Basic Tools

Using psaql

Pos gres

Copyright

© Postgres Professional, 2017-2025

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov, Alexey Beresnev
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and
losses, including loss ofincome, caused by direct or indirect, intentional or
accidental use of course materials. Postgres Professional company
specifically disclaims any warranties on course materials. Course materials
are provided “as is,” and Postgres Professional company has no obligations to
provide maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

OOOOOOOOOOOO

Topics Pos{gres

Launching psql and Connecting to the Database
Getting Help

Working with psql

Configuring psql

Purpose of psql Pogga’?“éﬁ

Terminal client for working with PostgreSQL
Comes with the DBMS

Used by administrators and developers for interactive work and
script execution

There are other third-party tools available, but they are not considered in the
scope of the course.

The psql terminal client will be used throughout the course. Those who are
used to working with GUI tools may find it uncomfortable at first.
Nevertheless, it is very powerful if you get used to it.

This is the only client supplied with the DBMS. The knowledge of psql will be
useful to both developers and DB administrators, regardless of which tool
they choose to work with at the end of the day.

https://postgrespro.com/docs/postgresqgl/16/app-psal

https://postgrespro.com/docs/postgresql/16/app-psql

Connection Po@ET-“é%

Launch
$ psql -d database -U user -h host -p port

New connection in psql

=> \c[onnect] database user node port

Information about the current connection

=> \conninfo

The required connection parameters include: database name, user name,
server name, port number. If these parameters are not specified, psql will try
to connect using the default values:

* database — matches the user name;
* user — matches the OS user name;
* node — connection via Unix socket;
* port — usually 5432.

To make a new connection without leaving psql, run the \connect
command. It uses the current connection's parameters as defaults.

The \conninfo command provides information about the current
connection.

Additional information about connection configuration options:
https://postgrespro.com/docs/postgresql/16/libpg-envars
https://postgrespro.com/docs/postgresql/16/libpg-pgservice
https://postgrespro.com/docs/postgresql/16/libpg-pgpass

https://postgrespro.com/docs/postgresql/16/libpq-envars
https://postgrespro.com/docs/postgresql/16/libpq-pgservice
https://postgrespro.com/docs/postgresql/16/libpq-pgpass

of] PROFESSIONAL

Getting Help Posggres

In the OS command line
$ psql --help

$ man psql
In psql
=> \? list of psql commands
=> \? variables psql variables
=> \h[elp] list of SQL commands
=> \h command syntax of the SQL command
=> \q quit

Reference information on psql can be obtained not only from the
documentation, but also from within the system directly.

psqgl with the - -help option displays a startup help message. If the
documentation package is installed with the system, you can view the
manual for psql using the man psqgl command.

psqgl can execute SQL commands as well as its own commands. All psql
commands start with a backslash and, as a rule, can be abbreviated to their
first letter.

Inside psql, you can get a list and a brief description of all psq|l
commands: \?.

The \help command provides a list of SQL commands that the server
supports, as well as the syntax of an SQL command (if specified).

Another command that is useful to know, although it has nothing to do with
the help, is \q — exit psgl. Alternatively, you can use the exit and quit
commands to quit.

Executing SQL Commands and Formatting the Output

Run psql:

student$ psql
Check the connection:
=> \conninfo

You are connected to database "student" as user "student" via socket in
"/var/run/postgresql" at port "5432".

Using the default parameters, we have connected to the student database as the student user. You will learn more about databases and users in later modules.

The \c[onnect] command creates a new connection without leaving psql.

SQL commands, unlike psql ones, may span multiple rows. To send an SQL command for execution, end it with a semicolon:

=> SELECT schemaname, tablename, tableowner
FROM pg_tables

LIMIT 5;
schemaname | tablename | tableowner

____________ e e oo
pg_catalog | pg_statistic | postgres
pg_catalog | pg_type | postgres
pg_catalog | pg_foreign_table | postgres
pg _catalog | pg authid | postgres
pg_catalog | pg_statistic_ext data | postgres

(5 rows)

psql can give output in different formats. Here are some of them:

e Aligned format
e Unaligned format
e Extended format

The aligned format is the default. It sets each column’s width based on its contents. There is also the header and the total row.

psql commands to switch display modes:

e \a — switches aligned format and unaligned format mode
o \t — switches the header and footer display

Let’s switch to non-aligned, turn the header and the total row off, and use a whitespace as the separator:
=> \t \a

Tuples only is on.
Output format is unaligned.

