

Architecture

Vacuuming

16

Copyright
© Postgres Professional, 2017–2025
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Alexey Beresnev
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is,” and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

Routine Tasks

Autovacuum

Vacuum and Analysis

Table and Index Bloating

Full Vacuum and Rebuilding of Indexes

3

Routine Tasks

Cleaning pages to remove MVCC historical data
 dead row versions are vacuumed out of tables

index entries referencing dead versions are vacuumed from indexes

MVCC makes it possible to effectively implement snapshot isolation, but as
a result, old versions of rows accumulate in table pages, and references to
these versions accumulate in index pages. Historical versions are needed
for some time so that transactions can work with their data snapshots. But
over time, a row version will no longer have any snapshot that needs it.
Such a version is called “dead”.

The vacuum procedure cleans out dead row versions from table pages, as
well as unnecessary index entries that reference such versions.

If historical data is not vacuumed in a timely manner, tables and indexes will
bloat uncontrollably and the search for current row versions in them will slow
down.

https://postgrespro.com/docs/postgresql/16/routine-vacuuming

https://postgrespro.com/docs/postgresql/16/routine-vacuuming

4

Routine Tasks

Updating the visibility map
tracks pages where all row versions are visible in all snapshots
used to optimize vacuuming and speed up index access
exists only for tables

In addition to this main task, vacuuming also performs other instance
maintenance tasks. Vacuuming updates the visibility map and the free space
map. This is service information that is stored alongside the main data.

The visibility map shows pages that contain only the current row versions
visible in all data snapshots. In other words, these are pages that have not
changed for long enough to be cleared out of outdated row versions.

The visibility map has several uses:
● Vacuuming optimization.

The marked pages cannot contain dead row versions, so they can be
skipped during vacuuming.

● Index-Only access speedup.

Versioning information is stored only for tables, but not for indexes (that is
why indexes do not have visibility maps). After getting a reference to a
row version from an index, you usually need to read the table page to
check its visibility. But if the index itself already has all the necessary
columns, and at the same time the page is marked in the visibility map,
then reading the table page can be skipped.

If the visibility map is not updated regularly, index access can slow down.
This is described in more detail in the Query Performance Tuning (QPT)
course.

5

Routine Tasks

Updating the free space map
tracks the free space in the pages after vacuuming
used when inserting new row versions
exists for both tables and indexes

The free space map tracks available free space within pages. This space is
constantly changing, decreasing when new row versions are added and
increasing when they are removed.

When inserting new row versions, the map helps to quickly find a suitable
page to record the data into. The free space map has a complex tree-like
structure designed to improve search speed.

Indexes can have free space maps as well. However, since index entries are
inserted into specific positions within an index, the map only tracks empty
pages, which form when all index entries are deleted from them. These
pages are excluded from the index and later can be included again into the
proper part of the index.

6

Routine Tasks

Updating statistics
used by the query optimizer
calculated based on a random sample

The query optimizer requires statistical information about the data it is
working with, such as the number of rows in tables and the distribution of
data in columns. The process of collecting the statistics is called analysis.

For analysis, a random sample of data of a certain size is read from the
table. This way, the system can quickly collect statistics even on very large
tables. The result is not accurate, but it is not expected to be. The data
constantly changes, so it is impossible to maintain absolutely accurate
statistics all of the time anyway. It is sufficient to keep it relatively up-to-date
and relatively accurate.

If statistics are not updated regularly, they will no longer represent the data
accurately, leading to the optimizer proposing inefficient execution plans.
Because of this, queries may start executing orders of magnitude slower
than they could.

7

Routine Tasks

Freezing
prevents the consequences of 32-bit transaction counter overflow

As already mentioned, PostgreSQL orders events by transaction ID. The
counter has 32 bits allocated for it, and sooner or later it will overflow.

This is why the transaction ID scope is looped. For each transaction, half of
the IDs are considered to be in the future, half in the past.

But when the counter wraps around to zero, the order of transactions will be
disrupted. To prevent this, sufficiently old row versions are marked as frozen.
This means that they were created so far in the past that their transaction ID
no longer means anything and can be reused. Frozen row versions are
visible in all snapshots.

To avoid scanning extra pages, the visibility map has a bit that marks the
pages where all row versions are frozen.

Without regular freezing, the server may end up with no available
transaction IDs for new transactions. This is an emergency: the server stops,
all active transactions are aborted, and the administrator has to manually
start the server and perform the freezing.

