

Replication

Overview of Logical Replication

16

Copyright
© Postgres Professional, 2017–2025
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Alexey Beresnev
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is”, and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

Logical Replication

WAL Levels

Publications and Subscriptions

Conflict Detection and Resolution

Replica Usage

3

Logical Replication

Publisher
reads its own WAL records
decodes them into table row changes
sends to subscribers

Subscriber
receives WAL records from the replication stream
applies the changes to its own tables

Features
publication-subscription: data flow is possible in both directions
requires protocol-level compatibility
can replicate individual tables

In physical replication only one server (the primary) makes changes and
generates WAL records. Other servers (standbys) only read the primary’s
WAL records and apply them.

In logical replication all servers operate normally, can modify data, and
generate their own WAL records. Any server can publish its changes, while
others can subscribe to them. A single server can act as both a publisher
and a subscriber, enabling flexible data flows between servers.

The publisher reads its own WAL records, but unlike physical replication, it
first decodes them into a logical format that is platform-independent and not
tied to specific PostgreSQL version before transmitting to subscribers.
Therefore, binary compatibility is not required — only the replication protocol
must be understood. It also supports selective replication, allowing only
specific tables to be replicated.

https://postgrespro.com/docs/postgresql/16/logical-replication

https://postgrespro.com/docs/postgresql/16/logical-replication

4

Logical Replication

publisher

select, insert
update, delete

subscriber

wal sender

WAL segments

select, insert
update, delete

WAL segments

logical replication
 worker

or its
standby

On the publisher the wal_sender process generates WAL records reflecting
changes to published data. On the subscriber the logical replication worker
receives the information from the publisher and applies it.

The subscriber can receive changes either directly from the publisher or
from the publisher’s standby. In the latter case, the standby’s wal_sender
process sends changes to the subscriber. This architecture helps reduce
load on the publisher.

https://postgrespro.com/docs/postgresql/16/logical-replication-publication

https://postgrespro.com/docs/postgresql/16/logical-replication-subscription

https://postgrespro.com/docs/postgresql/16/logical-replication-publication
https://postgrespro.com/docs/postgresql/16/logical-replication-subscription

5

Publication and Subscription

Publication
includes one or more database tables
can specify columns and row filters
processes INSERT, UPDATE, DELETE, TRUNCATE commands
sends row-level changes after transaction commit
uses a logical replication slot

Subscription
receives and applies changes
can do initial synchronization
no parsing, rewriting and planning, just direct execution
possible conflicts with local data

Logical replication uses a publish and subscribe model.

A publication is created on one server and can include several tables in a
single database. Starting with version 15, PostgreSQL allows publishing
partial table data by specifying column subsets and row filter conditions.
Other servers can subscribe to this publication to receive and apply changes
to the tables.

Only table row modifications are replicated (not SQL commands). DDL
commands are not transmitted, so target tables on the subscriber must be
created manually. Initial synchronization of table contents can be performed
when a subscription is created.

After transaction commit, information about modified rows is extracted from
WAL records on the publisher through logical decoding. The resulting
messages are transmitted to subscribers via the replication protocol in a
platform- and version-independent format.

Changes are applied without executing SQL commands, avoiding parsing
and planning overhead. On the other hand, a single SQL command can
result in multiple one-row changes.

https://postgrespro.com/docs/postgresql/16/logical-replication

https://postgrespro.com/docs/postgresql/16/logical-replication

6

wal_level parameter

minimal < replica < logical
crash recovery crash recovery crash recovery

restore from backup, restore from backup,
replication replication

logical replication

WAL Levels

To enable the publisher to generate messages about changes at the row
level, the WAL must include additional information, such as row identifiers
involved in modifications and notifications about changes to table definitions
and data types. This allows the subscriber to have up-to-date knowledge of
the structure of replicated objects in any moment.

