

Access Control

Overview

16

Copyright
© Postgres Professional, 2017–2025
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Igor Gnatyuk
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is,” and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

Roles and Attributes

Connecting to a Server

Password Authentication

Privileges and Privilege Management

Role Categories

Group and Predefined Roles

Default Privileges

Privileges and Routines

3

Roles and Attributes

Role can be a DBMS user
not associated with the OS user

Roles can be included into other roles
simplifies access setup

Attributes define the properties of a role
LOGIN can log in

SUPERUSER superuser privileges

CREATEDB can create databases

CREATEROLE can create roles

and others

Roles in PostgreSQL are used for two purposes. Firstly, a role can be a
DBMS user. Secondly, roles can be members of other roles — it is
convenient when setting up access.

Formally, roles are not associated with operating system users in any way,
but many programs imply it when choosing default values. For example, if
psql is started on behalf of the student OS user, the connection is
established on behalf of the database role with the same name, i.e., student
(unless another role is explicitly specified in the psql options).

At the time of cluster initialization, an initial role is defined, which has
superuser privileges (this role is usually called postgres). Later on, you can
create, modify, and delete roles.

https://postgrespro.com/docs/postgresql/16/database-roles

A role has several attributes which define its general properties and rights
(unrelated to particular objects).

Generally, attributes come in two opposite variations; for example,
CREATEDB (can create databases) and NOCREATEDB (not allowed to
create databases).

A role with the LOGIN attribute is considered a user role. A role with
NOLOGIN cannot connect to the server and is typically used for grouping
other roles.

The table lists only some of the possible attributes.

https://postgrespro.com/docs/postgresql/16/role-attributes

https://postgrespro.com/docs/postgresql/16/sql-createrole

https://postgrespro.com/docs/postgresql/16/database-roles
https://postgrespro.com/docs/postgresql/16/role-attributes
https://postgrespro.com/docs/postgresql/16/sql-createrole

Roles	and	Attributes

Create	a	role	for	the	user	Alice.	Two	attributes	are	specified.

Note	which	role	the	commands	are	executed	as.	The	name	of	the	current	role	is	in	the	prompt.

student=#	CREATE	ROLE	alice	LOGIN	PASSWORD	'alice';

CREATE	ROLE

You	can	get	the	list	of	roles	with	the	command:

student=#	\du

																													List	of	roles
	Role	name	|																									Attributes																									
-----------+--
	alice					|	
	postgres		|	Superuser,	Create	role,	Create	DB,	Replication,	Bypass	RLS
	student			|	Superuser,	Create	role,	Create	DB,	Replication,	Bypass	RLS

Note	that	the	student	role	is	a	superuser.	This	is	why	we	did	not	have	any	access	issues	so	far.

Create	a	database:

student=#	CREATE	DATABASE	access_overview;

CREATE	DATABASE

student=#	\c	access_overview

You	are	now	connected	to	database	"access_overview"	as	user	"student".

5

Connecting to a Server

1. The lines of pg_hba.conf are searched from top to bottom

2. The first line that corresponds to the provided connection
settings (type, database, user, address) will be used

TYPE DATABASE USER ADDRESS METHOD
local all postgres peer
local all all peer
host all all 127.0.0.1/32 scram-sha-256
host all all ::1/128 scram-sha-256

local — socket all — any role
host — TCP/IP role name

all — any DB all — any IP
database name IP/mask

domain name

listen_addresses

For each new client, the server has to evaluate whether a database
connection should be allowed.
Connection settings are defined in the pg_hba.conf configuration file (hba
stands for host-based authentication). As with the main configuration file
(postgresql.conf), changes come into effect only after the server reloads this
file, either via the pg_reload_conf() SQL function or the reload command of
the management utility.

When a new client appears, the server reads the configuration file from top
to bottom to find the line that matches the requested connection. The match
is defined by four fields: connection type, database name, user name, and
IP address.

Here we list only the main basic options.

Connection: local (unix sockets) or host (a TCP/IP connection).

Database: all (corresponds to any database) or the name of a particular
database.

User: all or the name of a particular role.

Address: all, IP address range, or a domain name. The address is omitted
for the local connection type. By default, PostgreSQL listens only for
connections coming from localhost; the listen_addresses parameter is
usually set to * (listen on all interfaces), while the access is controlled using
pg_hba.conf settings.

https://postgrespro.com/docs/postgresql/16/client-authentication

https://postgrespro.com/docs/postgresql/16/client-authentication

6

Connecting to a Server

3. The server performs authentication using the chosen method

4. If successful, access is allowed; otherwise, it is forbidden
(if no rows match the given parameters, access is forbidden)

TYPE DATABASE USER ADDRESS METHOD
local all postgres peer
local all all peer
host all all 127.0.0.1/32 scram-sha-256
host all all ::1/128 scram-sha-256

trust — allow
reject — forbid

scram-sha-256 и md5 — request a password
peer — ask OS

Once the server finds an appropriate line in the file, it performs client
authentication using the method specified in this line, and checks for the
LOGIN attribute and the CONNECT privilege. If everything is OK, the
connection is allowed; otherwise, it is forbidden (other lines won’t be
considered in this case).

