

Backup

Overview

16

Copyright
© Postgres Professional, 2017–2025
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Alexey Beresnev
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is,”
and Postgres Professional company has no obligations to provide
maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

Logical Backup

Physical Backup

3

Logical Backup

What Is Logical Backup

Table Backup

Database Backup

Cluster Backup

4

Logical Backup

SQL commands to restore data from scratch
+ can backup a separate object or database
+ can recover on a cluster running different major version
+ can recover on a different architecture
− low speed
− can restore to the moment of the backup only

There are two types of backup: logical and physical.

Logical backup is a set of SQL commands that restores a cluster (or
database, or a separate object) from scratch.

Such a backup is, in fact, a plain text file, which gives a certain flexibility.
For example, you can make a copy of only those objects that are needed;
you can edit the file by changing the names or data types, etc.

In addition, SQL commands can be executed on a different version of the
DBMS or on a different architecture. Only compatibility at the command level
is required, binary compatibility is not necessary.

However, for a large database, this mechanism is inefficient, since executing
the commands (in particular, creation of indexes) will take a long time.
Moreover, it is possible to restore the system from such a backup only to the
moment at which the backup was made.

https://postgrespro.com/docs/postgresql/16/backup-dump

https://postgrespro.ru/docs/postgresql/16/backup-dump

5

COPY: Table Backup

Backup
output of a table contents or a query results into a file, stream or program

Restore
insertion of rows from a file or input stream into an existing table

Server variant Client variant
SQL COPY command psql \COPY command

the file must be accessible the file must be accessible
to the postgres user to the user who has launched psql
on the server on the client

If you want to save only the contents of one table, you can use the COPY
command.

The command writes a table (or the result of an arbitrary query) either to a
file or to an output stream, or sends it as input to another program. You can
specify options such as format (plain text, csv or binary), field separator,
NULL string representaion, etc.

The opposite variant of the COPY command reads fields from a file or input
stream and inserts them into a table. The table isn’t cleared, the new rows
are simply appended to the existing ones.

The COPY command is significantly faster than similar INSERT commands,
because the client does not need to access the server repeatedly, and the
server does not have to analyze the commands multiple times.

https://postgrespro.com/docs/postgresql/16/sql-copy

In psql, there is a client version of the COPY command with a similar syntax.
Unlike the server version, which is an SQL command, the client version is a
psql command.

The file name in the SQL command corresponds to a file on the database
server. The user running PostgreSQL (usually postgres) must have access
to this file. In the client version, the file is accessed on the client, and only
the content is transmitted to the server.

https://postgrespro.com/docs/postgresql/16/app-psql

https://postgrespro.ru/docs/postgresql/16/sql-copy
https://postgrespro.ru/docs/postgresql/16/app-psql

COPY

Create	a	database	and	a	table	in	it.

=>	CREATE	DATABASE	backup_overview;

CREATE	DATABASE

=>	\c	backup_overview

You	are	now	connected	to	database	"backup_overview"	as	user	"student".

=>	CREATE	TABLE	t(id	numeric,	s	text);

CREATE	TABLE

=>	INSERT	INTO	t	VALUES	(1,	'Hello	World!'),	(2,	''),	(3,	NULL);

INSERT	0	3

=>	SELECT	*	FROM	t;

	id	|						s							
----+--------------
		1	|	Hello	World!
		2	|	
		3	|	
(3	rows)

Here	is	how	the	COPY	command	outputs	the	table:

=>	COPY	t	TO	STDOUT;

1	 Hello	World!
2	
3	 \N

Note	that	an	empty	string	and	NULL	are	different	things,	despite	the	output	not	telling	us	that.

You	can	input	the	data	in	a	similar	way:

=>	TRUNCATE	TABLE	t;

TRUNCATE	TABLE

=>	COPY	t	FROM	STDIN;
1	 Hi	there!
2	
3	 \N
\.

COPY	3

Let’s	check:

=>	\pset	null	'<null>'

Null	display	is	"<null>".

=>	SELECT	*	FROM	t;

	id	|					s					
----+-----------
		1	|	Hi	there!
		2	|	
		3	|	<null>
(3	rows)

7

pg_dump: Database Backup

Backup
outputs an SQL script or an archive
in a special format with a TOC to a stream or file
supports parallel execution
can define what objects to backup
(tables, schemas, only DML or only DDL, etc.)

