Data Organization
Low Level

Pos gres

Copyright

© Postgres Professional, 2017-2025

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov, Alexey Beresnev
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is,” and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

of] PROFESSIONAL

Topics Posggres

Data Files
Forks: Main, Visibility Map, Free Space Map
Oversized Row Versions and TOAST

Object Forks Posigres

main
NNN.2
segment NNN.1
NNN
NNN_fsm.1
NNN_fsm
NNN_vm

pg_relation_size

Usually, each database object that stores data (table, index, sequence,
materialized view) has several corresponding forks. Each fork contains a
specific type of data.

Initially, each fork contains a single file. The file name is a numeric identifier
and may include a suffix derived from the fork name.

The file gradually increases in size until it reaches 1 GB, at which point the
next file for the same fork is created. Such files are sometimes called
segments.The segment sequence number is appended to the end of the file
name. The pg_relation_size function displays the total size of a fork.

The 1 GB file size limit was established in the past to support file systems
that cannot operate with larger file sizes. A different file size limit can be set
during source code compilation with the --with-segsize option.

So, a single database object may consist of multiple files on disk. A small
table will have three corresponding files on disk, and an index will have two.
All object files belonging to the same tablespace and the same database are
stored in the same directory. This may become an issue as some file
systems may perform poorly on directories with a large number of files.

Forks Posigres

Main fork

actual data (row versions)
exists for all objects

Initialization fork (init)

“template” of the main fork
used in case of failure; exists only for unlogged tables

Visibility map (vm)
exists only for tables

Free space map (fsm)

exists for both tables and indexes

There are several types of forks.

The main fork contains the data itself, namely table row versions and index
records. The main fork file names match the identifier. All objects have a
main fork.

The file names of the initialization fork end with the _init suffix. This fork
exists only for unlogged tables (created with the UNLOGGED clause) and
their indexes. Such objects do not differ from regular ones, except that
actions performed on them are not logged in WAL. This makes operations
on them faster, but their content cannot be recovered if a failure occurs.
During a recovery PostgreSQL just removes all the forks of such objects and
writes the initialization fork in place of the main fork. The result is an empty
table.

https://postgrespro.com/docs/postgresgl/16/storage-init

The vm (visibility map) fork’s filenames end in _vm. The fork exists only for
tables, separate MVCC for indexes is not supported.

The fsm (free space map) fork’s filenames end in _fsm. This fork exists for
both tables and indexes.

These two maps were discussed in the Architecture module.
https://postgrespro.com/docs/postgresql/16/storage-fsm
https://postgrespro.com/docs/postgresgl/16/storage-vm

https://postgrespro.com/docs/postgresql/16/storage-init
https://postgrespro.com/docs/postgresql/16/storage-fsm
https://postgrespro.com/docs/postgresql/16/storage-vm

File Locations

=> CREATE DATABASE data_lowlevel;

CREATE DATABASE

=> \c data_lowlevel

You are now connected to database "data lowlevel" as user "student".
Create a table and look where its files are.

=> CREATE TABLE t(
id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
n numeric

)i

CREATE TABLE

=> INSERT INTO t(n) SELECT id FROM generate_series(1,10_000) AS id;
INSERT 0 10000

To form additional forks, we will execute vacuuming:

=> VACUUM t;

VACUUM

The path to the main file relative to PGDATA is shown with the following function:
=> SELECT pg_relation_filepath('t');

pg_relation filepath

base/16386/16388
(1 row)

Since the table is located in the pg_default tablespace, the path starts with “base”, followed by the database directory:

=> SELECT oid FROM pg_database WHERE datname = 'data_lowlevel';

Then follows the file name. You can get it using the query:
=> SELECT relfilenode FROM pg_class WHERE relname = 't';

relfilenode

But the pg_relation_filepath function is more convenient because it returns the full path so that you don’t need to run several
queries on the system catalog.

Let’s have a look at the files themselves. Only the OS user postgres has access to PGDATA, so run the Is on their behalf:
postgres$ ls -1 /var/lib/postgresql/16/main/base/16386/16388%*

SrwW------- 1 postgres postgres 450560 Sep 24 17:00
/var/lib/postgresql/16/main/base/16386/16388
SrW------ - 1 postgres postgres 24576 Sep 24 17:00
/var/lib/postgresql/16/main/base/16386/16388 fsm
Srw------- 1 postgres postgres 8192 Sep 24 17:00
/var/lib/postgresql/16/main/base/16386/16388 vm

There are three forks: the main fork, the free space map (fsm) and the visibility map (vm).
You can view the index files in a similar way:

= \d t

Table "public.t"

Column | Type | Collation | Nullable | Default

-------- B T e T
id | integer | | not null | generated always as identity
n | numeric | | |

Indexes:

"t pkey" PRIMARY KEY, btree (id)

=> SELECT pg_relation_filepath('t_pkey');

pg relation filepath

base/16386/16393
(1 row)

postgres$ 1s -1 /var/lib/postgresql/16/main/base/16386/16393*

SrW------- 1 postgres postgres 245760 Sep 24 17:00
/var/lib/postgresql/16/main/base/16386/16393

And files for the sequence that has been created for the primary key:
=> SELECT pg_relation_filepath(pg_get_serial_sequence('t','id'));

pg relation filepath

base/16386/16387
(1 row)

postgres$ 1s -1 /var/lib/postgresql/16/main/base/16386/16387*

SrwW------- 1 postgres postgres 8192 Sep 24 17:00
/var/lib/postgresql/16/main/base/16386/16387

For an index, the free space map is built only when empty pages exist, while a sequence has only a main fork.

Temporary tables are stored in the same way as permanent tables.
=> CREATE TEMP TABLE temp AS SELECT * FROM t;

SELECT 10000

=> VACUUM temp;

VACUUM

=> SELECT pg_relation_filepath('temp');

pg relation filepath

base/16386/t4 16397
(1 row)

A prefix matching the schema number is added to the filename for temporary objects.
postgres$ ls -1 /var/lib/postgresql/16/main/base/16386/t4_16397*

SrW----- - - 1 postgres postgres 450560 Sep 24 17:00
/var/lib/postgresql/16/main/base/16386/t4 16397

Srw------- 1 postgres postgres 24576 Sep 24 17:00
/var/lib/postgresql/16/main/base/16386/t4 16397 fsm
SrwW------- 1 postgres postgres 8192 Sep 24 17:00
/var/lib/postgresql/16/main/base/16386/t4 16397 vm

The oid2name additional supplied extension lets you quickly and easily find out which database objects relate to which files.
You can view all databases:
student$ /usr/lib/postgresql/16/bin/oid2name

All databases:
0id Database Name Tablespace

16386 data lowlevel pg default

5 postgres pg default
16385 student pg default
4 template® pg default
1 templatel pg default

All objects in a database:

student$ /usr/lib/postgresql/16/bin/oid2name -d data_lowlevel

From database "data lowlevel":
Filenode Table Name

All tablespaces in a database:
student$ /usr/lib/postgresql/16/bin/oid2name -d data_lowlevel -s

All tablespaces:
0id Tablespace Name

1663 pg default
1664 pg_global

Find the file name by table name:
student$ /usr/lib/postgresql/16/bin/oid2name -d data_lowlevel -t t

From database "data lowlevel":
Filenode Table Name

Or the table name by file name:
student$ /usr/lib/postgresql/16/bin/oid2name -d data_lowlevel -f 16388

From database "data lowlevel":
Filenode Table Name

Fork Sizes

You can get the size of the files that comprise a fork from the file system, but there is an easier way to get the size of each fork
individually:

=> SELECT pg_relation_size('t','main') main,
pg_relation_size('t','fsm') fsm,
pg_relation_size('t','vm') vm;

450560 | 24576 | 8192
(1 row)

TOAST B e

A row version must fit into one page

some fields can be compressed
some fields can be moved into a TOAST table
fields can be both compressed and moved

TOAST table

located in the pg_toast (pg_toast_temp_N) schema

supported by its own index

contains chunks of oversized values, each chunk is smaller than a page
retrieved only when the oversized field is accessed

has its own row versions

used transparently for the application

Any row version in PostgreSQL must fit entirely into one page. Oversized
row versions are stored using TOAST, The Oversized Attributes Storage
Techniqgue. TOAST comprises several approaches to storing oversized field
values. Firstly, the value can be compressed so that the row version fits into
the page. Secondly, the value can be moved from the row version to a
separate service table. Both strategies can be applied to the same row
versions: some values would be compressed, some moved, some
compressed and moved.

Any table can have a separate TOAST table (with a dedicated index)
created for it, if necessary. Such tables and indexes are located in a
separate schema named pg_toast and, therefore, are usually not visible (for
temporary tables, pg_toast_temp_N schema is used, similarly to the regular
pg_temp_N).

The row versions in the TOAST table must also fit into one page each, so
longer values are split into multiple chunks, and are transparently “glued
together” by PostgreSQL when the application demands.