If no appropriate line is found, the access is also forbidden.

Thus, more specific connection lines should precede more generic ones.

There are a lot of different authentication methods:

https://postgrespro.com/docs/postgresql/16/auth-methods

Here are some of the main ones.

The trust method allows connections unconditionally. If security is not a
concern, you can specify the trust method and use all for all the other
parameters; then all connections will be allowed.

The reject method, on the contrary, unconditionally forbids connections.

The scram-sha-256 method asks for a password and checks that the
provided password matches the one stored in the system catalog of the
database cluster. The md5 method is considered deprecated.

The peer method checks the name of the operating system user and allows
connections on behalf of the database user with the same name (you can
also define a different name mapping).

https://postgrespro.com/docs/postgresql/16/auth-methods

7

Password Authentication

At the server side
the password is set when the role is created and can be changed later
a user that has no password won’t be able to connect
the password is stored in the pg_authid system catalog

Entering the password on the client
manually
using the PGPASSWORD environment variable
using the ~/.pgpass file (lines format: node:port:database:role:password)

If password authentication is used, there must be a reference password
stored for the user; otherwise the connection will be rejected.

Password hashes are stored in the pg_authid table in the system catalog.

The user can either enter the password manually, or automate password
input using one of the following options.

First, the password can be set in the PGPASSWORD environment variable
(on the client). However, it is inconvenient if you have to connect to several
databases, and it is not recommended for security reasons.

The second option to store passwords on the client is to use the ~/.pgpass
file.
The access to this file must be allowed to its owner only (chmod 600),
otherwise PostgreSQL will ignore it.

Connection

In	order	for	a	role	to	connect	to	the	database,	it	must	have	both	the	LOGIN	attribute	and	the	permission	in	the	file	pg_hba.conf.	You
can	usually	find	it	right	beside	the	main	configuration	file:

student=#	SHOW	hba_file;

														hba_file															

	/etc/postgresql/16/main/pg_hba.conf
(1	row)

And	you	can	read	it	directly	from	SQL:

student=#	SELECT	type,	database,	user_name,	address,	auth_method
FROM	pg_hba_file_rules();

	type		|			database				|	user_name	|		address		|		auth_method		
-------+---------------+-----------+-----------+---------------
	local	|	{all}									|	{all}					|											|	trust
	host		|	{all}									|	{all}					|	127.0.0.1	|	scram-sha-256
	host		|	{all}									|	{all}					|	::1							|	scram-sha-256
	local	|	{replication}	|	{all}					|											|	trust
	host		|	{replication}	|	{all}					|	127.0.0.1	|	scram-sha-256
	host		|	{replication}	|	{all}					|	::1							|	scram-sha-256
(6	rows)

(The	contents	may	vary	depending	on	the	server	build.)

We	will	use	a	TCP/IP	(host)	connection	to	localhost.	Such	connection	corresponds	to	the	second	string	in	the	output,	expecting
password-based	authentication.

The	role	alice	was	created	with	a	password	right	away,	but	the	password	can	be	changed	at	any	time:

student=#	ALTER	ROLE	alice	PASSWORD	'alicepass';

ALTER	ROLE

Attempt	to	connect	using	a	connection	string	with	all	the	info:

student$	psql	'host=localhost	user=alice	dbname=access_overview	password=alicepass'

alice=>	\conninfo

You	are	connected	to	database	"access_overview"	as	user	"alice"	on	host	"localhost"	
(address	"127.0.0.1")	at	port	"5432".
SSL	connection	(protocol:	TLSv1.3,	cipher:	TLS_AES_256_GCM_SHA384,	compression:	off)

Success!

9

Privileges

Privileges define access rights of roles to objects

Tables and views
SELECT read data

INSERT insert rows

UPDATE change rows

REFERENCES foreign key (for tables)

DELETE delete rows

TRUNCATE empty (for tables)

TRIGGER create triggers

 can be set per column

Privileges establish a relation between subjects (roles) and objects in the
cluster. They determine the actions that roles can perform with these
objects.

There are different privileges available for different object types. This slide
and the following one list privileges for basic database objects.

The widest choice of privileges is available for tables and views. Some of
these privileges can be set not only at the table level, but also at the column
level.

https://postgrespro.com/docs/postgresql/16/ddl-priv

https://postgrespro.com/docs/postgresql/16/sql-grant

https://postgrespro.com/docs/postgresql/16/ddl-priv
https://postgrespro.com/docs/postgresql/16/sql-grant

10

Privileges

Tablespaces,
database, schemas

Sequences
SELECT currval
UPDATE nextval setval
USAGE currval nextval

database

schema pg_temp

tablespace tabletableobject

CREATE
USAGE

CREATE

tabletableobject

TEMPORARY

CREATE

CONNECT

Sequences have a somewhat unexpected set of privileges. They serve to
allow or restrict access to the three control functions.

