Architecture

Isolation and MVVCC

Pos gres

Copyright

© Postgres Professional, 2017-2025

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov, Igor Gnatyuk
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is”, and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

Topics

Multiversion Concurrency Control
Data Snapshot

Isolation Levels

Vacuuming and its Horizon
Locking

Transaction Status

of] PROFESSIONAL

Posygres

MVCC Posjgres

Storing multiple versions of the same row

versions have different validity time
timestamp = transaction ID (IDs are given in ascending order)

j version 1 version 2 version 3 j
o0 @ — @

Row:

» Xid

When multiple sessions are running at the same time, two transactions may
access the same row at the same time. If both transactions are just reading
the row, there is no problem. If both transactions try to write, no problem
either (in this case, they line up and make the changes one after the other).
The tricky part is when one transaction wants to read a row and another one
wants to change it at the same time.

There are two simple ways about it. You can let such transactions block
each other, but then performance suffers. Otherwise, you can let the reading
transaction immediately see the changes made by the writing transaction,
even if they are not committed (this is called a “dirty read”).

This is dangerous, because the changes can be rolled back.

PostgreSQL goes the hard way and utilizes what is known as Multiversion
concurrency control. In essence, the system stores multiple versions of
each row. So, a writing transaction operates on its own version, while a
reading transaction sees its own version.

To distinguish between the versions, PostgreSQL marks each one with two
timestamps, which together specify a version’s “validity time”.

The timestamps are essentially just transaction IDs, which always come in
ascending order. (In reality, the whole thing is a bit more complicated, but
not worth getting into right now.) Upon creation, a row version is marked
with the ID of the transaction that executed the INSERT command. When
deleted, the version is marked with the ID of the transaction that did the
DELETE command (but is not physically deleted). An UPDATE command is
a DELETE and an INSERT executed back to back.

https://postgrespro.com/docs/postgresgl/16/mvcc-intro

https://postgrespro.com/docs/postgresql/16/mvcc-intro

of] PROFESSIONAL

Data Snapshot Posigres

Representation of database data in a consistent state
at a specific point in time
transaction ID defines the point in time

list of active transactions helps the system
to exclude changes that have not been committed

row 1: o

J

row 2:

row 3: [—

» Xid

PostgreSQL uses snapshot-based transaction isolation.

A transaction accessing a table should see only one of the versions of each
row (or none at all). To achieve this, PostgreSQL presents the transaction
with a data snapshot created at a certain point in time. The snapshot
includes the most recent versions of all committed rows but does not include
any non-committed changes from active transactions. In other words, the
snapshot takes the version of each row that corresponds to the moment
when the snapshot was created.

A snapshot is not a physical copy of the data, but just a few numbers:
* the ID of the last committed transaction at the time of snapshot,
* list of active transactions at that point in time.

The list is needed in order to exclude from the snapshot any changes those
transactions may have made but not yet committed.

With just these numbers, we can always tell which row version will be visible
in the snapshot. Sometimes it will be the current (most recently committed)
version, as with row 1 in the diagram. Sometimes not: row 2 has been
deleted after the snapshot has been created (and the change has already
been committed), but the transaction still continues to see it while working
with the snapshot. This is the correct behavior, the snapshot gives a
consistent representation of data at the selected point in time.

Some rows will not get into the snapshot at all: row 3 was deleted before the
shapshot was made, so it is not included.

|solation Levels Pogga’i“éﬁ

Read Uncommitted
not supported by PostgreSQL: works as Read Committed

Read Committed (default)

the snapshot is created as of the time a statement starts
repeated query may return different data

Repeatable Read

the snapshot is created as of the time the first transaction statement starts
a transaction may fail with a serialization error

Serializable

total isolation, but additional overhead
a transaction may fail with a serialization error

The SQL standard defines four isolation levels: the stricter the level, the less
concurrent transactions affect each other. At the time when the standard
was adopted, it was believed that the stricter the level, the more difficult it is
to implement and the stronger its impact on performance (since then, these
views have changed somewhat).

The most lax level of Read Uncommitted allows dirty reads. It is not
supported by PostgreSQL, because it is of no practical value and does not
give a performance gain.

The Read Committed level is the default isolation level in PostgreSQL.
At this level, data snapshots are created at the beginning of each SQL
statement execution. Thus, the statement works with an unchanged and
consistent data snapshot, but two identical queries following one after the
other may show different data.

At the Repeatable Read level, the snapshot is built at the beginning of a
transaction (when executing the first statement). This makes all queries
inside the same transaction see the same data. This level is convenient, for
example, for generating reports from several queries.