=> \pset fieldsep
Field separator is " ".
=> SELECT schemaname, tablename, tableowner FROM pg_tables LIMIT 5;

pg_catalog pg _statistic postgres
pg_catalog pg type postgres

pg_catalog pg foreign table postgres
pg_catalog pg authid postgres

pg_catalog pg statistic_ext data postgres

=> \t \a

Tuples only is off.
Output format is aligned.

The extended format is convenient for displaying multiple columns for one or several records:
=> \Xx

Expanded display is on.

=> SELECT * FROM pg_tables WHERE tablename = 'pg_class';

<[RECORD 1 J-----------
schemaname pg_catalog
tablename pg_class
tableowner postgres
tablespace
hasindexes
hasrules
hastriggers |
rowsecurity |

t
£
£
£

=> \Xx
Expanded display is off.
The extended mode can be set for a single query. To do that, add \gx at the end instead of a semicolon:

=> SELECT * FROM pg_tables WHERE tablename = 'pg_proc' \gx

<[RECORD 1 J------=--=-

schemaname | pg_catalog
tablename | pg_proc
tableowner | postgres
tablespace |

hasindexes | t

hasrules | f
hastriggers | f
rowsecurity | f

You can see all the formatting options by using the \pset command. If used with no parameters, it will display current settings:

=> \pset

border 1
columns 0
csv_fieldsep !
expanded of f
fieldsep v
fieldsep_zero of f
footer on
format aligned
linestyle ascii
null v
numericlocale off
pager 1
pager_min_lines 0
recordsep ‘\n'
recordsep_zero off
tableattr

title

tuples only off

unicode border linestyle single
unicode_column_linestyle single
unicode header linestyle single
xheader width full

Interacting with the OS

psql can run shell commands:

=> \! pwd

/home/student

You can set OS environment variables:

=> \setenv HELLO Hello

=> \! echo $HELLO

Hello

It can write output into a file with the \o[ut] command:
=> \o tmp/dbal_log

=> SELECT schemaname, tablename, tableowner FROM pg_tables LIMIT 5;
There is nothing on the screen! Let’s check the file:

=> \! cat tmp/dbal_log

schemaname | tablename | tableowner
____________ U
pg_catalog | pg_statistic | postgres
pg_catalog | pg_type | postgres
pg_catalog | pg_foreign_table | postgres
pg_catalog | pg_authid | postgres
pg_catalog | pg_statistic_ext _data | postgres

(5 rows)

Let’s get the output back to the screen:

Executing Scripts

Another way to run a query is with the \g command. You can specify parameters for this particular query in the brackets.
Query output can be redirected to OS command by appending the command after a vertical bar. For example, display query output with line numbers:

=> SELECT format('SELECT count(*) FROM %I;', tablename)
FROM pg_tables

LIMIT 3

\g (tuples_only=on format=unaligned) | cat -n

1 SELECT count(*) FROM pg statistic;
2 SELECT count(*) FROM pg_type;
3 SELECT count(*) FROM pg foreign table;

The \g command can specify a filename to redirect output:

=> SELECT format('SELECT count(*) FROM %I;', tablename)
FROM pg_tables

LIMIT 3

\g (tuples_only=on format=unaligned) tmp/dbal_log

This is what we get:
=> \! cat tmp/dbal_log

SELECT count(*) FROM pg_statistic;
SELECT count(*) FROM pg type;
SELECT count(*) FROM pg_foreign_table;

We can execute this file as a script using \i[nclude]:

=> \i tmp/dbal_log

Other ways to run commands from a file:

® psql < filename
e psql -f filename

You can skip creating a file in the last example if you end the query with \gexec:

=> SELECT format('SELECT count(*) FROM %I;', tablename)
FROM pg_tables

LIMIT 3

\gexec

psql Variables and Control Structures

Not unlike shell, psql has its own variables, including some pre-defined ones (with special meaning for psql).
Store the value of the OS USER environment variable in a psql variable:

=> \getenv User USER

Set a variable Test:

=> \set Test Hi

To substitute a variable’s value, use a colon prefix before the variable name:

=> \echo :Test :User!