For tablespaces, there is a CREATE privilege that allows the creation of
objects in this tablespace.

For databases, the CREATE privilege allows you to create schemas in this
database, and for a schema, the CREATE privilege allows you to create
objects in this schema.

Since the exact name of the schema for temporary objects is unknown in
advance, the privilege to create temporary tables has been moved to the
database level (TEMPORARY).

The USAGE schema privilege allows access to objects in this schema.

The CONNECT database privilege allows connection to this database.

11

Role Categories

Superusers
full access to all objects, no checks performed

Owners
initially, all privileges on the object (can be revoked)
actions that are not regulated by privileges, such as deleting objects, granting
and revoking privileges, etc.

Other roles
access within the granted privileges

Generally speaking, a role’s ability to access an object is defined by the
role’s privileges. But it makes sense to single out three categories of roles
and discuss them separately.

1. Roles with the SUPERUSER attribute (superusers). These roles can do
anything and ignore all access control checks.

2. Object owner. Initially, this is the role that created the object, although it
can be changed later. It’s not just the object creator role that becomes the
owner, but also any other role included in it. The object owner gets the full
range of privileges on this object.

Technically, these privileges can be revoked, but the owner always retains
inherent rights on the actions that are not regulated by any privileges. In
particular, the owner can grant and revoke privileges (including to and
from themselves), delete the object, etc.

3. All other roles have access to the object only as far as the privileges
granted to them allow it.

To check if a role has the necessary privilege with respect to some object,
you can use the has_*_privilege functions:

https://postgrespro.com/docs/postgresql/16/functions-info

https://postgrespro.com/docs/postgresql/16/functions-info

12

Privilege Management

Granting privileges
alice: GRANT privileges ON object TO bob;

Revoking privileges
alice: REVOKE privileges ON object FROM bob;

alice bobprivileges
on object

The right to grant and revoke privileges on an object belongs to the owner of
that object (and the superuser).

The syntax of the GRANT and REVOKE commands is quite complex. You
can specify both individual and all possible privileges, both individual objects
and groups of objects included in certain schemas, etc.

https://postgrespro.com/docs/postgresql/16/sql-grant

https://postgrespro.com/docs/postgresql/16/sql-revoke

https://postgrespro.com/docs/postgresql/16/sql-grant
https://postgrespro.com/docs/postgresql/16/sql-revoke

Privileges

Alice	has	connected	to	the	database.	Now	she	wants	to	create	a	schema	and	some	objects.

alice=>	CREATE	SCHEMA	alice;

ERROR:		permission	denied	for	database	access_overview

What’s	the	issue?

Alice	does	not	have	the	privilege	to	create	schemas	in	the	database.	Grant	it:

student=#	GRANT	CREATE	ON	DATABASE	access_overview	TO	alice;

GRANT

Try	again:

alice=>	CREATE	SCHEMA	alice;

CREATE	SCHEMA

Now,	since	Alice	is	the	owner	of	the	schema,	she	has	all	the	privileges	on	it	and	can	create	any	objects	in	it.	This	schema	will	be	used
by	default:

alice=>	SELECT	current_schemas(false);

	current_schemas	

	{alice,public}
(1	row)

Alice	creates	two	tables.

alice=>	CREATE	TABLE	t1(n	numeric);

CREATE	TABLE

alice=>	INSERT	INTO	t1	VALUES	(1);

INSERT	0	1

alice=>	CREATE	TABLE	t2(n	numeric,	who	text	DEFAULT	current_user);

CREATE	TABLE

alice=>	INSERT	INTO	t2(n)	VALUES	(1);

INSERT	0	1

The	superuser	creates	another	role	for	the	user	Bob,	who	will	access	objects	belonging	to	Alice.

student=#	CREATE	ROLE	bob	LOGIN	PASSWORD	'bobpass';

CREATE	ROLE

student$	psql	'host=localhost	user=bob	dbname=access_overview	password=bobpass'

Bob	attempts	to	access	the	table	t1:

bob=>	SELECT	*	FROM	alice.t1;

ERROR:		permission	denied	for	schema	alice
LINE	1:	SELECT	*	FROM	alice.t1;
																						^

What	happened?

Bob	is	neither	a	superuser	nor	the	owner	of	this	schema,	so	access	is	denied.

This	command	lists	current	access	rights	(Access	privileges	column):

alice=>	\x	\dn+	\x

Expanded	display	is	on.
List	of	schemas
-[RECORD	1]-----+---------------------------------------
Name														|	alice
Owner													|	alice
Access	privileges	|	
Description							|	
-[RECORD	2]-----+---------------------------------------
Name														|	public
Owner													|	pg_database_owner
Access	privileges	|	pg_database_owner=UC/pg_database_owner+
																		|	=U/pg_database_owner
Description							|	standard	public	schema

Expanded	display	is	off.

Privileges	are	displayed	in	the	format:	role=privileges/granted_by.

