Data Organization
Tablespaces

Pos gres

Copyright

© Postgres Professional, 2017-2025

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov, Alexey Beresnev
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is,” and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

of] PROFESSIONAL

Topics Posggres

Tablespaces and Directories

Creating, Modifying, and Deleting Tablespaces
Storing Data in the File Hierarchy

Moving Data

Tablespaces Poggéi“éé

pg_global -object i
tablespace]
ﬁL appdb %7 postgres
e o ST o default
oot oot | tablespace
ng_ldefaun ‘ object m ‘ object m ‘ object m ‘ object m ‘
ablespace
‘ tablespace ‘ object m ‘ object m ‘ object m || ‘
~
default pg_catalog public schema pg_catalog public
tablespace
!

Tablespaces are used to organize the physical storage of data and
determine the location of data in the file hierarchy.

For example, one tablespace can use slow disks for archived data, and
another one can use fast disks with frequent activity.

On cluster initialization, two tablespaces are created: pg_default and
pg_global.

A tablespace can be used by multiple databases, and a database can use
multiple tablespaces at once.

Each database has a default tablespace where all database objects are
created (unless specified otherwise). System catalog objects are also stored
in the default tablespace. Databases will use the pg_default tablespace as
their default, unless another one is set by the user.

The pg_global tablespace is special as it stores only those objects that are
shared across the whole cluster.

https://postgrespro.com/docs/postgresql/16/manage-ag-tablespaces

https://postgrespro.com/docs/postgresql/16/manage-ag-tablespaces

of] PROFESSIONAL

Directories Pos}gres

pg_global object .l
e || > PGDATA/global/
Dobject i | | i object |
pg_default object object ||| e i
e || || > PGDATA/base/dboid/
‘ tablespace | obiect] I — > PGDATA/pg_tblspc/tsoid -
‘l “>/path-to-catalog/ver/dboid/
appdb postgres
L|:

Essentially, a tablespace is a reference to the directory in which the data is
located. The standard tablespaces pg_global and pg_default are always
located in PGDATA/global/ and PGDATA/base/, respectively. When a custom
tablespace is created, an arbitrary catalog can be specified. For its
convenience, PostgreSQL also creates a symbolic link to the directory in
PGDATA/pg_tblspc/.

The PGDATA/base/ directory comprises different directories for each
database (unlike PGDATA/global/, which stores data referring to the whole
cluster).

Inside a custom tablespace directory, there is another level for different
PostgreSQL server versions. This is helpful during server upgrade.

Actual objects are stored in files in these directories, one or more files per
object.

System Tablespaces

Upon a cluster initialization, two tablespaces are created:

=> SELECT * FROM pg_tablespace;

oid | spcname | spcowner | spcacl | spcoptions
------ R e e et
1663 | pg_default | 10 | |

1664 | pg global | 10 | |

(2 rows)

e pg_global — shared cluster objects
o pg_default — default tablespace

Custom Tablespaces

A new tablespace needs an empty directory owned by the user postgres.
student$ sudo -u postgres mkdir /var/lib/postgresql/ts_dir
Now, a new tablespace can be created:

=> CREATE TABLESPACE ts LOCATION '/var/lib/postgresql/ts_dir';
CREATE TABLESPACE

The following psql command returns a list of all tablespaces:

=> \db
List of tablespaces
Name | Owner | Location

............ o
pg default | postgres |

pg global | postgres |

ts | student | /var/lib/postgresql/ts dir
(3 rows)

Each database has a “default” tablespace. Let’s create a database and assign ts as its default:

=> CREATE DATABASE appdb TABLESPACE ts;

CREATE DATABASE

This makes all tables and indexes created within the database fall into ts, unless specified otherwise.
Connect to the database:

=> \c appdb

You are now connected to database "appdb" as user "student".

Create a table:

=> CREATE TABLE t1(
id integer GENERATED ALWAYS AS IDENTITY,
name text

);

CREATE TABLE
When creating objects, you may explicitly specify a tablespace for it:

=> CREATE TABLE t2(
n numeric
) TABLESPACE pg_default;

CREATE TABLE

=> SELECT tablename, tablespace FROM pg_tables WHERE schemaname = 'public’;

tablename | tablespace

t1 |
t2 | pg_default
(2 rows)

An empty tablespace field means that the default tablespace is used. The second table has this field filled in.
You can also specify a tablespace for an index:

=> CREATE INDEX ON t1(id) TABLESPACE pg_default;

CREATE INDEX

=> SELECT indexname,tablespace FROM pg_indexes WHERE tablename='tl';

indexname | tablespace

tl id_idx | pg_default
(1 row)

Another way to assign a tablespace without defining it at object creation is to preemptively set a value of default_tablespace
parameter.