This extended level of logging is called logical. Since the default level is
replica, logical replication requires changing the wal_level parameter on the
publisher.

https://postgrespro.com/docs/postgresql/16/protocol-logical-replication#PRO
TOCOL-LOGICAL-MESSAGES-FLOW

https://postgrespro.com/docs/postgresql/16/protocol-logical-replication#PROTOCOL-LOGICAL-MESSAGES-FLOW
https://postgrespro.com/docs/postgresql/16/protocol-logical-replication#PROTOCOL-LOGICAL-MESSAGES-FLOW

Logical	Replication

Assume	the	first	server	contains	a	table:

=>	CREATE	DATABASE	replica_overview_logical_dba;

CREATE	DATABASE

=>	\c	replica_overview_logical_dba

You	are	now	connected	to	database	"replica_overview_logical_dba"	as	user	"student".

=>	CREATE	TABLE	test(id	integer	PRIMARY	KEY,	descr	text);

CREATE	TABLE

Let’s	clone	the	cluster	by	creating	a	standalone	backup	(as	covered	in	the	Physical	Replication	Overview	lesson),	but	omit	the	-R
option	from	pg_basebackup	call	since	we	need	an	independent	server,	not	a	standby.

student$	rm	-rf	/home/student/tmp/backup

student$	pg_basebackup	--pgdata=/home/student/tmp/backup	--checkpoint=fast

If	the	second	server	is	running,	we	stop	it.

student$	sudo	pg_ctlcluster	16	replica	stop

Cluster	is	not	running.

Move	the	backup	to	the	data	directory	of	the	second	server,	changing	the	owner	of	the	files:

student$	sudo	rm	-rf	/var/lib/postgresql/16/replica

student$	sudo	mv	/home/student/tmp/backup	/var/lib/postgresql/16/replica

student$	sudo	chown	-R	postgres:	/var/lib/postgresql/16/replica

Start	the	second	server:

student$	sudo	pg_ctlcluster	16	replica	start

We	got	two	independent	servers,	each	of	them	has	an	empty	test	table.	Let’s	add	a	couple	of	lines	to	the	table	on	the	first	server:

=>	INSERT	INTO	test	VALUES	(1,	'One'),	(2,	'Two');

INSERT	0	2

To	establish	logical	replication	between	servers,	additional	information	in	the	WAL	of	the	publishing	server	is	required:

=>	ALTER	SYSTEM	SET	wal_level	=	logical;

ALTER	SYSTEM

student$	sudo	pg_ctlcluster	16	main	restart

Create	a	publication	on	the	first	server:

student$	psql	-d	replica_overview_logical_dba

=>	CREATE	PUBLICATION	test_pub	FOR	TABLE	test;

CREATE	PUBLICATION

=>	\dRp+

																											Publication	test_pub
		Owner		|	All	tables	|	Inserts	|	Updates	|	Deletes	|	Truncates	|	Via	root	
---------+------------+---------+---------+---------+-----------+----------
	student	|	f										|	t							|	t							|	t							|	t									|	f
Tables:
				"public.test"

On	the	second	server,	subscribe	to	the	publication:

student$	psql	-p	5433	-d	replica_overview_logical_dba

=>	CREATE	SUBSCRIPTION	test_sub
CONNECTION	'port=5432	user=student	dbname=replica_overview_logical_dba'
PUBLICATION	test_pub;

NOTICE:		created	replication	slot	"test_sub"	on	publisher
CREATE	SUBSCRIPTION

=>	\dRs

											List	of	subscriptions
			Name			|		Owner		|	Enabled	|	Publication	
----------+---------+---------+-------------
	test_sub	|	student	|	t							|	{test_pub}
(1	row)

Verify	the	replication:

=>	INSERT	INTO	test	VALUES	(3,	'Three');

INSERT	0	1

=>	SELECT	*	FROM	test;

	id	|	descr	
----+-------
		1	|	One
		2	|	Two
		3	|	Three
(3	rows)

The	following	view	shows	the	state	of	the	subscription:

=>	SELECT	*	FROM	pg_stat_subscription	\gx

-[RECORD	1]---------+------------------------------
subid																	|	24578
subname															|	test_sub
pid																			|	26471
leader_pid												|	
relid																	|	
received_lsn										|	0/3004298
last_msg_send_time				|	2025-09-24	17:04:37.336051+03
last_msg_receipt_time	|	2025-09-24	17:04:37.337585+03
latest_end_lsn								|	0/3004298
latest_end_time							|	2025-09-24	17:04:37.336051+03

The	logical	replication	apply	worker	process	has	been	started	(you	can	see	its	ID	in	pg_stat_subscription.pid):

student$	ps	-o	pid,command	--ppid	26164

				PID	COMMAND
		26165	postgres:	16/replica:	checkpointer	
		26166	postgres:	16/replica:	background	writer	
		26178	postgres:	16/replica:	walwriter	
		26179	postgres:	16/replica:	autovacuum	launcher	
		26180	postgres:	16/replica:	logical	replication	launcher	
		26438	postgres:	16/replica:	student	replica_overview_logical_dba	[local]	idle
		26471	postgres:	16/replica:	logical	replication	apply	worker	for	subscription	24578	

8

Conflicts

Identification modes for modifying and deleting rows
primary key columns (default)
columns of a specific unique index with the NOT NULL constraint
all columns
no identification (default for the system catalog)

Conflicts: violation of integrity constraints
replication is suspended until the conflict is resolved manually

Inserting new rows is straightforward. Changes and deletions are more
complicated. These operations need to somehow identify the old version of
the row. By default, primary key columns are used for this, but you can
specify other ways (replica identity) when defining a table, i.e. use a unique
index or all the table columns. Or you can disable replication for some tables
altogether (system catalog tables have it disabled by default).

Since the table on the publisher and the table on the subscriber can be
changed independently of each other, conflicts in the form of integrity
constraint violations are possible when inserting new row versions.
Whenever this happens, the process of applying records is suspended until
the conflict is resolved manually.

https://postgrespro.com/docs/postgresql/16/sql-altertable

https://postgrespro.com/docs/postgresql/16/logical-replication-conflicts

https://postgrespro.com/docs/postgresql/16/sql-altersubscription

https://postgrespro.com/docs/postgresql/16/sql-altertable
https://postgrespro.com/docs/postgresql/16/logical-replication-conflicts
https://postgrespro.com/docs/postgresql/16/sql-altersubscription

Conflicts

Local	modifications	on	the	subscriber	are	not	prohibited.	Let’s	insert	a	row	into	the	table	on	the	second	server:

=>	INSERT	INTO	test	VALUES	(4,	'Four	(local)');

INSERT	0	1

If	we	add	a	row	with	the	same	primary	key	value	on	the	publisher,	the	subscription	will	have	a	conflict	when	trying	to	apply	the
change.

=>	INSERT	INTO	test	VALUES	(4,	'Four');

INSERT	0	1

=>	INSERT	INTO	test	VALUES	(5,	'Five');

INSERT	0	1

The	subscription	is	unable	to	apply	the	change,	replication	stops.

=>	SELECT	*	FROM	pg_stat_subscription	\gx

-[RECORD	1]---------+---------
subid																	|	24578
subname															|	test_sub
pid																			|	
leader_pid												|	
relid																	|	
received_lsn										|	
last_msg_send_time				|	
last_msg_receipt_time	|	
latest_end_lsn								|	
latest_end_time							|	

=>	SELECT	*	FROM	test;

	id	|				descr					
----+--------------
		1	|	One
		2	|	Two
		3	|	Three
		4	|	Four	(local)
(4	rows)

To	resolve	the	conflict,	remove	the	row	on	the	second	server	and	wait	a	moment...