Restore
SQL script via psql
archive with TOC via pg_restore
(can define what objects to restore and supports parallel execution)
the new database must be created from template0
roles and tablespaces must be created in advance

The pg_dump utility creates a full-scale database backup. Depending on the
options, it provides either an SQL script containing commands that create
the required objects, or a file in a special format with a table of contents.

Restoring from an SQL script is as simple as executing it in psql.

https://postgrespro.com/docs/postgresql/16/app-pgdump

Restoring from an archive is done using the pg_restore tool. It reads the file
and translates it into regular psql commands. The advantage is that it allows
you to specify what objects to restore at the recovery stage, not just at the
backup stage. Moreover, this type of backup and restore supports parallel
execution.

https://postgrespro.com/docs/postgresql/16/app-pgrestore

The database for restore must be created from the database template0,
since all changes made in template1 will also be backed up. In addition, the
necessary roles and tablespaces must be created in advance, since these
objects belong to the entire cluster. After restore, it is recommended to run
the ANALYZE command to collect fresh statistics.

https://postgrespro.ru/docs/postgresql/16/app-pgdump
https://postgrespro.ru/docs/postgresql/16/app-pgrestore

8

pg_dumpall: Cluster Backup

Backup
makes a backup of the entire cluster, including roles and tablespaces
outputs an SQL script to the console or to a file
parallel execution is not supported, but you can dump only the global objects
and then use pg_dump

Restore
via psql

pg_dumpall creates a backup of the entire cluster, including roles and
tablespaces.

Since pg_dumpall requires access to all objects of all databases, it is usually
run by the superuser. pg_dumpall connects to each database in the cluster
one by one and backups them using pg_dump. In addition, it also stores
data related to the cluster as a whole.

The result of pg_dumpall is a script for psql. Other formats are not
supported. This means that pg_dumpall does not support parallel execution,
which can be a problem for larger clusters. In this case, you can use the
--globals-only option to backup only roles and tablespaces, and then backup
all the databases using pg_dump.

https://postgrespro.com/docs/postgresql/16/app-pg-dumpall

https://postgrespro.ru/docs/postgresql/16/app-pg-dumpall

pg_dump	Utility

Take	a	look	at	pg_dump	output	in	a	plain	text	format.	Note	the	way	data	from	the	table	is	saved.

If	any	changes	were	made	to	template1,	they	will	make	it	into	the	backup,	too.	Therefore,	when	restoring	a	database,	it	is	best	to	create	one	on
the	target	from	template0	(the	--create	option	adds	the	necessary	commands	automatically).

student$	pg_dump	-d	backup_overview	--create

--
--	PostgreSQL	database	dump
--

\restrict	ZbyUxC9tvz6k4H2IIy7Dc8vEo6970mv9216n7svBkyH2nGzSmADrNWcMpeqIipT

--	Dumped	from	database	version	16.10	(Ubuntu	16.10-1.pgdg24.04+1)
--	Dumped	by	pg_dump	version	16.10	(Ubuntu	16.10-1.pgdg24.04+1)

SET	statement_timeout	=	0;
SET	lock_timeout	=	0;
SET	idle_in_transaction_session_timeout	=	0;
SET	client_encoding	=	'UTF8';
SET	standard_conforming_strings	=	on;
SELECT	pg_catalog.set_config('search_path',	'',	false);
SET	check_function_bodies	=	false;
SET	xmloption	=	content;
SET	client_min_messages	=	warning;
SET	row_security	=	off;

--
--	Name:	backup_overview;	Type:	DATABASE;	Schema:	-;	Owner:	student
--

CREATE	DATABASE	backup_overview	WITH	TEMPLATE	=	template0	ENCODING	=	'UTF8'	LOCALE_PROVIDER	=	libc	LOCALE	=	'en_US.UTF-8';

ALTER	DATABASE	backup_overview	OWNER	TO	student;

\unrestrict	ZbyUxC9tvz6k4H2IIy7Dc8vEo6970mv9216n7svBkyH2nGzSmADrNWcMpeqIipT
\connect	backup_overview
\restrict	ZbyUxC9tvz6k4H2IIy7Dc8vEo6970mv9216n7svBkyH2nGzSmADrNWcMpeqIipT

SET	statement_timeout	=	0;
SET	lock_timeout	=	0;
SET	idle_in_transaction_session_timeout	=	0;
SET	client_encoding	=	'UTF8';
SET	standard_conforming_strings	=	on;
SELECT	pg_catalog.set_config('search_path',	'',	false);
SET	check_function_bodies	=	false;
SET	xmloption	=	content;
SET	client_min_messages	=	warning;
SET	row_security	=	off;