Each	privilege	is	encoded	with	a	single	character.	In	particular,	for	schemas:

U	=	usage;
C	=	create.

If	the	role	name	is	omitted	(as	in	the	last	line),	the	pseudorole	public	is	implied.	Note	that	the	public	pseudorole	has	only	USAGE
privilege	on	the	public	schema.	Here,	pg_database_owner	is	the	owner	of	the	database.

If	the	entire	field	is	omitted	(as	in	the	first	line),	then	the	default	privileges	are	implied:	Alice	gets	both	available	privileges	on	her
schema,	and	the	other	roles	do	not	get	any.

Grant	Bob	access	to	the	schema.	Alice	can	do	that	as	the	owner.

alice=>	GRANT	CREATE,	USAGE	ON	SCHEMA	alice	TO	bob;

GRANT

Bob	attempts	to	access	the	table	t1	again:

bob=>	SELECT	*	FROM	alice.t1;

ERROR:		permission	denied	for	table	t1

Another	error.	What	happened	now?

This	time,	Bob	has	access	to	the	schema,	but	not	to	the	table	itself.	This	command	shows	who	has	access	to	the	table:

alice=>	\dp	alice.t1

																												Access	privileges
	Schema	|	Name	|	Type		|	Access	privileges	|	Column	privileges	|	Policies	
--------+------+-------+-------------------+-------------------+----------
	alice		|	t1			|	table	|																			|																			|	
(1	row)

The	field	is	empty:	only	the	owner,	Alice,	has	access.

Alice	grants	Bob	read	and	update	access:

alice=>	GRANT	SELECT,	UPDATE	ON	alice.t1	TO	bob;

GRANT

And	read	and	insert	rights	for	one	column	in	the	second	table:

alice=>	GRANT	SELECT(n),	INSERT	ON	alice.t2	TO	bob;

GRANT

The	privileges	have	changed:

alice=>	\dp	alice.*

																													Access	privileges
	Schema	|	Name	|	Type		|		Access	privileges		|	Column	privileges	|	Policies	
--------+------+-------+---------------------+-------------------+----------
	alice		|	t1			|	table	|	alice=arwdDxt/alice+|																			|	
								|						|							|	bob=rw/alice								|																			|	
	alice		|	t2			|	table	|	alice=arwdDxt/alice+|	n:															+|	
								|						|							|	bob=a/alice									|			bob=r/alice					|	
(2	rows)

Now	the	empty	field	has	"appeared"	and	contains	a	complete	list	of	privileges.	Below	are	the	designations,	not	all	of	them	are	quite

obvious:

a	=	insert
r	=	select
w	=	update
d	=	delete
D	=	truncate
x	=	reference
t	=	trigger

Privileges	for	columns	are	displayed	separately	(under	Column	privileges).

This	time	Bob	is	successful.	He	adds	the	schema	name	to	his	search	path,	so	that	he	does	not	have	to	type	it	in	every	time.

bob=>	ALTER	ROLE	bob	SET	search_path	=	public,	alice;

ALTER	ROLE

Now,	the	search	path	will	be	set	in	each	of	Bob’s	sessions.

bob=>	\c

You	are	now	connected	to	database	"access_overview"	as	user	"bob".

bob=>	SHOW	search_path;

		search_path		

	public,	alice
(1	row)

bob=>	UPDATE	t1	SET	n	=	n	+	1;

UPDATE	1

bob=>	SELECT	*	FROM	t1;

	n	

	2
(1	row)

However,	all	other	operations	remain	restricted.

bob=>	DELETE	FROM	t1;

ERROR:		permission	denied	for	table	t1

And	the	second	table:

bob=>	INSERT	INTO	t2(n)	VALUES	(100);

INSERT	0	1

bob=>	SELECT	n	FROM	t2;

		n		

			1
	100
(2	rows)

Reading	of	the	other	column	is	not	permitted:

bob=>	SELECT	*	FROM	t2;

ERROR:		permission	denied	for	table	t2

14

publicGranting membership
alice: GRANT dba TO bob;

public pseudo-role implicitly includes
all other roles

Revoking membership
alice: REVOKE dba FROM bob;

alice bobdba

dba

bob

alice

Granting Membership

Any role can include other roles as members. In this case, the role acts as a
group. PostgreSQL does not have a separate “group” entity.

A role can be a member of multiple roles; in turn, a member role may include
other roles, but circular dependencies are not permitted.

By default, a role inherits the privileges of any group roles it is a member of.
This behavior can be changed by using the NOINHERIT attribute for the
role. This makes the user have to explicitly switch to the group role using
SET ROLE in order to use its privileges. Role attributes are not inherited, but
it is possible to switch to a parent role to use its attributes.

Roles that include other roles typically have the NOLOGIN attribute and are
referred to as “group roles”. We can think of a group role as a predefined set
of privileges that can be granted to a role just like any regular privilege. This
simplifies access control and administration.