Hi student!

To reset a variable, use:

=> \unset Test

=> \echo :Test

Query results can be saved to variables. For this purpose use the \gset command termination:
=> SELECT now() AS curr_time \gset

=> \echo :curr_time

2025-09-24 16:56:30.481473+03

The query must return only one record.

If used with no parameters, \set displays all currently set variables and their values:

=> \set

AUTOCOMMIT = 'on'

COMP_KEYWORD_CASE = 'preserve-upper

DBNAME = 'student'

ECHO = 'none’

ECHO_HIDDEN = 'off'

ENCODING = 'UTF8'

ERROR = 'false'’

FETCH_COUNT = '0'

HIDE_TABLEAM = 'off'

HIDE TOAST_COMPRESSION = 'off'

HISTCONTROL = 'none’

HISTFILE = 'hist'

HISTSIZE = '500'

HOST = '/var/run/postgresql’

IGNOREEOF = '0'

LAST ERROR MESSAGE = ''

LAST_ERROR_SQLSTATE = '00000'

ON_ERROR ROLLBACK = 'off"'

ON_ERROR_STOP = 'off'

PORT = '5432'

PROMPTL = '%/%R%x%#

PROMPT2 = '%/%R%x%#

PROMPT3 = '>>

QUIET = 'off"'

ROW_COUNT = '1'

SERVER VERSION NAME = '16.10 (Ubuntu 16.10-1.pgdg24.04+1)"'
SERVER_VERSION NUM = '160010'

SHELL ERROR = 'false'

SHELL_EXIT_CODE = '0'

SHOW_ALL_RESULTS = ‘on'

SHOW_CONTEXT = 'errors'

SINGLELINE = 'off'

SINGLESTEP = 'off'

SQLSTATE = '00000'

USER = 'student'

User = 'student'

VERBOSITY = 'default’

VERSION = 'PostgreSQL 16.10 (Ubuntu 16.10-1.pgdg24.04+1) on x86_64-pc-linux-gnu, compiled
by gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0, 64-bit'
VERSION_NAME = '16.10 (Ubuntu 16.10-1.pgdg24.04+1)
VERSION NUM = '160010'

curr_time = '2025-09-24 16:56:30.481473+03"

In scripts, you can use conditional operators.

For example, let’s check if working_dir has a value, and if it does not, set it as the current directory. The following command checks if the value is set and returns a
Boolean value:

=> \echo :{?working_dir}

FALSE

This conditional psql operator checks if the variable exists and sets the default value if needed:
=> \if :{?working_dir}

\else

\set working_dir “pwd’
\endif

Now we can be sure that the working_dir variable is defined:
=> \echo :working_dir

/home/student

System Catalog Commands

There is a set of commands (mostly starting with \d) used to quickly and conveniently get information about database objects.
Example:
=> \d pg_tables

View "pg_catalog.pg_tables"

Column | Type | Collation | Nullable | Default

------------- B L r e S
schemaname | name | | |
tablename | name | | |
tableowner | name | | |
tablespace | name | | |
hasindexes | boolean | | |
hasrules | boolean | | |
hastriggers | boolean | | |
rowsecurity | boolean | | |

We will see more of these commands later.

Configuring psql

On startup, psql runs two scripts (if they exist):

® First a common system psqlrc script
e Then a custom .psqlrc file

The user configuration file must be in the home directory. The system script’s location can be discovered with the following command:
student$ pg_config --sysconfdir
/etc/postgresql-common

Neither file exists by default.