SET	default_tablespace	=	'';

SET	default_table_access_method	=	heap;

--
--	Name:	t;	Type:	TABLE;	Schema:	public;	Owner:	student
--

CREATE	TABLE	public.t	(
				id	numeric,
				s	text
);

ALTER	TABLE	public.t	OWNER	TO	student;

--
--	Data	for	Name:	t;	Type:	TABLE	DATA;	Schema:	public;	Owner:	student
--

COPY	public.t	(id,	s)	FROM	stdin;
1	 Hi	there!
2	
3	 \N
\.

--
--	PostgreSQL	database	dump	complete

--

\unrestrict	ZbyUxC9tvz6k4H2IIy7Dc8vEo6970mv9216n7svBkyH2nGzSmADrNWcMpeqIipT

As	an	example,	let’s	copy	the	table	into	another	database.

=>	CREATE	DATABASE	backup_overview2;

CREATE	DATABASE

student$	pg_dump	-d	backup_overview	--table=t	|	psql	-d	backup_overview2

SET
SET
SET
SET
SET
	set_config	

(1	row)

SET
SET
SET
SET
SET
SET
CREATE	TABLE
ALTER	TABLE
COPY	3

student$	psql	-d	backup_overview2

=>	SELECT	*	FROM	t;

	id	|					s					
----+-----------
		1	|	Hi	there!
		2	|	
		3	|	
(3	rows)

10

Physical Backup

What Is Physical Backup

Cold and Hot Backups

Replication Protocol

Standalone Backup

Continuous WAL Archiving

11

Physical Backup

Crash recovery mechanism is used: copy of data and WAL
+ restore speed
+ can restore a cluster to a certain point in time
− cannot restore a separate database, only the cluster as a whole
− can restore only on the same architecture and major version

Physical backup uses the crash recovery mechanism. This requires:
● base backup — a copy of cluster files (data files and system files),
● a set of write-ahead logs needed to restore consistency.

If the file system is already consistent (the backup was made when the
server was stopped correctly), then the WALs are not required.

However, with the WAL archive, it is possible to get cluster state at any point
in time. This way, the cluster can be restored to the state right before the
crash (or at any moment before that, if needed).

High restore speed and the ability to create a backup on the fly without
stopping the server make physical backup the main choice for routine
backup needs.

https://postgrespro.com/docs/postgresql/16/backup-file

https://postgrespro.com/docs/postgresql/16/continuous-archiving

https://postgrespro.ru/docs/postgresql/16/backup-file
https://postgrespro.ru/docs/postgresql/16/continuous-archiving

12

Hot or Cold

Cold backup Hot backup

Cluster files are
backed up when...

the server is off the server was shut
down incorrectly

the server is
running

WALs are... not required required since the
last checkpoint

required for the
duration of the file

copy

special means
required

stored in
 the file system

 server
must not delete WALs

too early

Physical backup creates a copy of the database cluster files at some point.

If a backup is created while the server is stopped, it’s called “cold”. A cold
backup either contains consistent data (if the server was shut down
correctly), or contains all the logs necessary for recovery (for example, if the
OS has done a data snapshot). This simplifies restore, but requires that the
server is stopped.

If a backup is created while the server is running (which requires certain
additional actions since you can't copy files just like that), it is called “hot”.
The procedure is more complicated, but can be performed without stopping
the server.

For hot backup, the copy of the cluster files will be inconsistent. However,
the crash recovery mechanism can also be successfully applied to restore
from backup. This will require the WALs for at least the duration of the file
copy.

13

Standalone Backup

Base copy + WAL

Backup via pg_basebackup
connects to the server over the replication protocol
performs a checkpoint
copies the database cluster files into a specified directory
saves all WAL segments generated during the copying process

Restore
deploy the standalone backup
start the server

Hot backups are created with the pg_basebackup tool.

First, it performs a checkpoint. Then, the cluster files are copied.

All WAL files generated by the server during the time from the checkpoint to
the end of file copying are also added to the backup. The resulting backup is
called standalone because it contains all the data necessary for recovery.