=>	DELETE	FROM	test	WHERE	id=4;

DELETE	1

=>	SELECT	*	FROM	test;

	id	|	descr	
----+-------
		1	|	One
		2	|	Two
		3	|	Three
		4	|	Four
		5	|	Five
(5	rows)

Replication	continues.

Dropping	a	Subscription

If	replication	is	no	longer	needed,	the	subscription	should	be	deleted,	otherwise	the	publisher	will	keep	the	open	replication	slot.

=>	DROP	SUBSCRIPTION	test_sub;

NOTICE:		dropped	replication	slot	"test_sub"	on	publisher
DROP	SUBSCRIPTION

10

Restrictions

Not replicated
DDL commands
sequence values
large objects
changes to views, materialized views, and foreign tables

Not supported
automatic conflict resolution

Logical replication has some fundamental limitations.

DDL commands are not replicated — all schema changes must be copied
manually.

Only regular base tables and partitioned tables can be replicated. Other
relation types such as views, materialized views, and foreign tables cannot
be replicated.

Sequence values are not replicated. This means that if the subscriber inserts
rows into a replicated table with a surrogate primary key, conflicts may
occur. These conflicts can be avoided by allocating different sequence
ranges to each server or by using UUIDs instead of sequences.

There is no built-in conflict resolution mechanism.

These restrictions reduce the applicability of logical replication.

https://postgrespro.com/docs/postgresql/16/logical-replication-restrictions

https://postgrespro.com/docs/postgresql/16/logical-replication-restrictions

11

Features

Referential integrity
for TRUNCATE operations, the publication must include all tables referenced
by foreign keys

Persistent connection is mandatory
inactive replication slots prevent WAL segment removal and hold back the
vacuum horizon

Potential issues
bulk data changes
changes made by long-running transactions

To properly replicate TRUNCATE commands, the publication should include
all tables that have foreign key references to the truncated table.

The connection between the publisher and the subscriber must remain
stable. If interrupted, the replication slot becomes inactive, forcing the server
to retain WAL segments until reconnection. Inactive slots also hold back the
vacuum horizon.

Changes are replicated row-by-row, so SQL commands affecting many rows
on the publisher create significant subscriber load.

The default configuration handles long-running transactions poorly — they
increase publisher load since changes are only sent after transaction
commit. The subscription’s streaming parameter mitigates this by getting row
change without delay, either buffering changes in temporary files or applying
changes immediately when background process is available.

12

receipt and consolidation
of data from regional servers

1. Consolidation

central
server

select, insert
update, delete

regional
server

wal sender

regional
server

wal sender

select, insert
update, delete

WAL segments

select, insert
update, delete

WAL segments

logical repl.
worker

logical repl.
worker

WAL segments

Let’s discuss some logical replication use cases.

Suppose there are several regional branches, each of which runs on its own
PostgreSQL server. The goal is to consolidate some data on a central
server.

First, publications of the necessary data are created on regional servers.
The central server subscribes to these publications. The received data can
be processed using triggers on the central server (for example, unifying the
data format).

Inverted, the setup allows, for example, to transfer reference information
from the central server to regional ones.

The business logic may apply additional constraints on the system. In some
use cases, scheduled batch data transfers may be preferable.

The image shows two WAL receiving processes running on the central
server, one for each subscription.

13

2. Server Update

updating the major version
without interruption of service

old server

select, insert
update, delete

new server

WAL segments

13.6 16.2

Case: update the major version on the server without interrupting the
service.

Two major versions are not binary compatible, so physical replication will not
work. However, logical replication can solve the problem.

As usual, external tools are required to switch users between servers.

First, a new server is created with the desired PostgreSQL version.

14

2. Server Update

updating the major version
without interruption of service

old server

select, insert
update, delete

new server

wal sender logical repl.
worker

WAL segments

13.6 16.2
initial

synchronization

Then, logical replication of all required databases is set up between the
servers, and the data is synchronized. This is possible because logical
replication does not require binary compatibility between servers.