8

Autovacuum

Autovacuum launcher
background process
periodically launches
worker processes

Autovacuum worker
vacuums tables of a
specific database that
require processing

PostgreSQL

backend

postmaster

background processes

autovacuum

shared memory

OS
cache

All the maintenance tasks discussed above are taken care of by the
autovacuum process. It dynamically reacts to the frequency of table
updates, and the more active the changes, the more often the table will be
vacuumed.

The autovacuum launcher process is permanently running in the
background. It schedules the vacuuming work and launches the required
number of autovacuum workers working in parallel.

Vacuuming works page-by-page, it does not block other transactions,
though it still does require additional I/O resources.

Autovacuum will not work if either of the two parameters autovacuum or
track_counts is switched off. It may seem that disabling autovacuum can
increase system performance by eliminating “unnecessary” I/O operations,
but it cannot. Failure to vacuum will lead to the consequences described
above: uncontrolled bloating, slower query processing, and the risk of an
emergency server shutdown. Ultimately, this will lead to a complete system
paralysis.

Autovacuuming is absolutely necessary. There is a large number of
configuration parameters that allow tweaking the autovacuum process. They
are discussed in detail in the DBA2 Configuration and Monitoring course.

9

Manual Vacuuming

Vacuuming
VACUUM [table, ...] vacuum specific tables
VACUUM vacuum the entire database

$ vacuumdb wrapper for the OS

Analysis
ANALYZE

$ vacuumdb --analyze-only

Vacuum and analysis
VACUUM ANALYZE

$ vacuumdb --analyze

If necessary, vacuuming and analysis can be started manually using the
following commands:

VACUUM (vacuuming only), ANALYZE (analysis only), and VACUUM
ANALYZE (both vacuuming and analysis).

Autovacuum is different from running scheduled vacuuming and analysis as
it reacts to the frequency of data changes. Running vacuum on a schedule
too often will create unnecessary load on the system. On the other hand, if
you vacuum too rarely, and data is changed often, the files may have time to
bloat significantly between vacuums.

https://postgrespro.com/docs/postgresql/16/sql-vacuum

https://postgrespro.com/docs/postgresql/16/sql-analyze

https://postgrespro.com/docs/postgresql/16/sql-vacuum
https://postgrespro.com/docs/postgresql/16/sql-analyze

Vacuuming

=>	CREATE	DATABASE	arch_vacuum_overview;

CREATE	DATABASE

=>	\c	arch_vacuum_overview

You	are	now	connected	to	database	"arch_vacuum_overview"	as	user	"student".

Let’s	create	a	table	and	turn	autovacuum	off	so	that	we	can	control	the	vacuuming	manually	in	our	experiments:

=>	CREATE	TABLE	bloat(
		id	integer	GENERATED	ALWAYS	AS	IDENTITY,
		d	timestamptz
)	WITH	(autovacuum_enabled	=	off);

CREATE	TABLE

Fill	the	table	with	data	and	build	an	index:

=>	INSERT	INTO	bloat(d)
		SELECT	current_timestamp	FROM	generate_series(1,100_000);

INSERT	0	100000

=>	CREATE	INDEX	ON	bloat(d);

CREATE	INDEX

Each	table	row	has	only	one	version,	the	last	one.

Now,	let’s	update	some	rows:

=>	UPDATE	bloat	SET	d	=	d	+	interval	'1	day'	WHERE	id	<=	10_000;

UPDATE	10000

Run	vacuum	and	have	it	tell	us	what	it	is	doing:

=>	VACUUM	(verbose)	bloat;

INFO:		vacuuming	"arch_vacuum_overview.public.bloat"
INFO:		finished	vacuuming	"arch_vacuum_overview.public.bloat":	index	scans:	1
pages:	0	removed,	595	remain,	595	scanned	(100.00%	of	total)
tuples:	10000	removed,	100000	remain,	0	are	dead	but	not	yet	removable
removable	cutoff:	738,	which	was	0	XIDs	old	when	operation	ended
new	relfrozenxid:	735,	which	is	1	XIDs	ahead	of	previous	value
frozen:	0	pages	from	table	(0.00%	of	total)	had	0	tuples	frozen
index	scan	needed:	55	pages	from	table	(9.24%	of	total)	had	10000	dead	item	identifiers	
removed
index	"bloat_d_idx":	pages:	95	in	total,	8	newly	deleted,	8	currently	deleted,	0	reusable
avg	read	rate:	16.430	MB/s,	avg	write	rate:	2.738	MB/s
buffer	usage:	1307	hits,	84	misses,	14	dirtied
WAL	usage:	733	records,	1	full	page	images,	91580	bytes
system	usage:	CPU:	user:	0.01	s,	system:	0.00	s,	elapsed:	0.03	s
VACUUM

The	important	lines	are:

Dead	versions	of	rows	have	been	removed	from	the	table	(tuples:	10000	removed...).
References	to	them	have	been	removed	from	the	index	(index	scan	needed...	10000	dead	item	identifiers	removed).