TOAST table is used only when oversized values are accessed. Besides
that, TOAST tables have their own row versions. Whenever a data update in
the main table does not affect the oversized value, the new row version will
refer to the same TOAST value, saving disk space.

https://postgrespro.com/docs/postgresgl/16/storage-toast

https://postgrespro.com/docs/postgresql/16/storage-toast

TOAST

The table t has a numeric type column. This type can hold very large numbers. For example:

=> SELECT length((123456789::numeric ~ 12345::numeric)::text);

However, when inserted into the table, this humongous value does not change the table size:
=> SELECT pg_relation_size('t','main');

pg_relation size

=> INSERT INTO t(n) SELECT 123456789::numeric ~ 12345::numeric;
INSERT 0 1
=> SELECT pg_relation_size('t','main');

pg relation size

Since the row version does not fit into a single page, the value of attribute n is stored in a separate TOAST table. TOAST tables and
their indexes are created automatically for all tables that include potentially “oversized” data types and are used as needed.

You can find the name and oid of the TOAST table:

=> SELECT relname, relfilenode FROM pg_class WHERE oid = (
SELECT reltoastrelid FROM pg_class WHERE oid = 't'::regclass
);

relname | relfilenode
________________ Fomm e e e e e e e e
pg toast 16388 | 16391
(1 row)

And here are the TOAST table files:

postgres$ 1s -1 /var/lib/postgresql/16/main/base/16386/16391%*

SrW------ - 1 postgres postgres 57344 Sep 24 17:00
/var/lib/postgresql/16/main/base/16386/16391
Srw------- 1 postgres postgres 24576 Sep 24 17:00

/var/lib/postgresql/16/main/base/16386/16391 fsm

When it comes to oversized values, there are several strategies that can be employed. The name of the current strategy is listed in
the Storage column:

=> \d+ t
Table "public.t"
Column | Type | Collation | Nullable | Default | Storage |
Compression | Stats target | Description
-------- B L T T e
______ L Ty,
id | integer | | not null | generated always as identity | plain
I I
n | numeric | | | | main |
I I
Indexes:

"t pkey" PRIMARY KEY, btree (id)
Access method: heap

e plain — TOAST is not used (type has a fixed length)

e extended — both compression and out-of-line storage are used
e external — compression is not used, only out-of-line storage
e main — such fields are processed last and are moved to the toast table only if compression is not enough

A storage strategy is assigned for each column when creating a table. It can be specified explicitly, and the default value depends on
the data type.

If necessary, the strategy can be modified later. For example, if you know that data in a column is already compressed, you can
switch the strategy to external.

For example:
=> ALTER TABLE t ALTER COLUMN n SET STORAGE external;
ALTER TABLE

This operation does not change the existing data, but defines the strategy to be used for new row versions.

Table Size Posigres

Table TOAST Indexes

%% &%
%

pg_table_size pg_indexes_size

pg_total_relation_size

As already mentioned, the size of a single fork can be obtained by the
pg_relation_size function. To get the total object size, other functions can be
used:

* pg_table_size shows the size of the table and its TOAST part (the TOAST
table and its index), but not the regular index sizes. The same function
can be used to find the size of an individual index: both tables and
indexes are relations, and despite the name, the function accepts any
relation as an input.

* pg_indexes_size sums up the sizes of all table indexes except the
TOAST table index.

e pg_total relation_size shows the full size of the table, along with all its
indexes.

Table Size

The size of a table (including the TOAST table and its index):
=> SELECT pg_table_size('t');

pg table size

581632
(1 row)

Total size of all table indexes:
=> SELECT pg_indexes_size('t');

pg_indexes size

You can get the size of a single index by using the pg_table_size function. Indexes have no TOASTSs, so the function only shows the
size of all index forks (main, fsm).

Currently, the table t has just the primary key index, so its size matches the size returned by pg_indexes_size:

=> SELECT pg_table_size('t_pkey') AS t_pkey;

245760
(1 row)

Total table size, including TOAST and all indexes:
=> SELECT pg_total_relation_size('t');

pg_total relation_size

827392

Takeaways poééa?sg

An object comprises several forks
A fork consists of one or more segment files

Oversized row versions are stored using TOAST

10

of] PROFESSIONAL

Practice Posigres

1.

Create an unlogged table in a custom tablespace and make sure
that it has an init fork.

Delete the created tablespace.

Create a table with a column of the text type. What storage
strategy is used for this column?

Change the strategy to external and insert a short and a long row
into the table.

Check if the rows are in the TOAST table by making a direct
query to it. Explain why.

