Replication
Overview of Physical Replication

Pos gres

Copyright

© Postgres Professional, 2017-2025

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov, Igor Gnatyuk
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is”, and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

Topics

Replication Types
Physical Replication
Log Levels
Replication Use Cases
Switching to Standby

of] PROFESSIONAL

Posygres

Replication Types Pogga’?“é“g

Data synchronization between servers

Purposes
fault tolerance, high availability
scalability

Physical replication

synchronization at the level of pages and row versions

Logical replication

synchronization at the level of table rows

A single database server may not meet the requirements.

A single server is a potential point of failure. Two (or more) servers allow the
system to maintain availability in case of a failure (fault tolerance) or, more
broadly, in any scenario, such as during scheduled maintenance (high
availability).

One server may not be able to handle the load. Scaling up (upgrading server
resources) may be inefficient or even impossible. However, the workload
can be distributed across multiple servers (scaling).

Database systems can access shared data.

The solution is to have multiple servers managing the same data.
Replication refers to the process of synchronizing this data.

Depending on the level at which synchronization occurs, there are two types
of replication: physical replication synchronizes changes at the data page
level and transaction statuses and logical replication synchronizes changes
at the table row level.

of] PROFESSIONAL

Physical Replication Posigres

Mechanism

one server transfers WAL records to another server, and the second server
replays the received records

Features

primary-standby: data flow in one direction only
binary server compatibility is required
only the cluster as a whole can be replicated

The idea of physical replication is that one server transfers WAL records to
another server, and the second server replays the received records like in
crash recovery.

During physical replication, servers have assigned roles: primary and
standby. The primary transfers WAL records to standby (in the form of files
or a stream of records). The standby applies these records to its data files.
The WAL record application is purely mechanical, without “understanding
the meaning” of the changes, so binary compatibility between servers is
important (the same platform and major PostgreSQL version). Since the
WAL is shared across the entire cluster, only the cluster as a whole can be
replicated.

of] PROFESSIONAL

Physical Replication Posigres

main server backup server
(primary) (standby)

Sueaming -
replication
select, insert z .
WAL segments (TITTTT] Sl

WAL archive

To set up replication between two servers, we create a replica from a
physical backup of the primary server. Normally, restoring such a backup
would create a new independent server. However, when replication is
enabled, the standby server operates in continuous recovery mode: it
constantly applies new WAL records received from the primary server
(handled by the startup process). This way, the replica is constantly
maintained in an almost up-to-date state.

There are two ways to deliver WALs from the primary to the standby. The
one used more commonly in production is streaming replication.

In this case, the replica (walreceiver process) connects to the primary

(walsender process) via the replication protocol and receives the WAL
record stream. This minimizes the replica lag and can even eliminate it
entirely (in synchronous mode).

If the system is set for continuous archiving, file-based replication is
possible. In this case, the replica will lag noticeably as the file archive is
updated only when a WAL segment is switched.

In practice, file-based replication is used in addition to streaming replication.
If the replica cannot receive the next WAL entry via the replication protocol, it
will try to read it from the archive.

https://postgrespro.com/docs/postgresgl/16/high-availability

https://postgrespro.com/docs/postgresql/16/high-availability

WAL Levels Pos{gres

wal_level parameter

minimal < replica

crash recovery crash recovery

restore from backup,
replication

Since standby only receives the information contained in the WAL, all data
necessary for synchronization shall be recorded into the WAL.

The amount of data stored in each WAL record is controlled by the wal_level
parameter.

Prior to PostgreSQL 10 the default level was minimal, which guaranteed
only crash recovery. Replication cannot function at this level because some
changes are directly written to persistent storage for reliability, bypassing
WAL.

In PostgreSQL 10+ the default level is replica. At this level all data changes
are recorded into the WAL, that enables restoring the system from
pg_basebackup hot backups, as well as physical streaming replication.

As backup and replication are highly-demanded features, the default level
was switched to replica.