11

Bloating

Vacuuming does not reduce the size of tables and indexes
the “holes” in the pages are used for new data,
but the space is never returned to the operating system

Causes of bloating
incorrect autovacuum configuration
massive changes of data
long-running transactions

Negative consequences
inefficient disk space use
slower sequential table scan
less efficient index access

Vacuuming cleans out outdated row versions from pages. This creates spots
of free space in the pages, which is then used to store new data. But the
free space is not returned to the operating system, so, from the point of view
of the OS, the size of the data files does not decrease.

In the case of indexes (B-trees), it is complicated by the fact that if there is
not enough space in the page to place an index entry, the page is split into
two. The resulting pages are never merged again, even if all index entries
are removed from them.

If autovacuuming is configured correctly, the data files grow by a certain
constant amount due to updates between vacuumings. But if a large amount
of data is being changed at the same time, or there are active long
transactions (keeping old data snapshots active and not allowing you to
vacuum out old row versions), vacuuming will not be able to free up the
space in time. As a result, the tables and indexes may continue to grow in
size.

File bloating leads not only to disk space overuse (including for backups),
but also to a decrease in performance.

https://wiki.postgresql.org/wiki/Show_database_bloat

https://postgrespro.com/docs/postgresql/16/pgstattuple

https://wiki.postgresql.org/wiki/Show_database_bloat
https://postgrespro.com/docs/postgresql/16/pgstattuple

Table	and	Index	Bloating

There	are	several	ways	to	assess	bloating	and	its	impact:

Queries	to	the	system	catalog
Using	the	pgstattuple	extension

=>	CREATE	EXTENSION	pgstattuple;

CREATE	EXTENSION

The	extension	helps	monitor	the	state	of	a	table:

=>	SELECT	*	FROM	pgstattuple('bloat')	\gx

-[RECORD	1]------+--------
table_len										|	4874240
tuple_count								|	100000
tuple_len										|	4000000
tuple_percent						|	82.06
dead_tuple_count			|	0
dead_tuple_len					|	0
dead_tuple_percent	|	0
free_space									|	457324
free_percent							|	9.38

tuple_percent	is	the	proportion	of	useful	information	(not	100%	due	to	overhead).

Same	for	an	index:

=>	SELECT	*	FROM	pgstatindex('bloat_d_idx')	\gx

-[RECORD	1]------+-------
version												|	4
tree_level									|	1
index_size									|	778240
root_block_no						|	3
internal_pages					|	1
leaf_pages									|	85
empty_pages								|	0
deleted_pages						|	8
avg_leaf_density			|	89.17
leaf_fragmentation	|	0

leaf_pages	is	the	number	of	leaf	pages	of	the	index.
avg_leaf_density	is	storage	density	of	leaf	pages.
leaf_fragmentation	is	characteristic	of	physical	order	of	leaf	pages	(0	—	order,	100	—	disorder).

Let’s	update	half	the	rows	at	once:

=>	UPDATE	bloat	SET	d	=	d	+	interval	'1	day'	WHERE	id	%	2	=	0;

UPDATE	50000

Check	the	table	again:

=>	SELECT	*	FROM	pgstattuple('bloat')	\gx

-[RECORD	1]------+--------
table_len										|	6643712
tuple_count								|	100000
tuple_len										|	4000000
tuple_percent						|	60.21
dead_tuple_count			|	50000
dead_tuple_len					|	2000000
dead_tuple_percent	|	30.1
free_space									|	21004
free_percent							|	0.32

The	density	went	down.

To	avoid	scanning	the	whole	table,	pgstattuple	can	display	approximate	information:

=>	SELECT	*	FROM	pgstattuple_approx('bloat')	\gx

-[RECORD	1]--------+--------------------
table_len												|	6643712
scanned_percent						|	100
approx_tuple_count			|	100000
approx_tuple_len					|	4000000
approx_tuple_percent	|	60.207305795314426
dead_tuple_count					|	50000
dead_tuple_len							|	2000000
dead_tuple_percent			|	30.103652897657213
approx_free_space				|	21004
approx_free_percent		|	0.31614856273119607

Check	the	index:

=>	SELECT	*	FROM	pgstatindex('bloat_d_idx')	\gx

-[RECORD	1]------+--------
version												|	4
tree_level									|	1
index_size									|	1171456
root_block_no						|	3
internal_pages					|	1
leaf_pages									|	133
empty_pages								|	0
deleted_pages						|	8
avg_leaf_density			|	85.41
leaf_fragmentation	|	2.26

Leaf	page	density	remained	the	same,	but	the	number	of	pages	has	increased.