15

updating the major version
without interruption of service

2. Server Update

new server

16.2

select, insert
update, delete

WAL segments

Clients are then switched to the new server while the old one is terminated.

In practice, the process of updating major server version using logical
replication is much more complicated and difficult. It is discussed in more
detail in the Server Update lesson of the DBA2 course.

16

a cluster where
multiple servers can modify data

3. Primary-Primary

main server main server

select, insert
update, delete

WAL segments

select, insert
update, delete

WAL segments

wal sender

logical repl.
worker

logical repl.
worker

wal sender

Case: provide reliable data storage on multiple servers with the ability to
write the data on any server (particularly useful for geo-distributed systems).

This can be achieved through bidirectional logical replication, synchronizing
changes for the same tables between servers in both directions.

PostgreSQL 16 introduced bidirectional replication, where tables can be
both published and subscribed to on different servers simultaneously.

This requires that the applications working with the cluster are built with
certain considerations in mind in order to avoid conflicts when modifying
data in the same table. For example, to use globally unique identifiers or to
ensure that different servers work with different ranges of keys.

Keep in mind that the primary-primary setup with logical replication will not
support global distributed transactions and thus cannot guarantee full data
consistency between servers. In addition, PostgreSQL does not offer any
tools for automatic failure processing, adding nodes to the cluster or
removing nodes from it, etc. These tasks must be solved by external means.

17

Takeaways

Logical replication streams individual row changes

 multidirectional

requires protocol-level compatibility

Publish and subscribe model

All current restrictions must be considered

18

Practice

1. Set up logical replication of an arbitrary table to another table on
the same server.

2. Set up bidirectional logical replication of the same table between
two different servers.

1. If you try to perform standard operations, the CREATE SUBSCRIPTION
command will hang. Read carefully the documentation:

https://postgrespro.com/docs/postgresql/16/sql-createsubscription

2. Clone the second server from a backup, as shown in demonstration
earlier.

When creating subscriptions on both servers, specify the following
parameters: copy_data = false, origin = none.

https://postgrespro.com/docs/postgresql/16/sql-createsubscription

1.	Replication	on	a	Single	Server

Test	table:

=>	CREATE	DATABASE	replica_overview_logical_dba;

CREATE	DATABASE

=>	\c	replica_overview_logical_dba

You	are	now	connected	to	database	"replica_overview_logical_dba"	as	user	"student".

=>	CREATE	TABLE	test	(
				id	int
);

CREATE	TABLE

A	copy	of	the	database	with	the	table:

=>	\c	student

You	are	now	connected	to	database	"student"	as	user	"student".

=>	CREATE	DATABASE	replica_overview_logical_dba2	TEMPLATE	replica_overview_logical_dba;

CREATE	DATABASE

Set	the	required	WAL	level:

=>	ALTER	SYSTEM	SET	wal_level	=	logical;

ALTER	SYSTEM

=>	\q

student$	sudo	pg_ctlcluster	16	main	restart

Connect	to	the	databases:

student$	psql	replica_overview_logical_dba

student$	psql	replica_overview_logical_dba2

Create	a	publication	in	the	first	database:

=>	CREATE	PUBLICATION	test	FOR	TABLE	test;

CREATE	PUBLICATION

By	default,	the	CREATE	SUBSCRIPTION	command	creates	a	replication	slot,	which	waits	for	all	active	transactions	(at	the	time	of
slot	creation)	to	complete	before	proceeding.	One	such	transaction	is	the	CREATE	SUBSCRIPTION	command	itself,	causing	it	to	block
indefinitely.