All you need to restore using a standalone backup is to deploy the backup
and start the server. It will use the WALs to restore consistency on startup if
necessary, and will be ready to go.

https://postgrespro.com/docs/postgresql/16/app-pgbasebackup

https://postgrespro.com/docs/postgresql/16/app-pgbasebackup

14

Replication Protocol

Protocol
receiving the WAL stream
backup and replication control commands

Served by wal_sender process

wal_level = replica

Replication slot
a server object for receiving WAL records
remembers which record was read last
WAL segment is not deleted until fully read through the slot

The replication protocol allows the utility to connect to the server and collect
all WAL files generated during file copying. Despite the name, the protocol is
used not only for replication (which will be discussed in the next lesson), but
also for backup. The protocol can stream WAL records while data files are
being copied.

To prevent the server from deleting WAL files too early, the replication slot
can be employed, which keeps track of the last WAL record received by the
client.

Establishing a connection over the replication protocol requires a certain
configuration.

First, the initiating role must have the REPLICATION attribute (or be a
superuser). This role must also have the necessary permission in the
pg_hba.conf configuration file.

Second, the max_wal_senders parameter must be set sufficiently high.
This parameter limits the number of simultaneously running wal_sender
processes serving replication protocol connections.

Third, the wal_level parameter, which determines the amount of information
in the WAL, must be set to replica.

The default settings already satisfy all these requirements (for a local
connection).

https://postgrespro.com/docs/postgresql/16/protocol-replication

15

Standalone Backup

base backup
+

WAL

main server

WAL segments

select, insert
update, delete pg_basebackup

The image on the left shows the main server. It processes incoming queries.
At the same time, WAL records are formed and the state of the databases
changes (first in the buffer cache, then on disk). WAL segments are
cyclically overwritten (to be precise, old segments are deleted, since the file
names are unique).

At the bottom of the picture is a backup copy (usually located on another
server). It contains a base copy of the data and a set of WAL files.

Standalone	Backup

The	default	configuration	is	sufficient	for	replication	protocol:

=>	SELECT	name,	setting
FROM	pg_settings
WHERE	name	IN	('wal_level','max_wal_senders');

						name							|	setting	
-----------------+---------
	max_wal_senders	|	10
	wal_level							|	replica
(2	rows)

The	local	connection	permission	for	the	replication	protocol	is	also	on	in	pg_hba.conf	by	default	(not	for	all	package	distributions):

=>	SELECT	type,	database,	user_name,	address,	auth_method	
FROM	pg_hba_file_rules()	
WHERE	'replication'	=	ANY(database);

	type		|			database				|	user_name	|		address		|		auth_method		
-------+---------------+-----------+-----------+---------------
	local	|	{replication}	|	{all}					|	<null>				|	trust
	host		|	{replication}	|	{all}					|	127.0.0.1	|	scram-sha-256
	host		|	{replication}	|	{all}					|	::1							|	scram-sha-256
(3	rows)

Another	database	cluster,	replica,	has	been	initiated	on	the	port	5433.	Ubuntu	package	installs	a	tool	we	can	use	to	verify	that	the
cluster	is	stopped:

student$	pg_lsclusters

Ver	Cluster	Port	Status	Owner				Data	directory																	Log	file
16		main				5432	online	postgres	/var/lib/postgresql/16/main				
/var/log/postgresql/postgresql-16-main.log
16		replica	5433	down			postgres	/var/lib/postgresql/16/replica	
/var/log/postgresql/postgresql-16-replica.log

Create	a	backup.	Use	the	default	format	(plain):

student$	rm	-rf	/home/student/tmp/basebackup

student$	pg_basebackup	--pgdata=/home/student/tmp/basebackup	--checkpoint=fast

The	pg_basebackup	utility	performs	a	checkpoint	immediately	upon	connecting	to	the	server.	By	default,	dirty	buffers	are	written
gradually	to	avoid	I/O	peak	loads	(the	process	may	take	up	to	4.5	minutes).	When	using	--checkpoint=fast,	buffers	are	written
without	delays.

17

Restore

main server

WAL segments

select, insert
update, delete

select, insert
update, delete

backup server

base backup
+

WAL

During restore, the base backup, including the necessary WAL files, is
deployed, for example, on another server (shown on the right).

After the startup, it restores consistency and is ready to go. The system is
restored to the point in time when the backup was made. Of course, the
main server can go far ahead in the meantime.