13

Rebuilding Objects

Full vacuum
VACUUM FULL

$ vacuumdb --full

completely rebuilds the contents of tables and indexes
locks the table completely

Rebuilding indexes
REINDEX

rebuilds indexes
locks the index completely
and locks the associated table for write operations

In order to reduce the physical size of bloated tables and indexes, a full
vacuum is required.

The VACUUM FULL command completely rewrites the contents of the table
and its indexes, minimizing the space occupied. However, this process
requires an exclusive table lock and therefore cannot be executed in parallel
with other transactions.

https://postgrespro.com/docs/postgresql/16/sql-vacuum

You can rebuild an index or several indexes without touching the table. This
is done by the REINDEX command. It locks the table for writing (reading is
still available), so transactions trying to change the table or plan a query on it
will be blocked.

https://postgrespro.com/docs/postgresql/16/sql-reindex

If prolonged exclusive locking is undesirable, you can consider pg_repack, a
third-party extension (https://github.com/reorg/pg_repack) that allows you to
rebuild tables and their indexes on the fly.

https://postgrespro.com/docs/postgresql/16/sql-vacuum
https://postgrespro.com/docs/postgresql/16/sql-reindex
https://github.com/reorg/pg_repack

14

Rebuilding Objects

Non-blocking index rebuilding
REINDEX ... CONCURRENTLY

rebuilds indexes without locking tables for writing
takes longer and may fail
not transactional
does not work for system indexes
does not work for indexes associated with exclusion constraints

The REINDEX ... CONCURRENTLY command can work without locking the
table for writing. However, non-blocking rebuilding takes longer and may fail
(due to deadlocks). In this case, the index will need to be rebuilt again.

Non-blocking index rebuilding has some limitations: it cannot be performed
inside a transaction, and it cannot rebuild system indexes and indexes for
exclusion constraints (EXCLUDE).

Rebuilding	Objects

You	can	rebuild	an	index	using	the	REINDEX	command	with	the	CONCURRENTLY	clause.	It	rebuilds	the	index	without	stopping	the
system.

=>	REINDEX	TABLE	CONCURRENTLY	bloat;

REINDEX

Check	the	index	again:

=>	SELECT	*	FROM	pgstatindex('bloat_d_idx')	\gx

-[RECORD	1]------+-------
version												|	4
tree_level									|	1
index_size									|	712704
root_block_no						|	3
internal_pages					|	1
leaf_pages									|	85
empty_pages								|	0
deleted_pages						|	0
avg_leaf_density			|	89.17
leaf_fragmentation	|	0

The	page	count	and	density	have	returned	to	their	initial	values.

To	rebuild	a	table	together	with	its	indexes,	you	can	use	VACUUM	FULL.	However,	unlike	REINDEX	CONCURRENTLY,	this	operation
fully	blocks	all	access	to	the	table.

=>	VACUUM	FULL	bloat;

VACUUM

=>	SELECT	*	FROM	pgstattuple('bloat')	\gx

-[RECORD	1]------+--------
table_len										|	4431872
tuple_count								|	100000
tuple_len										|	4000000
tuple_percent						|	90.26
dead_tuple_count			|	0
dead_tuple_len					|	0
dead_tuple_percent	|	0
free_space									|	16724
free_percent							|	0.38

The	density	has	increased,	the	freed	up	space	is	returned	to	the	operating	system.

16

Takeaways

Row versions are accumulated, so periodic vacuuming is
necessary

Vacuuming serves multiple goals:
updating visibility maps and free space maps
collecting statistics for the optimizer
freezing old row versions

Autovacuuming is necessary, but requires configuration

Full vacuum may be necessary to combat bloating

17

Practice

1. Disable autovacuuming and make sure it does not work.

2. In a new database, create a table with one numeric column and
an index for this table. Insert 100,000 random numbers into the
table.

3. Change half of the table rows several times. Write down the size
of the table and the index each time.

4. Run a full vacuum.

5. Repeat step 3, running a regular vacuum each time you change
the values. Compare the results.

6. Turn autovacuuming back on.

1. Set the autovacuum parameter to off and reload the configuration files.

3. Use pg_table_size(table-name) and pg_indexes_size(table-
name) functions. For more information about calculating the sizes of various
objects, see the Data organization module.

