL presents the transaction
with a data snapshot created at a certain point in time. The snapshot
includes the most recent versions of all committed rows but does not include
any non-committed changes from active transactions. In other words, the
snapshot takes the version of each row that corresponds to the moment
when the snapshot was created.

A snapshot is not a physical copy of the data, but just a few numbers:
● the ID of the last committed transaction at the time of snapshot,
● list of active transactions at that point in time.

The list is needed in order to exclude from the snapshot any changes those
transactions may have made but not yet committed.

With just these numbers, we can always tell which row version will be visible
in the snapshot. Sometimes it will be the current (most recently committed)
version, as with row 1 in the diagram. Sometimes not: row 2 has been
deleted after the snapshot has been created (and the change has already
been committed), but the transaction still continues to see it while working
with the snapshot. This is the correct behavior, the snapshot gives a
consistent representation of data at the selected point in time.

Some rows will not get into the snapshot at all: row 3 was deleted before the
snapshot was made, so it is not included.

5

Isolation Levels

Read Uncommitted
not supported by PostgreSQL: works as Read Committed

Read Committed (default)

the snapshot is created as of the time a statement starts
repeated query may return different data

Repeatable Read
the snapshot is created as of the time the first transaction statement starts
a transaction may fail with a serialization error

Serializable
total isolation, but additional overhead
a transaction may fail with a serialization error

The SQL standard defines four isolation levels: the stricter the level, the less
concurrent transactions affect each other. At the time when the standard
was adopted, it was believed that the stricter the level, the more difficult it is
to implement and the stronger its impact on performance (since then, these
views have changed somewhat).

The most lax level of Read Uncommitted allows dirty reads. It is not
supported by PostgreSQL, because it is of no practical value and does not
give a performance gain.

The Read Committed level is the default isolation level in PostgreSQL.
At this level, data snapshots are created at the beginning of each SQL
statement execution. Thus, the statement works with an unchanged and
consistent data snapshot, but two identical queries following one after the
other may show different data.

At the Repeatable Read level, the snapshot is built at the beginning of a
transaction (when executing the first statement). This makes all queries
inside the same transaction see the same data. This level is convenient, for
example, for generating reports from several queries.

The Serializable level guarantees total isolation. At this level, you can use
any statements as if the transaction is running alone. The drawback is that
some transactions will fail, and your application must be able to repeat such
transactions.

https://postgrespro.com/docs/postgresql/16/transaction-iso

https://postgrespro.com/docs/postgresql/16/transaction-iso

Row	Version	Visibility

How	do	you	verify	that	the	same	row	can	exist	in	multiple	versions?

Create	a	table:

=>	CREATE	TABLE	t(s	text);

CREATE	TABLE

And	insert	one	row.	Remember	that	if	you	do	not	explicitly	start	a	transaction	with	BEGIN,	psql	executes	the	command	and
immediately	commits	the	result:

=>	INSERT	INTO	t	VALUES	('Version	one');

INSERT	0	1

Start	the	transaction	and	get	its	ID:

=>	BEGIN;

BEGIN

=>	SELECT	pg_current_xact_id();

	pg_current_xact_id	

																736
(1	row)

The	transaction	sees	the	first	(and	so	far	the	only)	version	of	the	row:

=>	SELECT	*,	xmin,	xmax	FROM	t;

						s						|	xmin	|	xmax	
-------------+------+------
	Version	one	|		735	|				0
(1	row)

Here,	the	hidden	columns	show	the	transaction	IDs	that	limit	the	visibility	of	the	row	version:	xmin	is	the	ID	of	the	previous
transaction	which	created	the	version,	and	xmax=0	means	that	this	version	is	current.

Now	start	another	transaction	in	another	session:

=>	BEGIN;

BEGIN

=>	SELECT	pg_current_xact_id();

	pg_current_xact_id	

																737
(1	row)

The	transaction	sees	the	same	and	only	version:

=>	SELECT	*,	xmin,	xmax	FROM	t;

						s						|	xmin	|	xmax	
-------------+------+------
	Version	one	|		735	|				0
(1	row)

Now	change	the	row	from	within	the	second	transaction.

=>	UPDATE	t	SET	s	=	'Version	two';

UPDATE	1

This	is	what	we	get:

=>	SELECT	*,	xmin,	xmax	FROM	t;

						s						|	xmin	|	xmax	
-------------+------+------
	Version	two	|		737	|				0
(1	row)

What	will	the	first	transaction	see?

=>	SELECT	*,	xmin,	xmax	FROM	t;

						s						|	xmin	|	xmax	
-------------+------+------
	Version	one	|		735	|		737
(1	row)

Since	the	change	is	not	yet	committed,	the	first	transaction	continues	to	see	the	first	version	of	the	row.

Note	the	xmax	value:	it	indicates	that	another	transaction	is	currently	changing	the	row.	Generally	speaking,	such	"peeping"
violates	isolation,	so	the	xmin	and	xmax	fields	are	hidden	and	should	not	be	used	in	production.