A single tablespace may contain objects from multiple databases.

=> CREATE DATABASE configdb;

CREATE DATABASE

This database’s default tablespace will be pg_default.

=> \c configdb

You are now connected to database "configdb" as user "student".

=> CREATE TABLE t(
n integer
) TABLESPACE ts;

CREATE TABLE

= \d t

Table "public.t"
Column | Type | Collation | Nullable | Default
-------- R e e S
n | integer | | |

Tablespace: "ts"

For temporary tables and their indexes, you can specify a separate tablespace as the default:
=> SET temp_tablespaces = 'ts';

SET

=> CREATE TEMP TABLE temp(s text);

CREATE TABLE

=> \d temp

Table "pg temp 3.temp"
Column | Type | Collation | Nullable | Default

s | text | | |
Tablespace: "ts"

The temp_tablespaces parameter accepts multiple tablespace names. When set, the server selects one randomly for each temporary
object.

Managing Objects within Tablespaces

Tables (and other objects, such as indexes) can be moved between tablespaces.
=> \c appdb

You are now connected to database "appdb" as user "student".

=> ALTER TABLE t1 SET TABLESPACE pg_default;
ALTER TABLE
=> SELECT tablename, tablespace FROM pg_tables WHERE schemaname = 'public’;

tablename | tablespace

t2 | pg_default
tl | pg_default
(2 rows)

Indexes can also be moved to a different tablespace during rebuild:
=> REINDEX (TABLESPACE ts) TABLE tl1;

REINDEX

You can move all objects from one tablespace to another:

=> ALTER TABLE ALL IN TABLESPACE pg_default SET TABLESPACE ts;

ALTER TABLE

=> SELECT tablename, tablespace FROM pg_tables WHERE schemaname = 'public’;

tablename | tablespace

tl |
(2 rows)

Keep in mind that moving objects between tablespaces (unlike moving between schemas) is a physical operation that involves
moving actual files from one directory to another. Access to the objects being moved is completely blocked for the duration of the
operation.

Tablespace Size

We already know how to get the size of a database. Now, we can learn how to get the size of objects in a tablespace:
=> SELECT pg_size_pretty(pg_tablespace_size('ts'));

pg size pretty

7588 kB
(1 row)

Why is the size so large, despite the tablespace containing just a few empty tables?

This is because ts is the default tablespace for the database appdb, so it is where the system catalog objects are stored. They take up
space.

You can get the size of the tablespaces by the psql command:

=> \db+
List of tablespaces
Name | Owner | Location | Access privileges | Options | Size
| Description
------------ B I R T TR
e
pg default | postgres | | | | 36 MB
|
pg global | postgres | | | | 589
kB |
ts | student | /var/lib/postgresql/ts_dir | | | 7588
kB |
(3 rows)
Dropping a Tablespace

You can only delete a tablespace that is empty:

=> DROP TABLESPACE ts;

ERROR: tablespace "ts" is not empty

Unlike with schemas, there is no CASCADE clause in the DROP TABLESPACE command. Objects within the tablespace may belong to
multiple databases, while we are only connected to one.

You can still figure out what databases contain dependent objects. This is where the system catalog comes in.
First, find out and remember the tablespace ID:

=> SELECT oid FROM pg_tablespace WHERE spcname = 'ts';

Next, get a list of databases that have objects in the tablespace we are going to remove:

=> SELECT datname
FROM pg_database
WHERE oid IN (SELECT pg_tablespace_databases(16386));

datname

configdb
appdb
(2 rows)

Then, connect to each of the databases and get a list of objects from pg_class:
=> \c configdb
You are now connected to database "configdb" as user "student".

=> SELECT relnamespace::regnamespace, relname, relkind
FROM pg_class
WHERE reltablespace = 16386;

relnamespace | relname | relkind

The table is no longer needed, drop it.
=> DROP TABLE t;

DROP TABLE

Now, for the second database. Since ts is the default tablespace, the tablespace ID of the objects in pg_class equals zero. These are
the system catalog objects, as we already know:

=> \c appdb
You are now connected to database "appdb" as user "student".