This	issue	can	be	resolved	by	manually	creating	a	replication	slot	and	specifying	its	name	when	creating	the	subscription:

=>	SELECT	pg_create_logical_replication_slot('test_slot','pgoutput');

	pg_create_logical_replication_slot	

	(test_slot,0/21810F8)
(1	row)

=>	CREATE	SUBSCRIPTION	test
CONNECTION	'user=student	dbname=replica_overview_logical_dba'
PUBLICATION	test	WITH	(slot_name	=	test_slot,	create_slot	=	false);

CREATE	SUBSCRIPTION

Verification:

=>	INSERT	INTO	test	SELECT	*	FROM	generate_series(1,100);

INSERT	0	100

=>	SELECT	count(*)	FROM	test;

	count	

			100
(1	row)

Replication	is	working.

Delete	the	publication,	subscription,	and	the	second	database.

=>	DROP	PUBLICATION	test;

DROP	PUBLICATION

=>	DROP	SUBSCRIPTION	test;

NOTICE:		dropped	replication	slot	"test_slot"	on	publisher
DROP	SUBSCRIPTION

=>	DROP	DATABASE	replica_overview_logical_dba2	(FORCE);

DROP	DATABASE

2.	Bidirectional	Replication

We	clone	the	server	using	a	backup:

student$	pg_basebackup	--pgdata=/home/student/tmp/backup	--checkpoint=fast

Make	sure	the	second	server	is	stopped	and	push	the	backup:

student$	sudo	pg_ctlcluster	16	replica	stop

Cluster	is	not	running.

student$	sudo	rm	-rf	/var/lib/postgresql/16/replica

student$	sudo	mv	/home/student/tmp/backup	/var/lib/postgresql/16/replica

student$	sudo	chown	-R	postgres:	/var/lib/postgresql/16/replica

Start	the	second	server:

student$	sudo	pg_ctlcluster	16	replica	start

The	database	with	the	table	and	the	log	level	setting	were	also	cloned:

student$	psql	-p	5433	replica_overview_logical_dba

=>	SHOW	wal_level;

	wal_level	

	logical
(1	row)

=>	SELECT	count(*)	FROM	test;

	count	

			100
(1	row)

We	publish	the	table	on	both	servers:

=>	CREATE	PUBLICATION	test	FOR	TABLE	test;

CREATE	PUBLICATION

=>	CREATE	PUBLICATION	test	FOR	TABLE	test;

CREATE	PUBLICATION

Subscribe:

=>	CREATE	SUBSCRIPTION	test
CONNECTION	'port=5433	user=student	dbname=replica_overview_logical_dba'
PUBLICATION	test	WITH	(copy_data	=	false,	origin	=	none);

NOTICE:		created	replication	slot	"test"	on	publisher
CREATE	SUBSCRIPTION

=>	CREATE	SUBSCRIPTION	test
CONNECTION	'port=5432	user=student	dbname=replica_overview_logical_dba'
PUBLICATION	test	WITH	(copy_data	=	false,	origin	=	none);

NOTICE:		created	replication	slot	"test"	on	publisher
CREATE	SUBSCRIPTION

Modify	table	rows:

=>	UPDATE	test	SET	id	=	id	+	100;

ERROR:		cannot	update	table	"test"	because	it	does	not	have	a	replica	identity	and	
publishes	updates
HINT:		To	enable	updating	the	table,	set	REPLICA	IDENTITY	using	ALTER	TABLE.

For	changes	and	deletions	to	be	replicated	properly,	row	identification	must	be	configured.	By	default,	rows	are	identified	by	their
primary	key.

=>	ALTER	TABLE	test	ADD	PRIMARY	KEY	(id);

ALTER	TABLE

=>	ALTER	TABLE	test	ADD	PRIMARY	KEY	(id);

ALTER	TABLE

Retry	the	operation:

=>	UPDATE	test	SET	id	=	id	+	100;

UPDATE	100

=>	UPDATE	test	SET	id	=	id	+	100;

UPDATE	100

Check	the	Result:

=>	SELECT	min(id),	max(id)	FROM	test;

	min	|	max	
-----+-----
	201	|	300
(1	row)

=>	SELECT	min(id),	max(id)	FROM	test;

	min	|	max	
-----+-----
	201	|	300
(1	row)