Now	commit	the	changes.

=>	COMMIT;

COMMIT

What	will	the	first	transaction	see	now?

=>	SELECT	*,	xmin,	xmax	FROM	t;

						s						|	xmin	|	xmax	
-------------+------+------
	Version	two	|		737	|				0
(1	row)

The	first	transaction	also	sees	the	second	version	of	the	string.

After	commit,	the	first	version	of	the	row	is	no	longer	visible	in	any	transaction.

=>	COMMIT;

COMMIT

7

There is a single horizon for each database

Long-running transactions can hold back the horizon
thereby blocking the vacuuming of outdated row versions

Vacuuming and its Horizon

outdated versions
can be vacuumed

xmax

outdated row versions
may still be required

by snapshots

vacuum horizon

MVCC makes it possible to effectively implement snapshot-based isolation,
but as a result, old (“dead”) row versions (“dead tuples”) accumulate in table
pages.

Historical versions are needed for some time so that transactions can work
with their data snapshots and, in case of rollback, get back to old values. For
each database, there is a transaction ID (xid), so that all historical versions
deleted by transactions with lower xids are no longer visible in any snapshot.
This xid is called vacuum horizon.

Vacuuming is performed by special background processes; but can also be
executed manually using the VACUUM command.

Long-running transactions and queries can hold back the horizon, which
prevents the removal of accumulated row versions. If you do not vacuum
historical data in a timely manner, tables and indexes will bloat, consuming
excessive disk space, and the search for current row versions will slow
down.

https://postgrespro.com/docs/postgresql/16/routine-vacuuming

https://postgrespro.com/docs/postgresql/16/routine-vacuuming

8

Locking

Row locks
reading never locks rows
changing rows locks them for changes, but not for reads

Table locks
prohibit changing or deleting a table while it is being worked on
prohibit reading the table when rebuilding or moving
etc.

Lock lifetime
set as needed or manually
released automatically upon transaction completion

So what does MVCC provide? It allows the system to have only the most
necessary minimum of locks, thereby increasing performance.

The main locks are set at the row level. Reading never blocks either reading
or writing transactions. Changing a row does not lock it for reading. The only
case when a transaction will wait for a lock to be released is if it tries to
change a row that has already been changed by another transaction that
has not been committed yet.

Locks can also be set at a higher level, particularly on tables. They are
needed so that no one can delete the table while other transactions are
reading data from it, or to prohibit access to the table being rebuilt. Such
locks generally do not cause problems, since deleting or rebuilding tables is
only done once in a while. However, some changes of table structure trigger
implicit table rebuilding, completely blocking access to the table and its
indexes. Locks are explained in detail in the Locking module of the DBA2
course.

All necessary locks are set automatically and automatically removed at the
end of the transaction. However, if a lock was acquired after the savepoint
was set, it will be released immediately when rolling back to that savepoint.

You can also set additional custom locks, but this is rarely necessary.

https://postgrespro.com/docs/postgresql/16/explicit-locking

https://postgrespro.com/docs/postgresql/16/explicit-locking

Locking

Repeat	the	experiment,	but	now	let	both	transactions	try	to	change	the	same	row.

=>	BEGIN;

BEGIN

=>	UPDATE	t	SET	s	=	'Version	three'	RETURNING	*;

							s							

	Version	three
(1	row)

UPDATE	1

And	in	the	second	transaction:

=>	BEGIN;

BEGIN

=>	UPDATE	t	SET	s	=	'Version	four'	RETURNING	*;

The	second	transaction	“hung	up”:	it	cannot	change	the	row	until	the	first	transaction	releases	the	lock.

=>	COMMIT;

COMMIT

Now	the	second	transaction	can	continue:

						s							

	Version	four
(1	row)

UPDATE	1

=>	COMMIT;

COMMIT

Both	transactions	have	committed	their	changes.	The	first	session	reads	the	table	again	and	sees	the	current	row:	this	is	the	result
committed	by	the	second	transaction:

=>	SELECT	*	FROM	t;

						s							

	Version	four
(1	row)

10

Transaction Status

Transaction status (clog)
service information; two bits per transaction
stored in files on disk
cached in shared memory

Commit
the “transaction committed” bit is set

Termination
the “transaction aborted” bit is set
performed as fast as commit (no data rollback needed)

For multiversion concurrency control to work, the server needs to
understand the status of transactions. A transaction can be active or
finished. A transaction can end either in a commit or in an abort. Therefore,
two bits are required to represent the state of each transaction.

Transaction statuses (commit log, clog) are stored in special service files in
the PGDATA/pg_xact directory and worked upon in the server’s shared
memory, as to avoid constantly accessing the disk.

At any transaction completion (either successful or not), it is enough to set
the appropriate status bits. Both transaction commit and abort occur equally
quickly.

If an aborted transaction managed to create new row versions, these
versions are not destroyed (there is no “physical” rollback of data). Thanks
to the status information, other transactions will see that the transaction that
created or deleted the row versions was actually aborted, and will not take
changes made by it into account.