The Serializable level guarantees total isolation. At this level, you can use
any statements as if the transaction is running alone. The drawback is that
some transactions will fail, and your application must be able to repeat such
transactions.

https://postgrespro.com/docs/postgresgl/16/transaction-iso

https://postgrespro.com/docs/postgresql/16/transaction-iso

Row Version Visibility

How do you verify that the same row can exist in multiple versions?
Create a table:

=> CREATE TABLE t(s text);

CREATE TABLE

And insert one row. Remember that if you do not explicitly start a transaction with BEGIN, psql executes the command and
immediately commits the result:

=> INSERT INTO t VALUES ('Version one');
INSERT 0 1

Start the transaction and get its ID:

=> BEGIN;

BEGIN

=> SELECT pg_current_xact_id();

pg_current_xact_id

The transaction sees the first (and so far the only) version of the row:

=> SELECT *, xmin, xmax FROM t;

s | xmin | xmax
............. B I,
Version one | 735 | 0
(1 row)

Here, the hidden columns show the transaction IDs that limit the visibility of the row version: xmin is the ID of the previous
transaction which created the version, and xmax=0 means that this version is current.

Now start another transaction in another session:
| => BEGIN;

| BEGIN

| => SELECT pg_current_xact_id();

pg_current_xact_id

The transaction sees the same and only version:

| => SELECT *, xmin, xmax FROM t;

s | xmin | xmax
_____________ B L e
Version one | 735 | 0
(1 row)

Now change the row from within the second transaction.
| => UPDATE t SET s = 'Version two';

| UPDATE 1

This is what we get:

| => SELECT *, xmin, xmax FROM t;

s | xmin | xmax
Version two | 737 | 0

(1 row)

What will the first transaction see?

=> SELECT *, xmin, xmax FROM t;

S | xmin | xmax
_____________ e B,
Version one | 735 | 737
(1 row)

Since the change is not yet committed, the first transaction continues to see the first version of the row.

Note the xmax value: it indicates that another transaction is currently changing the row. Generally speaking, such "peeping"
violates isolation, so the xmin and xmax fields are hidden and should not be used in production.

Now commit the changes.

| => coMMIT;

| commIT

What will the first transaction see now?

=> SELECT *, xmin, xmax FROM t;

s | xmin | xmax
_____________ e
Version two | 737 | 0
(1 row)

The first transaction also sees the second version of the string.
After commit, the first version of the row is no longer visible in any transaction.
=> COMMIT;

COMMIT

Vacuuming and its Horizon Pogga’i“e“%

vacuum horizon

) : outdated row versions
outdated versions ; may still be required
can be vacuumed : by snapshots

» Xmax

There is a single horizon for each database

Long-running transactions can hold back the horizon

thereby blocking the vacuuming of outdated row versions

MVCC makes it possible to effectively implement snapshot-based isolation,
but as a result, old (“dead”) row versions (“dead tuples”) accumulate in table
pages.

Historical versions are needed for some time so that transactions can work
with their data snapshots and, in case of rollback, get back to old values. For
each database, there is a transaction ID (xid), so that all historical versions
deleted by transactions with lower xids are no longer visible in any snapshot.
This xid is called vacuum horizon.

Vacuuming is performed by special background processes; but can also be
executed manually using the VACUUM command.

Long-running transactions and queries can hold back the horizon, which
prevents the removal of accumulated row versions. If you do not vacuum
historical data in a timely manner, tables and indexes will bloat, consuming
excessive disk space, and the search for current row versions will slow
down.

https://postgrespro.com/docs/postgresql/16/routine-vacuuming

https://postgrespro.com/docs/postgresql/16/routine-vacuuming

Locking po&a?sg

Row locks

reading never locks rows
changing rows locks them for changes, but not for reads

Table locks

prohibit changing or deleting a table while it is being worked on
prohibit reading the table when rebuilding or moving
etc.

Lock lifetime

set as needed or manually
released automatically upon transaction completion

So what does MVCC provide? It allows the system to have only the most
necessary minimum of locks, thereby increasing performance.

The main locks are set at the row level. Reading never blocks either reading
or writing transactions. Changing a row does not lock it for reading. The only
case when a transaction will wait for a lock to be released is if it tries to
change a row that has already been changed by another transaction that
has not been committed yet.

Locks can also be set at a higher level, particularly on tables. They are
needed so that no one can delete the table while other transactions are
reading data from it, or to prohibit access to the table being rebuilt. Such
locks generally do not cause problems, since deleting or rebuilding tables is
only done once in a while. However, some changes of table structure trigger
implicit table rebuilding, completely blocking access to the table and its
indexes. Locks are explained in detail in the Locking module of the DBA2
course.

All necessary locks are set automatically and automatically removed at the
end of the transaction. However, if a lock was acquired after the savepoint
was set, it will be released immediately when rolling back to that savepoint.

You can also set additional custom locks, but this is rarely necessary.
https://postgrespro.com/docs/postgresql/16/explicit-locking

https://postgrespro.com/docs/postgresql/16/explicit-locking

Locking

Repeat the experiment, but now let both transactions try to change the same row.
=> BEGIN;
BEGIN

=> UPDATE t SET s = 'Version three' RETURNING *;

Version three
(1 row)

UPDATE 1

And in the second transaction:

| => BEGIN;

| BEGIN

| => UPDATE t SET s = 'Version four' RETURNING *;

The second transaction “hung up”: it cannot change the row until the first transaction releases the lock.
=> COMMIT;

COMMIT

Now the second transaction can continue:

Version four
(1 row)

UPDATE 1
| => coMMIT;
| commIT

Both transactions have committed their changes. The first session reads the table again and sees the current row: this is the result
committed by the second transaction:

=> SELECT * FROM t;

Version four
(1 row)

Transaction Status Pogga’i“éﬁ

Transaction status (clog)

service information; two bits per transaction
stored in files on disk
cached in shared memory

Commit

the “transaction committed” bit is set

Termination

the “transaction aborted” bit is set
performed as fast as commit (no data rollback needed)

10

For multiversion concurrency control to work, the server needs to
understand the status of transactions. A transaction can be active or
finished. A transaction can end either in a commit or in an abort. Therefore,
two bits are required to represent the state of each transaction.