=> SELECT count(*) FROM pg_class WHERE reltablespace = 0;

You can set another tablespace as default. This will physically move all the tables into the new one. You need to disconnect from the
database first.

=> \c postgres

You are now connected to database "postgres" as user "student".
=> ALTER DATABASE appdb SET TABLESPACE pg_default;

ALTER DATABASE

Finally, the tablespace can be deleted.

=> DROP TABLESPACE ts;

DROP TABLESPACE

On behalf of the postgres user, we remove the directory created for the tablespace.

student$ sudo -u postgres rm -rf /var/lib/postgresql/ts_dir

OOOOOOOOOOOO

Takeaways Posigres

Tablespaces organize physical data storage

Logical (databases, schemas) and physical (tablespaces) forms
of data organization are independent

of] PROFESSIONAL

Practice Posigres

Why does pg_default become the default tablespace when creating
a database without the TABLESPACE keyword?

1. Create a new tablespace.
2. Set it as the default tablespace for the template1 database.

3. Create a new database.
Check which default tablespace is set for the new database.

4. Find the symbolic link to the tablespace directory in PGDATA.
5. Delete the created tablespace.

1. New Tablespace

student$ sudo -u postgres mkdir /var/lib/postgresql/ts_dir
=> CREATE TABLESPACE ts LOCATION '/var/lib/postgresql/ts_dir"';

CREATE TABLESPACE

2. Default Tablespace for templatel

=> ALTER DATABASE templatel SET TABLESPACE ts;

ALTER DATABASE

3. New Database, Verification

=> CREATE DATABASE db;
CREATE DATABASE

=> SELECT spcname
FROM pg_tablespace
WHERE oid = (SELECT dattablespace FROM pg_database WHERE datname = 'db');

Sspcname

ts
(1 row)

The default tablespace is ts.

Conclusion: the default tablespace is determined by the template from which the new database is cloned.

4. Symbolic Link

=> SELECT oid AS tsoid FROM pg_tablespace WHERE spcname = 'ts';

student$ sudo -u postgres 1s -1 /var/lib/postgresql/16/main/pg_tblspc/16386
lrwxrwxrwx 1 postgres postgres 26 Sep 24 17:09
/var/lib/postgresql/16/main/pg tblspc/16386 -> /var/lib/postgresql/ts dir

5. Dropping the Tablespace

=> ALTER DATABASE templatel SET TABLESPACE pg_default;
ALTER DATABASE

=> DROP DATABASE db;

DROP DATABASE

=> DROP TABLESPACE ts;

DROP TABLESPACE

student$ sudo -u postgres rm -rf /var/lib/postgresql/ts_dir

Practice+ pogéa?sg

1. Set the random_page_cost parameter for the pg_default
tablespace to 1.1.

1. Use the ALTER TABLESPACE ... SET command:
https://postgrespro.com/docs/postgresqgl/16/sql-altertablespace

The seq_page_cost and random_page_cost parameters are used by the
planner. They refer to the approximate cost of reading one page of data from
disk with sequential and random access, respectively.

The lower the ratio between these parameters, the more often the planner
will prefer index access over sequential table scanning.

The parameters *_cost and, more specifically, random_page_cost are
discussed in more detail in the Query Optimization course (QPT).

https://postgrespro.com/docs/postgresql/16/sql-altertablespace

1. Setting Random_page_cost for a Tablespace

The default seq_page_cost and random_page_cost values are suitable for slower HDD drives. It is assumed that random page access
is four times as costly as sequential page access:

=> \dconfig *page_cost

List of configuration parameters
Parameter | Value

random_page cost
seq _page cost
(2 rows)

If you use drives with different properties, you can create different tablespaces with appropriate seq_page_cost and
random_page_cost values for each. For example, quick SSD drives can have the random_page_cost value almost as low as
seq_page_cost.

=> ALTER TABLESPACE pg_default SET (random_page_cost = 1.1);
ALTER TABLESPACE

Configuration adjustments made using the ALTER TABLESPACE command are stored in the pg_tablespace table. You can view them
in psql with the following command:

=> \db+
List of tablespaces
Name | Owner | Location | Access privileges | Options | Size

Description

------------ B T e S L T R
pg default | postgres | | | {random page cost=1.1} | 29 MB |
pg_global | postgres | | | | 589 kB |
(2 rows)

The *_cost parameters can also be set in postgresql.conf. This will apply them to all tablespaces.