You can use the files to configure your session parameters, for example:
® psql prompt
e Program for page-by-page viewing of query results
® Variables for storing the text of frequently used commands
For example, let’s store a query that returns 5 largest tables in a variable top5:

=> \set top5 'SELECT tablename, pg_total_relation_size(schemaname||''."'"||tablename) AS bytes FROM pg_tables ORDER BY bytes DESC LIMIT 5;'

Now we can execute the query by just typing:

=> :top5
tablename | bytes
................ [P
pg_proc | 1245184
pg_rewrite | 745472
pg_attribute | 720896
pg_description | 630784
pg_statistic | 294912

(5 rows)

If you write the \set command into the ~/.psqlrc file, the top5 variable will be available immediately after psql startup.

Thanks to readline support, psql can autocomplete keywords and object names, and it also stores the command history. The name and the size of the history file are
set by HISTFILE and HISTSIZE variables.

Takeaways Pogga’?é%

psql is a terminal client for working with PostgreSQL
Connection parameters are required at startup
Executes SQL and psql commands

Includes tools for interactive work, as well as for preparing and
executing scripts

Practice Pogga’i“éé

1. Run psql and check the current connection information.

2. Display a detailed list of databases.

3. By default, psql uses less command for page-by-page output.
Replace it with less -XS and display the detailed database list
again.

4. The default prompt shows only the name of the database.
Configure the prompt to display in the following format:
user@database=#.

5. Configure psql to display the execution time for all commands.
Make sure that this setting is saved when you restart.

1. When starting psql, if you omit the connection parameters, the default
values will apply.

2. Use the \ 1+ command.

3. The pager program is configured using the PSQL_PAGER environment
variable. The setting can be configured in the .psqlrc file using the \setenv
command. This will set the value to ' less -XS"' specifically for psq|l
sessions, while maintaining the OS default settings in all other cases. By
default, less wraps long lines during viewing and clears its output upon exit.
The - XS parameter disables this default behavior.

4. Prompt customization is described in the documentation:
thgos://postqrespro.com/docs/postqresql/16/a|op—psqI#APP—PSOL—PROMPTI

5.The psgl command to output the duration of a query execution can be
found in the PostgreSQL documentation or within psql itself with the \?

command.

https://postgrespro.com/docs/postgresql/16/app-psql#APP-PSQL-PROMPTING
https://postgrespro.com/docs/postgresql/16/app-psql#APP-PSQL-PROMPTING

1. Running psql and Displaying Connection Information

student$ psql
=> \conninfo

You are connected to database "student" as user "student" via socket in
"/var/run/postgresql" at port "5432".

2. Paging Results Using less

When query output exceeds terminal dimensions, psql sends it to the less pager. You can navigate through query results using
standard navigation keys. The h command displays the help file. The g command exits the display mode.

Note that by default less will wrap long lines, which can make the results difficult to read. Besides, the output will be cleared after
quitting less.

For example, \I+ output becomes unreadable due to wrapping.

= \1+

List of databases

Name | Owner | Encoding | Locale Provider | Collate | Ctype | ICU
Locale | ICU Rules | Access privileges | Size | Tablespace |
Description
----------- L s e S L L e R
B L L R L
postgres | postgres | UTF8 | libc | en US.UTF-8 | en US.UTF-8 |

| | | 7361 kB | pg_default | default administrative
connection database

student | student | UTF8 | libc | en US.UTF-8 | en US.UTF-8 |
| 7516 kB | pg default |
template® | postgres | UTF8 | libc | en US.UTF-8 | en US.UTF-8 |
| | =c/postgres +| 7361 kB | pg default | unmodifiable empty database
| | | | | |
| | postgres=CTc/postgres | | |
templatel | postgres | UTF8 | libc | en US.UTF-8 | en US.UTF-8 |
| | =c/postgres +| 7516 kB | pg default | default template for new
databases

| | postgres=CTc/postgres | | |
(4 rows)

3. Configuring Page View in .psqlrc

When using the less pager with -XS flags, long lines will not wrap and output remains visible after exiting the less pager. For such
configuration, simply set the PSQL_PAGER environment variable using the \setenv command. We will save this setting in the
~/.psqlrc script:

student$ echo "\setenv PSQL_PAGER 'less -XS'" > ~/.psqlrc

4. Customizing Prompts

To include role information in your prompts, prepend %n@ to both PROMPT1 and PROMPT2 variables.
student$ echo "\set PROMPT1 '%n@%/%R%x%# '" >> ~/.psqlrc
student$ echo "\set PROMPT2 '%n@%/%R%x%# '" >> ~/.psqlrc

The PROMPT1 variable controls the primary prompt displayed for the first line of a user’s query input. For multi-line queries,
PROMPT?2 controls the prompt display from the second line onward. While both variables share identical default values, you can
configure distinct prompts for initial and following lines. Note that PROMPT3 serves only for COPY command operations.