Restore

Move	the	new	backup	into	replica	cluster	directory	(after	making	sure	the	cluster	is	stopped):

student$	sudo	pg_ctlcluster	16	replica	status

pg_ctl:	no	server	running

student$	sudo	rm	-rf	/var/lib/postgresql/16/replica

student$	sudo	mv	/home/student/tmp/basebackup/	/var/lib/postgresql/16/replica

The	cluster	files	must	belong	to	the	postgres	user.

student$	sudo	chown	-R	postgres:postgres	/var/lib/postgresql/16/replica

Verify	the	contents:

student$	sudo	ls	-l	/var/lib/postgresql/16/replica

total	344
-rw-------	1	postgres	postgres				225	Sep	24	17:02	backup_label
-rw-------	1	postgres	postgres	268206	Sep	24	17:02	backup_manifest
drwx------	8	postgres	postgres			4096	Sep	24	17:02	base
drwx------	2	postgres	postgres			4096	Sep	24	17:02	global
drwx------	2	postgres	postgres			4096	Sep	24	17:02	pg_commit_ts
drwx------	2	postgres	postgres			4096	Sep	24	17:02	pg_dynshmem
drwx------	4	postgres	postgres			4096	Sep	24	17:02	pg_logical
drwx------	4	postgres	postgres			4096	Sep	24	17:02	pg_multixact
drwx------	2	postgres	postgres			4096	Sep	24	17:02	pg_notify
drwx------	2	postgres	postgres			4096	Sep	24	17:02	pg_replslot
drwx------	2	postgres	postgres			4096	Sep	24	17:02	pg_serial
drwx------	2	postgres	postgres			4096	Sep	24	17:02	pg_snapshots
drwx------	2	postgres	postgres			4096	Sep	24	17:02	pg_stat
drwx------	2	postgres	postgres			4096	Sep	24	17:02	pg_stat_tmp
drwx------	2	postgres	postgres			4096	Sep	24	17:02	pg_subtrans
drwx------	2	postgres	postgres			4096	Sep	24	17:02	pg_tblspc
drwx------	2	postgres	postgres			4096	Sep	24	17:02	pg_twophase
-rw-------	1	postgres	postgres						3	Sep	24	17:02	PG_VERSION
drwx------	3	postgres	postgres			4096	Sep	24	17:02	pg_wal
drwx------	2	postgres	postgres			4096	Sep	24	17:02	pg_xact
-rw-------	1	postgres	postgres					88	Sep	24	17:02	postgresql.auto.conf

When	started,	the	cluster	will	begin	restore.

student$	sudo	pg_ctlcluster	16	replica	start

Now	both	servers	run	concurrently	and	independently.

Main	server:

=>	INSERT	INTO	t	VALUES	(4,	'Main	server');

INSERT	0	1

=>	SELECT	*	FROM	t;

	id	|						s						
----+-------------
		1	|	Hi	there!
		2	|	
		3	|	<null>
		4	|	Main	server
(4	rows)

Server	restored	from	the	backup:

student$	psql	-p	5433	-d	backup_overview

=>	INSERT	INTO	t	VALUES	(4,	'Backup');

INSERT	0	1

=>	SELECT	*	FROM	t;

	id	|					s					
----+-----------
		1	|	Hi	there!
		2	|	
		3	|	
		4	|	Backup
(4	rows)

19

WAL Archive

File archive
WAL segments are archived as they are switched
controlled by the server
archiving happens with a delay

Streaming archive
a stream of WAL records is continuously recorded into the archive
external tools required
delays are minimal

The hot backup concept can be improved upon even further. Since we have
a copy of the database cluster files and WALs, then by constantly saving
new logs, we will be able to restore the system not only at the time of
copying files, but also at any point in time after that.

There are two ways to go about it. The first is to archive old WAL files before
deleting them. There are server settings for that. Unfortunately, with this
option, a WAL file will not be archived until the server switches to writing to
another WAL file.

The second way is to continuously read WAL entries using the replication
protocol and write them into the same archive. This way, delays are minimal,
but a separate tool has to be set up to receive the stream data and archive
it.

20

File WAL Archive

Archiver process

Parameters
archive_mode = on
archive_command shell command to copy a WAL segment

to a separate storage

Algorithm
when switching to a new WAL segment, the archive_command is called
if the command is completed with the status 0, the segment is deleted
if the command returns anything else (or if the command is not specified),
the segment remains until the attempt is successful

The file WAL archive is managed by the archiver background process.

An arbitrary shell command can be defined as the archive_command
parameter to be used for copying. The mechanism itself is enabled by the
archive_mode = on.