6. Set the autovacuum parameter back to on (or reset its value with the
RESET command), then reload the configuration files.

1.	Switching	Autovacuum	Off

Autovacuum	is	running	for	now:

=>	SELECT	pid,	backend_start,	backend_type
FROM	pg_stat_activity
WHERE	backend_type	=	'autovacuum	launcher';

		pid		|									backend_start									|				backend_type					
-------+-------------------------------+---------------------
	31555	|	2025-09-24	17:06:52.245698+03	|	autovacuum	launcher
(1	row)

We	disable	autovacuum	and	reload	the	configuration	settings.

=>	ALTER	SYSTEM	SET	autovacuum	=	off;

ALTER	SYSTEM

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

The	autovacuum	launcher	process	is	no	longer	present.

=>	SELECT	pid,	backend_start,	backend_type	
FROM	pg_stat_activity	
WHERE	backend_type	=	'autovacuum	launcher';

	pid	|	backend_start	|	backend_type	
-----+---------------+--------------
(0	rows)

2.	Database,	Table	and	Index

Create	a	database,	a	table	and	an	index:

=>	CREATE	DATABASE	arch_vacuum_overview;

CREATE	DATABASE

=>	\c	arch_vacuum_overview

You	are	now	connected	to	database	"arch_vacuum_overview"	as	user	"student".

=>	CREATE	TABLE	t(n	numeric);

CREATE	TABLE

=>	CREATE	INDEX	t_n	on	t(n);

CREATE	INDEX

Insert	rows:

=>	INSERT	INTO	t	SELECT	random()	FROM	generate_series(1,100_000);

INSERT	0	100000

3.	Changing	Rows	without	Vacuuming

Store	a	query	to	calculate	the	size	of	the	table	and	the	index	as	a	psql	variable	so	that	we	can	use	it	later:

=>	\set	SIZE	'SELECT	pg_size_pretty(pg_table_size(''t''))	table_size,	pg_size_pretty(pg_indexes_size(''t''))	index_size\\g	(footer=off)'

=>	:SIZE

	table_size	|	index_size	
------------+------------
	4360	kB				|	4312	kB

=>	UPDATE	t	SET	n=n	WHERE	n	<	0.5;

UPDATE	49990

=>	:SIZE

	table_size	|	index_size	
------------+------------
	6520	kB				|	6448	kB

=>	UPDATE	t	SET	n=n	WHERE	n	<	0.5;

UPDATE	49990

=>	:SIZE

	table_size	|	index_size	
------------+------------
	8680	kB				|	7616	kB

=>	UPDATE	t	SET	n=n	WHERE	n	<	0.5;

UPDATE	49990

=>	:SIZE

	table_size	|	index_size	
------------+------------
	11	MB						|	11	MB

The	table	and	index	sizes	keep	growing.

4.	Full	Vacuum

=>	VACUUM	FULL	t;

VACUUM

=>	:SIZE

	table_size	|	index_size	
------------+------------
	4336	kB				|	3104	kB

The	table	size	is	almost	back	to	where	it	was	initially,	and	the	index	size	decreased	(building	an	index	for	a	large	data	set	is	more	efficient	than	adding	data	to	the
index	row	by	row).

5.	Changing	Rows	with	Vacuuming

=>	UPDATE	t	SET	n=n	WHERE	n	<	0.5;

UPDATE	49990

=>	VACUUM	t;

VACUUM

=>	:SIZE

	table_size	|	index_size	
------------+------------
	6528	kB				|	4648	kB

=>	UPDATE	t	SET	n=n	WHERE	n	<	0.5;

UPDATE	49990

=>	VACUUM	t;

VACUUM

=>	:SIZE

	table_size	|	index_size	
------------+------------
	6528	kB				|	4648	kB

=>	UPDATE	t	SET	n=n	WHERE	n	<	0.5;

UPDATE	49990

=>	VACUUM	t;

VACUUM

=>	:SIZE

	table_size	|	index_size	
------------+------------
	6528	kB				|	4648	kB

The	size	increased	once	and	then	stabilized.

The	example	demonstrates	that	removing	(or	changing)	large	amount	of	data	should	be	done	in	multiple	transactions,	if	possible.	This	will	allow	autovacuum	to
clean	up	unneeded	row	versions	in	time,	avoiding	table	bloating.

6.	Turn	Autovacuum	Back	On

=>	ALTER	SYSTEM	RESET	autovacuum;

ALTER	SYSTEM

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