5. Output of SQL Execution Timing

student$ echo '\timing on' >> ~/.psqlrc

The complete contents of your .psqlrc file will be like this:

student$ cat ~/.psqlrc
\setenv PSQL PAGER 'less -XS'
\set PROMPTL '%n@%/%R%x%# '
\set PROMPT2 '%n@%/%R%x%# '
\timing on

For the changes to take effect, restart your psql session.
=> \q
student$ psql

After restarting, verify the new configuration:

e Prompt (must include role name)
e Displaying detailed information about databases
e Output of command execution time

of] PROFESSIONAL

Practice+ Posigres

1. Open a transaction and execute a command that ends with any
error. Make sure that no other commands can be executed inside
this transaction.

2. Set the ON_ERROR_ROLLBACK parameter to on and make
sure that after the error, you can continue executing commands
inside the transaction.

1. To open a transaction, run the command
BEGIN;

2. Setting the ON_ERROR_ROLLBACK parameter to ON causes psql to
create a SAVEPOINT before each SQL command inside an open
transaction and, in case of an error, roll back to this savepoint.

https://postgrespro.com/docs/postgresqgl/16/sql-savepoint

https://postgrespro.com/docs/postgresql/16/sql-savepoint

1. psql and In-Transaction Errors

student$ psql

The psql tool autocommits transactions by default, so each SQL command is executed within a separate transaction. So each SQL
command is executed within a separate transaction.

To start a transaction explicitly, the BEGIN command is used:

student@student=# BEGIN;

BEGIN

Note that the psql prompt has changed. The asterisk character shows that the transaction is currently open.
student@student=*# CREATE TABLE t (id int);

CREATE TABLE

Consider that we have made a typo in the following command:

student@student=*# INSERTINTO t VALUES(1);

ERROR: syntax error at or near "INSERTINTO"
LINE 1: INSERTINTO t VALUES(1);

The asterisk will change to an exclamation mark, indicating an error. Now, rewrite the command:
student@student=!# INSERT INTO t VALUES(1);
ERROR: current transaction is aborted, commands ignored until end of transaction block

But PostgreSQL cannot roll back just a single command, so it terminates and rolls back the whole transaction. To continue, we must
send a command that says that the transaction is complete. It can be either COMMIT or ROLLBACK, since the transaction is already
cancelled.

student@student=!# COMMIT;

ROLLBACK

Creating the table was cancelled, so there is no such table in the database:
student@student=# SELECT * FROM t;

ERROR: relation "t" does not exist
LINE 1: SELECT * FROM t;

A

The ON_ERROR_ROLLBACK Variable

We can change how psql behaves here.
student@student=# \set ON_ERROR_ROLLBACK on

Now, before every transaction command, there will be a savepoint created. In case of an error, it will roll back to the last savepoint.
This way, transaction commands can continue executing.

student@student=# BEGIN;

BEGIN

student@student=*# CREATE TABLE t (id int);
CREATE TABLE

student@student=*# INSERTINTO t VALUES(1);

ERROR: syntax error at or near "INSERTINTO"
LINE 1: INSERTINTO t VALUES(1);

student@student=*# INSERT INTO t VALUES(1);
INSERT 0 1

student@student=*# COMMIT;

COMMIT

student@student=# SELECT * FROM t;

id

1
(1 row)

The ON_ERROR_ROLLBACK variable can be set to interactive. This will make such behavior work only in the interactive mode, but
not when executing scripts.

student@student=# DROP TABLE t;

DROP TABLE