The algorithm goes as follows. When a WAL segment is filled, the copy
command is called. If it is completed with a zero status, the segment can be
deleted safely. Otherwise, the segment (and the ones following it) will not be
deleted, and the server will periodically try to execute the command until it
returns 0.

https://postgrespro.com/docs/postgresql/16/continuous-archiving

https://postgrespro.ru/docs/postgresql/16/continuous-archiving

21

File WAL Archive

archive_command

WAL archive
+

base backup

main server

WAL segments

select, insert
update, delete

continuous
archiving

This figure shows the main server with continuous archiving set up. Filled
WAL segments are copied to a separate archive using the command defined
by the archive_command parameter. Usually, the archive is located on a
separate server, and it also stores the base backup (or several, from multiple
points in time).

22

Streamed WAL Archive

pg_receivewal utility
connects over the replication protocol (can use a replication slot)
and stores WAL records stream in segment files

the starting position is the beginning of the segment following the last filled
segment in the directory,
or the start of current segment, if the directory is empty

unlike the file archive, records are written continuously

parameters have to be reconfigured when changing servers

Another solution is to use the pg_receivewal utility, which receives WAL
records via the stream replication protocol and writes segments to the
archive.

pg_receivewal usually runs on a separate “archive” server and connects to
the main server with the parameters specified in the command line options.
It can (and should) use a replication slot in order to ensure that records are
not lost.

pg_receivewal generates files in the same way as the server does, and
writes them to the specified directory. Segments that have not yet been filled
in are written with the .partial suffix.

When launched, the utility starts archiving from the beginning of the
segment, following the newest completed archive segment. If the archive is
empty (first run), archiving starts from the beginning of the current segment.

When switching to a new server, pg_receivewal must be stopped and
restarted with new parameters.

PostgreSQL does not include built-in tools to run the utility in the background
(daemonization) or for automatic startup (as a service). To achieve this, you
should use operating system features.

https://postgrespro.com/docs/postgresql/16/app-pgreceivewal

https://postgrespro.com/docs/postgresql/16/app-pgreceivewal

23

Streamed WAL Archive

WAL archive

WAL segments

select, insert
update, delete

wal sender

pg_receivewal

main server

pg_receivewal connects to the server over the stream replication protocol.
The connection is handled by a separate wal sender process (this must be
taken into account when setting the max_wal_senders parameter).

pg_receivewal saves data without waiting for the entire segment to be
received.

24

Base Backup + Archive

Configured continuous WAL archiving

Backup via pg_basebackup
connects to the server over the replication protocol
performs a checkpoint
copies the cluster files into a specified directory

Restore
deploy the backup
set configuration parameters
(command to read WAL from the archive, target recovery point)
create a recovery.signal file

start the server

WAL segments
are not required

To create a backup with continuous archiving configured, the same
pg_basebackup tool is used, but with a different set of parameters. The
difference is that the WAL files are not saved to the backup, since they are
already in the archive.

Restore is more complicated in this case. In addition to deploying the base
backup, some recovery settings must be specified:
● restore_command (inverse of archive_command, it copies files from the

archive to the server);
● target restore point.

In addition, a recovery.signal file is needed. If present at server startup, the
file tells the server to enter the managed recovery mode (the contents of the
file is ignored).

25

Restore

restore_command

backup server

WAL archive
+

base backup

main server

WAL segments

did not make it
into the archive

The restore procedure (for example, after main server crash) is performed
as follows. A base backup is deployed on another (or the same) server and a
recovery.signal file is created. The server starts up and starts reading WAL
segments from the archive using restore_command and applying them.

Note that during file archiving, the last incomplete WAL segment at the main
server will not be archived. However, the segment can be manually added to
the pg_wal directory on the backup server, if this option is available. There
may be several such segments in case of archiving failure.

26

Restore

restore_command

WAL archive
+

base backup

WAL segments

 target
restore point

backup servermain server

The backup server reads WAL segments from the pg_wal directory and
applies them (in the absence of a segment, making an attempt to copy it
from the archive), ultimately bringing the state of the databases up to date.
The maximum possible loss is the last incomplete WAL segment that has
not been archived, and only if it cannot be copied manually for some reason.

By default, all available log entries are applied. If a target restore point is
specified, recovery will stop after reaching it.

27

Restore

select, insert
update, delete

archive_command

backup server

WAL archive
+

base backup

main server

WAL segments

After that, the backup server goes into normal operation: processing
incoming queries, archiving WAL segments, and so on.