There is also a pseudorole called public, which implicitly includes all the
other roles. Any privilege granted to the public role is automatically granted
to all the other roles as well.

https://postgrespro.com/docs/postgresql/16/role-membership

https://postgrespro.com/docs/postgresql/16/role-membership

15

Predefined Roles

pg_read_all_settings read all server parameters

pg_read_all_stats access statistics

pg_stat_scan_tables monitoring and locking tables

pg_read_all_data read data in all tables

pg_write_all_data change data in all tables

pg_read_server_files read files on the server

pg_write_server_files write to files on the server

pg_execute_server_programs run programs on the server

...

pg
_m

on
it

or

PostgreSQL provides a number of predefined roles that have access to
some frequently used, but privileged capabilities and data. Membership in
these roles may be granted to users in order to facilitate administrative and
maintenance tasks without providing them superuser capabilities.

The list of predefined roles increases with each PostgreSQL version. The full
list of all the roles, including predefined ones, cat be seen by \duS
command in psql.

https://postgrespro.com/docs/postgresql/16/predefined-roles

You can create your own administrative group roles, e.g. for managing
backups.

https://postgrespro.com/docs/postgresql/16/predefined-roles

Group	Roles

Bob	could	not	read	the	second	column:

bob=>	SELECT	*	FROM	t2;

ERROR:		permission	denied	for	table	t2

The	superuser	includes	Bob	into	the	predefined	group	role	pg_read_all_data:

student=#	GRANT	pg_read_all_data	TO	bob;

GRANT	ROLE

Now	Bob	can	read	all	tables	as	if	he	had	been	granted	SELECT	privileges	for	all	tables	and	USAGE	privileges	for	all	schemas:

bob=>	SELECT	*	FROM	t2;

		n		|		who		
-----+-------
			1	|	alice
	100	|	bob
(2	rows)

You	can	use	the	command	\drg	in	psql	to	get	role	membership	information:

student=#	\drg

																		List	of	role	grants
	Role	name	|				Member	of					|			Options				|	Grantor		
-----------+------------------+--------------+----------
	bob							|	pg_read_all_data	|	INHERIT,	SET	|	postgres
(1	row)

The	Options	column	shows	attributes	for	the	membership.	For	Bob	as	a	member	of	pg_read_all_data,	SET	means	the	right	to	switch
to	the	group	role,	and	INHERIT	means	that	Bob	can	use	the	group	privileges	without	explicitly	switching	to	the	group.

Exclude	Bob	from	the	group:

student=#	REVOKE	pg_read_all_data	FROM	bob;

REVOKE	ROLE

17

Routines

The only privilege for functions and procedures
EXECUTE execution

Security modes
SECURITY INVOKER executed with the privileges of the caller

(by default)

SECURITY DEFINER executed with the privileges of the owner

The privilege EXECUTE, the only privilege for functions and procedures,
allows them to execute.

The user on behalf of which the routine is executed is important. If a routine
is declared as a SECURITY INVOKER (by default), it is executed with the
rights of the user that runs it. In this case, the operators inside the routine
can access only those objects that are accessible to the calling user.

On the other hand, if declared with the SECURITY DEFINER, the routine will
use the rights of its owner. This is a way to allow certain users perform
certain actions on objects they personally have no access to.

https://postgrespro.com/docs/postgresql/16/sql-createfunction

https://postgrespro.com/docs/postgresql/16/sql-createprocedure

https://postgrespro.com/docs/postgresql/16/sql-createfunction
https://postgrespro.com/docs/postgresql/16/sql-createprocedure

18

Default Privileges

Privileges of the public pseudo-role
connect to any database
access to the system catalog
execution of any routines

privileges are granted automatically on each new object

Configurable default privileges
the possibility to additionally grant or revoke privileges on a newly created
object

As we have already said, the public pseudo-role includes all other roles, so
they inherit all the privileges granted to public.

And public has quite an extensive list of privileges by default. In particular:
● the right to connect to any database (that’s why the role alice could

connect to the database although the CONNECT privilege had not been
explicitly granted to this role).

● access to the system catalog;
● execution of any routines.

On the one hand, it enables seamless operation without having to deal with
privileges; but on the other hand, it brings extra complications if access
control is really required.

The public role automatically receives all the privileges listed above for all
newly created objects. So it is not enough to simply revoke the EXECUTE
privilege from public: once a new routine appears, public immediately gets
the right to execute it.

There is a special mechanism of default privileges that enables you to
automatically grant and revoke the required privileges on newly created
objects. It can be also used to revoke the EXECUTE privilege from the
public pseudo-role.

https://postgrespro.com/docs/postgresql/16/sql-alterdefaultprivileges

https://postgrespro.com/docs/postgresql/16/sql-alterdefaultprivileges

Configurable	Default	Privileges

Alice	creates	a	function:

alice=>	CREATE	FUNCTION	foo()	RETURNS	SETOF	t2
AS	$$
SELECT	*	FROM	t2;
$$	LANGUAGE	sql	STABLE;

CREATE	FUNCTION

Can	Bob	execute	the	function	without	Alice	granting	him	the	EXECUTE	privilege?

bob=>	SELECT	foo();

ERROR:		permission	denied	for	table	t2
CONTEXT:		SQL	function	"foo"	statement	1

Bob	can	call	the	function,	but	still	cannot	access	any	objects	for	which	he	does	not	have	the	appropriate	privileges.