11

1. Unlogged Table

student$ sudo -u postgres mkdir /var/lib/postgresql/ts_dir

=> CREATE TABLESPACE ts LOCATION '/var/lib/postgresql/ts_dir"';
CREATE TABLESPACE

=> CREATE DATABASE data_lowlevel;

CREATE DATABASE

=> \c data_lowlevel

You are now connected to database "data lowlevel" as user "student".
=> CREATE UNLOGGED TABLE u(n integer) TABLESPACE ts;

CREATE TABLE

=> INSERT INTO u(n) SELECT n FROM generate_series(1,1000) n;
INSERT 0 1000

=> SELECT pg_relation_filepath('u');

pg_relation filepath

pg tblspc/16386/PG_16 202307071/16387/16388
(1 row)

Let’s look at the table files.

Note that the 1s command is executed on behalf of the postgres user. You can open a second terminal window and switch to another
user with the following command:

student$ sudo -i -u postgres
Now, in the same window, run:
postgres$ 1s -1 /var/lib/postgresql/16/main/pg_tblspc/16386/PG_16_202307071/16387/16388*

SrwW------- 1 postgres postgres 40960 Sep 24 17:09
/var/lib/postgresql/16/main/pg tblspc/16386/PG 16 202307071/16387/16388
SrW------ - 1 postgres postgres 24576 Sep 24 17:09
/var/lib/postgresql/16/main/pg_tblspc/16386/PG_16_202307071/16387/16388_fsm
Srw------- 1 postgres postgres 0 Sep 24 17:09
/var/lib/postgresql/16/main/pg_tblspc/16386/PG_16_202307071/16387/16388_init

Drop the created tablespace:
=> DROP TABLE u;

DROP TABLE

=> DROP TABLESPACE ts;
DROP TABLESPACE

student$ sudo -u postgres rm -rf /var/lib/postgresql/ts_dir

2. Table with a Text Column

=> CREATE TABLE t(s text);
CREATE TABLE
=> \d+ t

Table "public.t"
Column | Type | Collation | Nullable | Default | Storage | Compression | Stats target |
Description

s | text | | extended |
Access method: heap

Dy default, the extended strategy is used for text data.

Change the strategy to external:

=> ALTER TABLE t ALTER COLUMN s SET STORAGE external;
ALTER TABLE

=> INSERT INTO t (s) VALUES ('Short string.');
INSERT 0 1

=> INSERT INTO t(s) VALUES (repeat('A',3456));

INSERT 0 1

Check the TOAST table:

=> SELECT relname FROM pg_class WHERE oid = (
SELECT reltoastrelid FROM pg_class WHERE relname='t"
);

relname

pg toast 16391
(1 row)

The TOAST table is “hidden”, because it is located in a schema that is excluded from the search path. This is a good thing, because
TOAST is intended to work transparently for the user. However, there still are ways to view the table:

=> SELECT chunk_id, chunk_seq, length(chunk_data)
FROM pg_toast.pg_toast_16391
ORDER BY chunk_id, chunk_seq;

chunk _id | chunk seq | length

__________ L S L
16396 | 0 | 1996
16396 | 1| 1460

(2 rows)

Only the long string went into the TOAST table (two chunks, total size matches the string size). The short string wasn’t TOAST’ed:
there is no need, as it fits into one page.

of] PROFESSIONAL

Practice+ Posigres

1. Create a database.
Compare the database size returned by the pg_database_size
function with the total size of all tables in the database.
Explain the result.

2. TOAST supports two compression methods: pglz and 1z4.

Use SQL to check whether PostgreSQL was compiled with these
methods support.

3. Create a text file of at least 10 MB size.
Load its contents into a table with a text field, first without
compression, and then using each of the algorithms. Compare the
final table size and the data loading time of all three options.

12

1. You can get the list of database tables from the pg_class table.

2. Using the pg_config view, you can find out which options were set for the
configure script when the server software was compiled. The string
containing the list of options is long; you can extract the necessary options
using the string_to_table function.

3. To obtain text for the experiment, you can take a sufficiently large binary
file (for example, the postgres executable) and convert it to text. For the
conversion, you can use the Base32 algorithm (the -w0 option disables line
breaks):

base32 -wO < binary-file > text-file

1. Comparing the Size of a Database to the Total Size of its Tables

=> CREATE DATABASE data_lowlevel;

CREATE DATABASE

=> \c data_lowlevel

You are now connected to database "data lowlevel" as user "student".