The restored server can act as the primary server from now on, but in this
case it should be deployed on sufficiently powerful hardware in the first
place to avoid performance degradation.

28

Takeaways

Logical backup creates
SQL commands to restore the state of database objects

copy command, pg_dump and pg_dumpall utilities

Physical backup creates a copy of the cluster files +
a set of WAL files

pg_basebackup utility

WAL archive
file or stream
can restore the system to an arbitrary point in time

29

Practice

1. Create a database and a table in it with several rows.

2. Make a logical backup of the database using pg_dump.
Delete the database and restore it from the backup you made.

3. Make a standalone physical backup of the cluster using
pg_basebackup.

Modify the table.

Restore into a new cluster from the backup you made and verify
that the restored database does not contain any of the later
changes.

3. replica cluster has already been created in the course VM on port 5433.
Use this cluster to restore into.

The cluster data directory is /var/lib/postgresql/16/replica.

To connect to it, specify the port number: psql -p 5433

1.	Database	and	Table

=>	CREATE	DATABASE	backup_overview;

CREATE	DATABASE

=>	\c	backup_overview

You	are	now	connected	to	database	"backup_overview"	as	user	"student".

=>	CREATE	TABLE	t(n	integer);

CREATE	TABLE

=>	INSERT	INTO	t	VALUES	(1),	(2),	(3);

INSERT	0	3

2.	Logical	Backup

Create	a	backup:

student$	pg_dump	-f	/home/student/tmp/backup_overview.dump	-d	backup_overview	--create

Delete	the	database	and	restore	it	from	the	backup:

=>	\c	postgres

You	are	now	connected	to	database	"postgres"	as	user	"student".

=>	DROP	DATABASE	backup_overview;

DROP	DATABASE

student$	psql	-f	/home/student/tmp/backup_overview.dump

SET
SET
SET
SET
SET
	set_config	

(1	row)

SET
SET
SET
SET
CREATE	DATABASE
ALTER	DATABASE
You	are	now	connected	to	database	"backup_overview"	as	user	"student".
SET
SET
SET
SET
SET
	set_config	

(1	row)

SET
SET
SET
SET
SET
SET
CREATE	TABLE
ALTER	TABLE
COPY	3

=>	\c	backup_overview

You	are	now	connected	to	database	"backup_overview"	as	user	"student".

=>	SELECT	*	FROM	t;

	n	

	1
	2
	3
(3	rows)

3.	Physical	Standalone	Backup

Creating	a	backup	with	a	fast	checkpoint:

student$	rm	-rf	/home/student/tmp/backup

student$	pg_basebackup	--pgdata=/home/student/tmp/backup	--checkpoint=fast

Make	sure	the	second	server	is	stopped	and	deploy	the	backup:

student$	sudo	pg_ctlcluster	16	replica	status

pg_ctl:	no	server	running

student$	sudo	rm	-rf	/var/lib/postgresql/16/replica

student$	sudo	mv	/home/student/tmp/backup	/var/lib/postgresql/16/replica

student$	sudo	chown	-R	postgres:postgres	/var/lib/postgresql/16/replica

Change	the	table:

=>	DELETE	FROM	t;

DELETE	3

Start	the	server	from	backup:

student$	sudo	pg_ctlcluster	16	replica	start

student$	psql	-p	5433	-d	backup_overview

=>	SELECT	*	FROM	t;

	n	

	1
	2
	3
(3	rows)

30

Practice+

1. Set up stream archiving on the main cluster using pg_receivewal.

2. Create a standalone backup of the main cluster (without WAL)
using pg_basebackup.

3. In the main cluster, create a database and a table in it.

4. Restore the replica cluster from the base backup using the
archive. Verify that the database and the table are also restored.

The replica cluster catalog is /var/lib/postgresql/16/replica.

The current file being written by the pg_receivewal utility has a .partial suffix.
Once writing is complete, the file is renamed. When recovering, use the
partial file along with the usual segments.

To connect to the replica cluster, specify the port number: psql -p 5433

1.	Streaming	Archive

Note	that	some	commands	are	executed	as	the	postgres	user,	and	some	as	student.