If	Bob	creates	a	table	t2	in	the	schema	public,	the	function	will	work	for	both	users	but	will	actually	access	different	tables,	since
Alice	and	Bob	have	different	search	paths.

In	order	for	Bob	to	create	a	table	in	the	schema	public,	he	must	have	the	CREATE	privilege	for	the	schema	(in	PostgreSQL	15+):

student=#	GRANT	CREATE	ON	SCHEMA	public	TO	bob;

GRANT

bob=>	CREATE	TABLE	t2(n	numeric,	who	text	DEFAULT	current_user);

CREATE	TABLE

bob=>	INSERT	INTO	t2(n)	VALUES	(42);

INSERT	0	1

bob=>	SELECT	foo();

			foo				

	(42,bob)
(1	row)

alice=>	SELECT	foo();

				foo				

	(1,alice)
	(100,bob)
(2	rows)

Alternatively,	the	function	can	be	declared	as	using	the	privileges	of	its	owner:

alice=>	ALTER	FUNCTION	foo()	SECURITY	DEFINER;

ALTER	FUNCTION

In	this	case,	the	function	will	always	be	executed	with	the	privileges	Alice	has,	regardless	of	who	actually	calls	it.

Bob	deletes	his	table...

bob=>	DROP	TABLE	t2;

DROP	TABLE

...and	gets	access	to	the	Alice’s	table:

bob=>	SELECT	foo();

				foo				

	(1,alice)
	(100,bob)
(2	rows)

In	this	situation,	Alice	needs	to	keep	an	eye	on	the	granted	privileges.	For	one,	she	should	revoke	the	EXECUTE	privilege	from	the
role	public	and	explicitly	grant	it	only	to	the	roles	that	should	have	it.

alice=>	REVOKE	EXECUTE	ON	ALL	ROUTINES	IN	SCHEMA	alice	FROM	public;

REVOKE

bob=>	SELECT	foo();

ERROR:		permission	denied	for	function	foo

To	make	matters	worse,	for	each	new	function,	the	EXECUTE	privilege	is	always	granted	to	public	by	default.

You	can	configure	default	privileges	so	that	specific	users	would	get	(or	lose)	specific	privileges	on	newly	created	objects:

alice=>	ALTER	DEFAULT	PRIVILEGES
FOR	ROLE	alice
REVOKE	EXECUTE	ON	ROUTINES	FROM	public;

ALTER	DEFAULT	PRIVILEGES

alice=>	ALTER	DEFAULT	PRIVILEGES
FOR	ROLE	alice
GRANT	EXECUTE	ON	ROUTINES	TO	bob;

ALTER	DEFAULT	PRIVILEGES

alice=>	\ddp

											Default	access	privileges
	Owner	|	Schema	|			Type			|	Access	privileges	
-------+--------+----------+-------------------
	alice	|								|	function	|	alice=X/alice				+
							|								|										|	bob=X/alice
(1	row)

Now,	Bob	is	immediately	granted	execute	privileges	on	subroutines	created	by	Alice,	while	other	users	will	not	have	permission	to
run	them.

alice=>	CREATE	FUNCTION	bar()	RETURNS	integer
LANGUAGE	sql	IMMUTABLE	SECURITY	DEFINER
RETURN	1;

CREATE	FUNCTION

bob=>	SELECT	bar();

	bar	

			1
(1	row)

20

Takeaways

Roles, attributes and privileges together form a flexible
mechanism that allows you to set up access control in different
ways

 can grant all access widely

can restrict access heavily if necessary

When creating a new role, you need to ensure that it can connect
to the server

22

Practice

Set up privileges so that some users have full access to the tables,
while others can only query, but not modify the data.

1. Create a new database and two roles: writer and reader.
2. Revoke all privileges for the public schema from the public role, grant

both privileges to the writer role, and only the usage privilege to the
reader role.

3. Set up the default privileges so that the reader role gets read access to
the tables owned by writer in the public schema.

4. Create user w1 as a member of the writer role, and user r1 as a member
of the reader role.

5. As writer, create a table.
6. Verify that r1 has read-only access to the table, and w1 has full access

to it, including the ability to remove it.

1.	Databases	and	Roles

=>	CREATE	DATABASE	access_overview;

CREATE	DATABASE

=>	CREATE	USER	writer;

CREATE	ROLE

=>	CREATE	USER	reader;

CREATE	ROLE

2.	Privileges

=>	\c	access_overview

You	are	now	connected	to	database	"access_overview"	as	user	"student".