Even an empty database contains some system catalog tables. The list of all relations is stored in pg_class. Exclude from the
calculation:

® C(luster-wide tables (they do not belong to the current database)
e Indexes and toast tables (they are automatically taken into account when calculating the size)

=> SELECT sum(pg_total_relation_size(oid))
FROM pg_class

WHERE NOT relisshared

AND relkind = 'r';

7536640
(1 row)

The size of the database is a bit larger:
=> SELECT pg_database_size('data_lowlevel');

pg_database size

This is because the pg_database_size function returns the size of the catalog in the file system, and the catalog contains some service
files.

=> SELECT oid FROM pg_database WHERE datname = 'data_lowlevel';

Note that the Is command is executed on behalf of the postgres user. You can open a second terminal window and switch to another
user with the following command:

student$ sudo -i -u postgres
Now, in the same window, run:
postgres$ ls -1 /var/lib/postgresql/16/main/base/16386/[~0-9]*

SrW------- 1 postgres postgres 524 Sep 24 17:09
/var/lib/postgresql/16/main/base/16386/pg_filenode.map
SrW----- - 1 postgres postgres 159700 Sep 24 17:09
/var/lib/postgresql/16/main/base/16386/pg_internal.init
Srw------- 1 postgres postgres 3 Sep 24 17:09
/var/lib/postgresql/16/main/base/16386/PG_VERSION

e pg_filenode.map — mapping oid of some tables to file names;
® pg internal.init — system catalog cache;
® PG_VERSION — PostgreSQL version.

As some functions operate on the database object level, and others on the file system level, it is sometimes hard to compare the
results directly. The same goes for the pg_tablespace_size function.

2. TOAST Compression Methods Support

The pg_config view displays options passed to the configure script during PostgreSQL compilation.

=> SELECT * FROM (
SELECT string_to_table(setting, ''' ''') AS setting
FROM pg_config WHERE name = 'CONFIGURE'

)
WHERE setting ~ '(lz|zs)';

setting

--with-1z4
--with-zstd
(2 rows)

Which TOAST compression method is used by default?
=> \dconfig *toast*

List of configuration parameters
Parameter | Value

default toast compression | pglz
(1 row)

What methods are available?

=> SELECT setting, enumvals FROM pg_settings WHERE name = 'default_toast_compression’;

setting | enumvals

_________ L
pglz | {pglz,1z4}
(1 row)

3. Comparison of Compression Methods

Let’s compare compression methods using text data as an example.

To obtain a large text volume, we take the postgres executable file and convert it to text using the Base32 algorithm (commonly
used in email encoding).

student$ sudo cat /usr/lib/postgresql/16/bin/postgres | base32 -w@ > /tmp/gram.input

The resulting text file is sufficiently large.

student$ 1s -1 --block-size=K /tmp/gram.input

-rw-rw-r-- 1 student student 16392K Sep 24 17:09 /tmp/gram.input

We create a table to load the text data.

For the txt column, we set the external storage strategy, which allows out-of-line storage but prohibits compression.

=> CREATE TABLE t (
txt text STORAGE EXTERNAL
);

CREATE TABLE

Next, we load the data from the text file.
=> \timing on

Timing is on.

=> COPY t FROM '/tmp/gram.input';

COPY 1
Time: 400.517 ms

=> \timing off

Timing is off.

We check the table size, including TOAST storage.
=> SELECT pg_table_size('t')/1024;

?column?

After emptying the table, we activate compression using pglz.

=> TRUNCATE TABLE t;
TRUNCATE TABLE

=> ALTER TABLE t
ALTER COLUMN txt SET STORAGE EXTENDED,
ALTER COLUMN txt SET COMPRESSION pglz;

ALTER TABLE

Now, the extended strategy is applied, allowing both compression and out-of-line storage.
We reload the data.

=> \timing on

Timing is on.

=> COPY t FROM '/tmp/gram.input';

COPY 1
Time: 1472.967 ms (00:01.473)

=> \timing off
Timing is off.
=> SELECT pg_table_size('t')/1024;

?column?

The table size is significantly reduced, but loading time has been increased noticeably.
After clearing the table again, we set 1z4 compression.

=> TRUNCATE TABLE t;

TRUNCATE TABLE

=> ALTER TABLE t ALTER COLUMN txt SET COMPRESSION 1z4;

ALTER TABLE

We reload the data once again and compare the results.

=> \timing on

Timing is on.

=> COPY t FROM '/tmp/gram.input’;

COPY 1
Time: 443.792 ms

=> \timing off
Timing is off.
=> SELECT pg_table_size('t')/1024;

?column?

The 1z4 algorithm provides slightly worse compression than pglz but operates much faster.
Finally, we delete the text file.

student$ sudo rm -f /tmp/gram.input