Create	a	directory	to	store	the	WAL	archive:

postgres$	mkdir	/var/lib/postgresql/archive

Create	a	slot	to	avoid	gaps	in	the	archive:

postgres$	pg_receivewal	--create-slot	--slot=archive

Run	the	pg_receivewal	utility	in	background.	To	do	that,	execute	the	following	command	in	a	separate	terminal	(or	add	&	at	the	end
of	the	command	in	the	same	terminal).

postgres$	pg_receivewal	-D	/var/lib/postgresql/archive	--slot=archive	&

student$	sudo	ls	-l	/var/lib/postgresql/archive

total	16384
-rw-------	1	postgres	postgres	16777216	Sep	24	17:12	000000010000000000000001.partial

2.	Base	Backup	without	WAL

student$	pg_basebackup	--wal-method=none	--pgdata=/home/student/tmp/backup	--checkpoint=fast

NOTICE:		WAL	archiving	is	not	enabled;	you	must	ensure	that	all	required	WAL	segments	are	
copied	through	other	means	to	complete	the	backup

student$	ls	-l	/home/student/tmp/backup

total	260
-rw-------	1	student	student				225	Sep	24	17:12	backup_label
-rw-------	1	student	student	180378	Sep	24	17:12	backup_manifest
drwx------	6	student	student			4096	Sep	24	17:12	base
drwx------	2	student	student			4096	Sep	24	17:12	global
drwx------	2	student	student			4096	Sep	24	17:12	pg_commit_ts
drwx------	2	student	student			4096	Sep	24	17:12	pg_dynshmem
drwx------	4	student	student			4096	Sep	24	17:12	pg_logical
drwx------	4	student	student			4096	Sep	24	17:12	pg_multixact
drwx------	2	student	student			4096	Sep	24	17:12	pg_notify
drwx------	2	student	student			4096	Sep	24	17:12	pg_replslot
drwx------	2	student	student			4096	Sep	24	17:12	pg_serial
drwx------	2	student	student			4096	Sep	24	17:12	pg_snapshots
drwx------	2	student	student			4096	Sep	24	17:12	pg_stat
drwx------	2	student	student			4096	Sep	24	17:12	pg_stat_tmp
drwx------	2	student	student			4096	Sep	24	17:12	pg_subtrans
drwx------	2	student	student			4096	Sep	24	17:12	pg_tblspc
drwx------	2	student	student			4096	Sep	24	17:12	pg_twophase
-rw-------	1	student	student						3	Sep	24	17:12	PG_VERSION
drwx------	3	student	student			4096	Sep	24	17:12	pg_wal
drwx------	2	student	student			4096	Sep	24	17:12	pg_xact
-rw-------	1	student	student					88	Sep	24	17:12	postgresql.auto.conf

3.	New	Database	and	Table

=>	CREATE	DATABASE	backup_overview;

CREATE	DATABASE

=>	\c	backup_overview

You	are	now	connected	to	database	"backup_overview"	as	user	"student".

=>	CREATE	TABLE	t(n	integer);

CREATE	TABLE

=>	INSERT	INTO	t	VALUES	(1),	(2),	(3);

INSERT	0	3

4.	Recovery	Configuration

Make	sure	the	second	server	is	stopped	and	push	the	backup:

student$	sudo	pg_ctlcluster	16	replica	status

pg_ctl:	no	server	running

student$	sudo	rm	-rf	/var/lib/postgresql/16/replica

student$	sudo	mv	/home/student/tmp/backup	/var/lib/postgresql/16/replica

Use	the	partial	segment	during	recovery	as	well:

student$	echo	"restore_command	=	'cp	/var/lib/postgresql/archive/%f	%p	||	cp	
/var/lib/postgresql/archive/%f.partial	%p'"	|	sudo	tee	
/var/lib/postgresql/16/replica/postgresql.auto.conf

restore_command	=	'cp	/var/lib/postgresql/archive/%f	%p	||	cp	/var/lib/postgresql/archive/%f.partial	%p'

student$	touch	/var/lib/postgresql/16/replica/recovery.signal

student$	sudo	chown	-R	postgres:postgres	/var/lib/postgresql/16/replica

Start	the	server	and	see	the	result:

student$	sudo	pg_ctlcluster	16	replica	start

student$	psql	-p	5433	-d	backup_overview

=>	SELECT	*	FROM	t;

	n	

	1
	2
	3
(3	rows)

Archiving	is	no	longer	necessary.	Stop	the	utility	and	delete	the	slot	to	prevent	it	from	interfering	with	WAL	cleanup.

student$	sudo	pkill	pg_receivewal

postgres$	pg_receivewal	--drop-slot	--slot=archive