=>	REVOKE	ALL	ON	SCHEMA	public	FROM	public;

REVOKE

=>	GRANT	ALL	ON	SCHEMA	public	TO	writer;

GRANT

=>	GRANT	USAGE	ON	SCHEMA	public	TO	reader;

GRANT

3.	Default	Privileges

=>	ALTER	DEFAULT	PRIVILEGES
FOR	ROLE	writer
IN	SCHEMA	public
GRANT	SELECT	ON	TABLES	TO	reader;

ALTER	DEFAULT	PRIVILEGES

4.	Users

Writing	role:

=>	CREATE	ROLE	w1	LOGIN	IN	ROLE	writer;

CREATE	ROLE

The	IN	ROLE	construct	immediately	includes	the	new	role	into	the	specified	one.	That	is,	this	command	is	equivalent	to	these	two:

CREATE	ROLE	w1	LOGIN;

GRANT	writer	TO	w1;

Reading	role:

=>	CREATE	ROLE	r1	LOGIN	IN	ROLE	reader;

CREATE	ROLE

5.	Table

=>	\c	-	writer

You	are	now	connected	to	database	"access_overview"	as	user	"writer".

=>	CREATE	TABLE	t(n	integer);

CREATE	TABLE

6.	Verification

w1	can	insert	rows:

=>	\c	-	w1

You	are	now	connected	to	database	"access_overview"	as	user	"w1".

=>	INSERT	INTO	t	VALUES	(42);

INSERT	0	1

r1	can	read	the	table:

=>	\c	-	r1

You	are	now	connected	to	database	"access_overview"	as	user	"r1".

=>	SELECT	*	FROM	t;

	n		

	42
(1	row)

But	cannot	modify	it:

=>	UPDATE	t	SET	n	=	n	+	1;

ERROR:		permission	denied	for	table	t

w1	can	delete	the	table:

=>	\c	-	w1

You	are	now	connected	to	database	"access_overview"	as	user	"w1".

=>	DROP	TABLE	t;

DROP	TABLE

In	PostgreSQL	14+,	the	predefined	role	pg_read_all_data	was	added,	which	automatically	provides	read	access	to	all	data.

Only	the	database	owner	or	a	superuser	can	drop	the	database:

=>	\c	postgres	postgres

You	are	now	connected	to	database	"postgres"	as	user	"postgres".

=>	DROP	DATABASE	access_overview;

DROP	DATABASE

23

Practice+

1. Register the user roles alice and bob.

2. Modify the pg_hba.conf file to allow access without password
only for the postgres and student users, ensuring that access for
alice and bob remains restricted.

3. Enable peer authentication method for alice and bob. Check that
connection attempts fail without OS user mapping. Create such
mapping for alice.

4. Check the capability to use the same OS user mapping for
different database roles.

2. Using a text editor, insert the new entry before the first uncommented
directive in pg_hba.conf.

local all postgres,student trust

Reload configuration.

3. Modify the inserted directive in pg_hba.conf by replacing it with the
following:

local all postgres,student trust
local all alice,bob peer

Append the following to the end of the pg_ident.conf file:

stmap student alice

4. For alice and bob roles to share a single mapping, the pg_ident.conf file
shall be as follows:

stmap student alice
stmap student bob

1.	Add	Roles

Register	roles	with	the	permission	to	log	in.

=>	CREATE	ROLE	alice	LOGIN;

CREATE	ROLE

=>	CREATE	ROLE	bob	LOGIN;

CREATE	ROLE

2.	Limit	the	use	of	trust

Edit	the	contents	of	pg_hba.conf,	allowing	the	trust	method	only	for	postgres	and	student.

student$	sudo	sed	-i	's/^local.*all.*all.*trust.*$/local	all	postgres,student	trust\n/'	
/etc/postgresql/16/main/pg_hba.conf

This	is	what	we	get:

=>	SELECT	type,database,user_name,address,auth_method,error
FROM	pg_hba_file_rules
ORDER	BY	rule_number;

	type		|			database				|					user_name						|		address		|		auth_method		|	error	
-------+---------------+--------------------+-----------+---------------+-------
	local	|	{all}									|	{postgres,student}	|											|	trust									|	
	host		|	{all}									|	{all}														|	127.0.0.1	|	scram-sha-256	|	
	host		|	{all}									|	{all}														|	::1							|	scram-sha-256	|	
	local	|	{replication}	|	{all}														|											|	trust									|	
	host		|	{replication}	|	{all}														|	127.0.0.1	|	scram-sha-256	|	
	host		|	{replication}	|	{all}														|	::1							|	scram-sha-256	|	
(6	rows)

Reload	the	configuration.