11

Takeaways

Multiple versions of each row can be stored in data files

Transactions work with data snapshots, representations of
database data in a consistent state at a specific point in time

Isolation levels have different snapshot creation times

Dead row versions beyond the vacuum horizon must be
periodically vacuumed

Writers do not block readers, readers do not block anyone

12

Practice

1. Create a table with one row.

Begin a transaction at the Read Committed isolation level and
query the table. In another session, delete the row and commit
the changes.

How many rows will the first transaction see after executing the
same query again? Try and see.

Complete the first transaction.

2. Repeat the same thing, but now let the transaction work at the
isolation level Repeatable Read:
BEGIN ISOLATION LEVEL REPEATABLE READ;

Explain the differences.

1.	Read	Committed	Isolation	Level

Create	a	table:

=>	CREATE	TABLE	t(n	integer);

CREATE	TABLE

=>	INSERT	INTO	t	VALUES	(42);

INSERT	0	1

Query	from	the	first	transaction	(default	isolation	level	is	Read	Committed):

=>	BEGIN;

BEGIN

=>	SELECT	*	FROM	t;

	n		

	42
(1	row)

Delete	the	row	in	the	second	transaction	and	commit	the	changes:

=>	DELETE	FROM	t;

DELETE	1

Repeat	the	query:

=>	SELECT	*	FROM	t;

	n	

(0	rows)

The	first	transaction	sees	the	change:	the	row	has	been	deleted.

=>	COMMIT;

COMMIT

2.	Repeatable	Read	Isolation	Level

Return	the	row:

=>	INSERT	INTO	t	VALUES	(42);

INSERT	0	1

Query	from	the	first	transaction:

=>	BEGIN	ISOLATION	LEVEL	REPEATABLE	READ;

BEGIN

=>	SELECT	*	FROM	t;

	n		

	42
(1	row)

Delete	the	row	in	the	second	transaction	and	commit	the	changes:

=>	DELETE	FROM	t;

DELETE	1

Repeat	the	query:

=>	SELECT	*	FROM	t;

	n		

	42
(1	row)

At	this	isolation	level,	the	first	transaction	does	not	see	any	changes:	the	row	still	exists	for	it.

=>	COMMIT;

COMMIT

13

Practice+

1. Begin a transaction and create a new table with one row. Without
completing the transaction, open a second session and query the
table in it. Check what the transaction will return in the second
session.

Commit the transaction in the first session and repeat the query
to the table in the second session.

2. Repeat task 1, but roll back rather than commit the transaction in
the first session. What has changed?

3. In the first session, start a transaction and make a query to the
previously created table. Will it be possible to delete this table in
the second session before the transaction is completed?
Try and see.

1.	Transactions	and	DDL	Commands:	Commit

Start	a	transaction	and	create	a	new	table:

=>	BEGIN;

BEGIN

=>	CREATE	TABLE	t1(n	integer);

CREATE	TABLE

=>	INSERT	INTO	t1	VALUES	(42);

INSERT	0	1

In	the	second	session,	query	the	table:

=>	SELECT	*	FROM	t1;

ERROR:		relation	"t1"	does	not	exist
LINE	1:	SELECT	*	FROM	t1;
																						^

Until	the	transaction	that	created	the	table	is	completed,	all	other	transactions	do	not	see	the	table.

The	table	will	be	visible	only	after	the	completion	of	the	transaction	that	created	it:

=>	COMMIT;

COMMIT

=>	SELECT	*	FROM	t1;

	n		

	42
(1	row)

2.	Transactions	and	DDL	Commands:	Rollback

Start	a	transaction	and	create	a	new	table:

=>	BEGIN;

BEGIN

=>	CREATE	TABLE	t2(n	integer);

CREATE	TABLE

=>	INSERT	INTO	t2	VALUES	(42);

INSERT	0	1

The	query	in	the	second	session	sees	no	changes,	as	expected:

=>	SELECT	*	FROM	t2;

ERROR:		relation	"t2"	does	not	exist
LINE	1:	SELECT	*	FROM	t2;
																						^

When	the	first	transaction	is	rolled	back,	the	table	creation	command	is	also	rolled	back:

=>	ROLLBACK;

ROLLBACK

=>	SELECT	*	FROM	t2;

ERROR:		relation	"t2"	does	not	exist
LINE	1:	SELECT	*	FROM	t2;
																						^

In	PostgreSQL,	DDL	commands	are	transactional.

3.	Table	Locks

Start	a	transaction,	query	the	table:

=>	BEGIN;

BEGIN

=>	SELECT	*	FROM	t1;

	n		

	42
(1	row)

The	second	transaction,	which	is	trying	to	remove	the	table	is	locked:	you	cannot	remove	a	table	that	is	being	used.

=>	DROP	TABLE	t1;

The	table	will	be	removed	only	after	the	first	transaction	is	completed:

=>	COMMIT;

COMMIT

DROP	TABLE