Transaction statuses (commit log, clog) are stored in special service files in
the PGDATA/pg_xact directory and worked upon in the server’s shared
memory, as to avoid constantly accessing the disk.

At any transaction completion (either successful or not), it is enough to set
the appropriate status bits. Both transaction commit and abort occur equally
quickly.

If an aborted transaction managed to create new row versions, these
versions are not destroyed (there is no “physical” rollback of data). Thanks
to the status information, other transactions will see that the transaction that
created or deleted the row versions was actually aborted, and will not take
changes made by it into account.

Takeaways Pogga’ﬁss%

Multiple versions of each row can be stored in data files

Transactions work with data snapshots, representations of
database data in a consistent state at a specific point in time

Isolation levels have different snapshot creation times

Dead row versions beyond the vacuum horizon must be
periodically vacuumed

Writers do not block readers, readers do not block anyone

11

Practice Pogga’?fs&

1.

Create a table with one row.

Begin a transaction at the Read Committed isolation level and
query the table. In another session, delete the row and commit
the changes.

How many rows will the first transaction see after executing the
same query again? Try and see.

Complete the first transaction.

Repeat the same thing, but now let the transaction work at the
isolation level Repeatable Read:
BEGIN ISOLATION LEVEL REPEATABLE READ;

Explain the differences.

12

1. Read Committed Isolation Level

Create a table:

=> CREATE TABLE t(n integer);

CREATE TABLE

=> INSERT INTO t VALUES (42);

INSERT 0 1

Query from the first transaction (default isolation level is Read Committed):
=> BEGIN;

BEGIN

=> SELECT * FROM t;

n

42
(1 row)

Delete the row in the second transaction and commit the changes:
| => DELETE FROM t;

| DELETE 1

Repeat the query:

=> SELECT * FROM t;

n

(0 rows)

The first transaction sees the change: the row has been deleted.
=> COMMIT;

COMMIT

2. Repeatable Read Isolation Level

Return the row:

=> INSERT INTO t VALUES (42);

INSERT 0 1

Query from the first transaction:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;
BEGIN

=> SELECT * FROM t;

n

42
(1 row)

Delete the row in the second transaction and commit the changes:
| => DELETE FROM t;

| DELETE 1

Repeat the query:

=> SELECT * FROM t;

n

42
(1 row)
At this isolation level, the first transaction does not see any changes: the row still exists for it.
=> COMMIT;

COMMIT

Practice+ Pogga’?fs&

1. Begin a transaction and create a new table with one row. Without
completing the transaction, open a second session and query the
table in it. Check what the transaction will return in the second
session.

Commit the transaction in the first session and repeat the query
to the table in the second session.

2. Repeat task 1, but roll back rather than commit the transaction in
the first session. What has changed?

3. In the first session, start a transaction and make a query to the
previously created table. Will it be possible to delete this table in
the second session before the transaction is completed?

Try and see.

13

1. Transactions and DDL Commands: Commit

Start a transaction and create a new table:
=> BEGIN;

BEGIN

=> CREATE TABLE tl(n integer);
CREATE TABLE

=> INSERT INTO t1 VALUES (42);
INSERT 0 1

In the second session, query the table:

| => SELECT * FROM t1;

ERROR: relation "t1" does not exist
LINE 1: SELECT * FROM t1;

Until the transaction that created the table is completed, all other transactions do not see the table.
The table will be visible only after the completion of the transaction that created it:

=> COMMIT;

COMMIT

| => SELECT * FROM t1;

n

42
(1 row)

2. Transactions and DDL Commands: Rollback

Start a transaction and create a new table:

=> BEGIN;

BEGIN

=> CREATE TABLE t2(n integer);

CREATE TABLE

=> INSERT INTO t2 VALUES (42);

INSERT 0 1

The query in the second session sees no changes, as expected:
| => SELECT * FROM t2;

ERROR: relation "t2" does not exist
LINE 1: SELECT * FROM t2;

When the first transaction is rolled back, the table creation command is also rolled back:
=> ROLLBACK;

ROLLBACK

=> SELECT * FROM t2;

ERROR: relation "t2" does not exist
LINE 1: SELECT * FROM t2;

In PostgreSQL, DDL commands are transactional.

3. Table Locks

Start a transaction, query the table:
=> BEGIN;

BEGIN

=> SELECT * FROM t1;

n

42
(1 row)

The second transaction, which is trying to remove the table is locked: you cannot remove a table that is being used.
| => DROP TABLE tl1;

The table will be removed only after the first transaction is completed:

=> COMMIT;

COMMIT

| DROP TABLE