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

Now,	neither	alice	nor	bob	can	connect.

student$	psql	-l	-U	alice

psql:	error:	connection	to	server	on	socket	"/var/run/postgresql/.s.PGSQL.5432"	failed:	
FATAL:		no	pg_hba.conf	entry	for	host	"[local]",	user	"alice",	database	"postgres",	no	
encryption

student$	psql	-l	-U	bob

psql:	error:	connection	to	server	on	socket	"/var/run/postgresql/.s.PGSQL.5432"	failed:	
FATAL:		no	pg_hba.conf	entry	for	host	"[local]",	user	"bob",	database	"postgres",	no	
encryption

3.	Peer	Authentication	Method

Using	a	text	editor,	add	another	line	with	the	peer	authentication	method	to	allow	alice	and	bob	to	connect.

student$	sudo	sed	-i	'/^local.*all.*postgres,student.*$/alocal	all	alice,bob	peer'	
/etc/postgresql/16/main/pg_hba.conf

Contents	of	pg_hba.conf:

=>	SELECT	type,database,user_name,address,auth_method,error
FROM	pg_hba_file_rules
ORDER	BY	rule_number;

	type		|			database				|					user_name						|		address		|		auth_method		|	error	
-------+---------------+--------------------+-----------+---------------+-------
	local	|	{all}									|	{postgres,student}	|											|	trust									|	
	local	|	{all}									|	{alice,bob}								|											|	peer										|	
	host		|	{all}									|	{all}														|	127.0.0.1	|	scram-sha-256	|	
	host		|	{all}									|	{all}														|	::1							|	scram-sha-256	|	
	local	|	{replication}	|	{all}														|											|	trust									|	
	host		|	{replication}	|	{all}														|	127.0.0.1	|	scram-sha-256	|	
	host		|	{replication}	|	{all}														|	::1							|	scram-sha-256	|	
(7	rows)

Reload	the	configuration.

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

The	users	still	cannot	log	in,	but	the	error	message	is	now	different.

student$	psql	-l	-U	alice

psql:	error:	connection	to	server	on	socket	"/var/run/postgresql/.s.PGSQL.5432"	failed:	
FATAL:		Peer	authentication	failed	for	user	"alice"

student$	psql	-l	-U	bob

psql:	error:	connection	to	server	on	socket	"/var/run/postgresql/.s.PGSQL.5432"	failed:	
FATAL:		Peer	authentication	failed	for	user	"bob"

The	peer	authentication	method	requires	the	user	names	in	the	OS	and	roles	in	PostgreSQL	to	match.	Map	the	role	alice	to	the	OS
user	student	by	adding	a	line	to	pg_ident.conf.	Do	not	set	up	the	mapping	for	bob,	though.

student$	echo	'stmap	student	alice'	|	sudo	tee	-a	/etc/postgresql/16/main/pg_ident.conf

stmap	student	alice

Add	the	parameter	map	to	the	line	to	set	the	mapping.

student$	sudo	sed	-i	's/peer.*$/peer	map=stmap/'	/etc/postgresql/16/main/pg_hba.conf

Contents	of	pg_hba.conf:

=>	SELECT	type,database,user_name,address,auth_method,options,error
FROM	pg_hba_file_rules
ORDER	BY	rule_number;

	type		|			database				|					user_name						|		address		|		auth_method		|			options			|	
error	
-------+---------------+--------------------+-----------+---------------+-------------+---

	local	|	{all}									|	{postgres,student}	|											|	trust									|													|	
	local	|	{all}									|	{alice,bob}								|											|	peer										|	{map=stmap}	|	
	host		|	{all}									|	{all}														|	127.0.0.1	|	scram-sha-256	|													|	
	host		|	{all}									|	{all}														|	::1							|	scram-sha-256	|													|	
	local	|	{replication}	|	{all}														|											|	trust									|													|	
	host		|	{replication}	|	{all}														|	127.0.0.1	|	scram-sha-256	|													|	
	host		|	{replication}	|	{all}														|	::1							|	scram-sha-256	|													|	
(7	rows)

Reload	the	configuration.

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

Now	alice	can	connect	to	the	database	and	execute	commands.

student$	psql	-c	'\conninfo'	-U	alice	-d	student

You	are	connected	to	database	"student"	as	user	"alice"	via	socket	in	
"/var/run/postgresql"	at	port	"5432".

And	bob	cannot.

student$	psql	-c	'\conninfo'	-U	bob	-d	student

psql:	error:	connection	to	server	on	socket	"/var/run/postgresql/.s.PGSQL.5432"	failed:	
FATAL:		Peer	authentication	failed	for	user	"bob"

4.	One	Mapping	for	Multiple	Roles

Allow	bob	to	connect	under	the	same	conditions	as	alice.

student$	echo	'stmap	student	bob'	|	sudo	tee	-a	/etc/postgresql/16/main/pg_ident.conf

stmap	student	bob

Lines	added	to	pg_ident.conf:

student$	sudo	tail	-n2	/etc/postgresql/16/main/pg_ident.conf

stmap	student	alice
stmap	student	bob

Reload	the	configuration.

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

Now	both	alice	and	bob	can	connect.

student$	psql	-c	'\conninfo'	-U	alice	-d	student

You	are	connected	to	database	"student"	as	user	"alice"	via	socket	in	
"/var/run/postgresql"	at	port	"5432".

student$	psql	-c	'\conninfo'	-U	bob	-d	student

You	are	connected	to	database	"student"	as	user	"bob"	via	socket	in	"/var/run/postgresql"	
at	port	"5432".