Physical Replication Configuration

Setting up streaming replication between two servers. We will focus on the simplest configuration; replication is covered in detail
in the DBA3 administrator course.

Required configuration parameters to be checked:

=> SELECT name, setting FROM pg_settings
WHERE name in ('wal_level','max_wal_senders');

name | setting
_________________ B
max_wal_senders | 10
wal level | replica
(2 rows)

Starting with PostgreSQL 10, default parameters already have appropriate values.
Ensure pg_hba.conf allows replication protocol connections:

=> SELECT type, user_name, address, auth_method FROM pg_hba_file_rules
WHERE 'replication' = ANY(database);

type | user_name | address | auth method

------- R e e S
local | {all} | | trust

host | {all} | 127.0.0.1 | scram-sha-256
host | {all} | ::1 | scram-sha-256
(3 rows)

The necessary permissions are already in place.

Let’s deploy a standby from a physical backup, for this we use the pg_basebackup tool.
The target copy directory must be empty or non-existent:
student$ rm -rf /home/student/tmp/backup

The --checkpoint=fast option requests the utility to perform an immediate checkpoint (without delays), while -R adds standby
configuration settings:

student$ pg_basebackup --pgdata=/home/student/tmp/backup -R --checkpoint=fast
The utility creates a sample configuration file...
student$ cat /home/student/tmp/backup/postgresql.auto.conf

Do not edit this file manually!

It will be overwritten by the ALTER SYSTEM command.

primary conninfo = 'user=student passfile=''/home/student/.pgpass'

channel binding=prefer host="'"'/var/run/postgresql'' port=5432 sslmode=prefer
sslnegotiation=postgres sslcompression=0 sslcertmode=allow sslsni=1

ssl min protocol version=TLSv1l.2 gssencmode=prefer krbsrvname=postgres gssdelegation=0
target session attrs=any load balance hosts=disable’

... and a signal file that instructs the standby to enter continuous recovery mode:

student$ 1s -1 /home/student/tmp/backup/*.signal

Srw------- 1 student student @ Sep 24 17:03 /home/student/tmp/backup/standby.signal

The cluster where we are deploying the standby has been pre-initialized. If the server is running, it must be stopped first:
student$ sudo pg _ctlcluster 16 replica stop

Cluster is not running.

The copy was placed in the home directory of student user, and now we transfer it to the cluster data directory and make postgres
user the owner of the files:

student$ sudo rm -rf /var/lib/postgresql/16/replica
student$ sudo mv /home/student/tmp/backup /var/lib/postgresql/16/replica
student$ sudo chown -R postgres: /var/lib/postgresql/16/replica

Now we can start the server:

student$ sudo pg_ctlcluster 16 replica start

Let’s examine the standby processes.

student$ sudo head -n 1 '/var/lib/postgresql/16/replica/postmaster.pid’
25056

student$ ps -o pid,command --ppid 25056

PID COMMAND
25057 postgres: 16/replica: checkpointer
25058 postgres: 16/replica: background writer
25059 postgres: 16/replica: startup recovering 000000010000000000000003
25060 postgres: 16/replica: walreceiver streaming 0/3000060

The walreceiver process receives the WAL stream, and the startup process applies changes.
Compare these with the primary processes.

student$ sudo head -n 1 '/var/lib/postgresql/16/main/postmaster.pid’
24648

student$ ps -o pid,command --ppid 24648

PID COMMAND
24649 postgres: 16/main: checkpointer
24650 postgres: 16/main: background writer
24652 postgres: 16/main: walwriter
24653 postgres: 16/main: autovacuum launcher
24654 postgres: 16/main: logical replication launcher
24697 postgres: 16/main: student student [local] idle
25061 postgres: 16/main: walsender student [local] streaming 0/3000060

The walsender process sends WAL records to the standby.
The state of the replication can be checked on the primary server:

=> SELECT * FROM pg_stat_replication \gx

[RECORD 1 J---odommmmmmm i
pid | 25061

usesysid | 16384

usename | student

application name | 16/replica

client addr |

client_hostname |

client_port | -1

backend_start | 2025-09-24 17:03:26.069788+03
backend xmin |

state | streaming

sent lsn | 0/3000060

write lsn | ©/3000060

flush_1sn | 0/3000060

replay 1lsn | 6/3000060

write lag | 00:00:00.054771

flush lag | 00:00:00.070437

replay lag | 60:00:00.07073

sync_priority | ©

sync_state | async

reply_time | 2025-09-24 17:03:26.142566+03

e * Isn values indicate which WAL records were sent to the standby, received by it, written to disk and applied.
® sync_state is synchronous or asynchronous replication (we will explain it in detail later).

Standby Usage Poggﬁ?éﬁ

Allowed

read-only queries (SELECT, COPY TO, cursors)

setting server parameters (SET, RESET)

transaction management (BEGIN, COMMIT, ROLLBACK...)
creating a backup (pg_basebackup)

Not allowed

any changes (INSERT, UPDATE, DELETE, TRUNCATE, nextval...)
locks expecting changes (SELECT FOR UPDATE...)

DDL commands (CREATE, DROP...), including creating temporary tables
maintenance commands (VACUUM, ANALYZE, REINDEX...)

access control (GRANT, REVOKE...)

triggers and advisory locks do not work

By default, the standby operates in the hot standby mode. In this mode,
client connections are allowed but restricted to read-only operations. Setting
server parameters and transaction management commands will also work.
For example, you can start a (read-only) transaction with a specific isolation
level.

In addition, the standby can also be used for making backups (taking into
account the possible lag behind the primary).

In hot standby mode, no data changes (including sequences), locks, DDL
commands, commands such as VACUUM, ANALYZE and REINDEX or
access control commands are allowed on the standby. Basically, anything
that changes the data in any way is not accepted.

If required, the standby can be run in warm standby mode by setting the
parameter hot_standby = off. In this case, client connections will be
completely disabled.

https://postgrespro.com/docs/postgresgl/16/hot-standby

https://postgrespro.com/docs/postgresql/16/hot-standby

Standby Usage

Run several commands on the primary server:

=> CREATE DATABASE replica_overview_physical;

CREATE DATABASE

=> \c replica_overview_physical

You are now connected to database "replica overview physical" as user "student".
=> CREATE TABLE test(id integer PRIMARY KEY, descr text);

CREATE TABLE

Check the standby:

student$ psql -p 5433 -d replica_overview_physical

| => SELECT * FROM test;

id | descr
I,
(0 rows)

Let’s insert a row into the table on the primary server:
=> INSERT INTO test VALUES (1, 'One');
INSERT 0 1

| => SELECT * FROM test;

id | descr

So, replication is working correctly, and queries are executed successfully on the standby. No changes can be made on standby
directly:

| => INSERT INTO test VALUES (2, 'Two');

| ERROR: cannot execute INSERT in a read-only transaction

Standby Usage Poggﬁ?éﬁ

data storage reliability

main server backup server
(primary) (standby)

synchronous
replication
select, insert wal sender | | wal receiver startup
update, delete 4

=
LTI
A1

WAL segments

10

The replication mechanism offers flexible system design options for a variety
of applications. Let's consider several typical cases and possible solutions.

One of the key objectives is ensuring data storage reliability.

As a reminder, transaction commits can operate in synchronous or
asynchronous modes. In synchronous mode, the commit is not completed
until the data is safely written to persistent storage. In asynchronous mode,
there is a risk of losing some committed data, but commits do not wait for
disk writes, improving system performance.

A similar principle is applied to replication: in synchronous mode
(synchronous_commit = on), when a standby is present, the commit waits
not only for the WAL to be written to disk but also for confirmation that the
WAL records have been received by the synchronous standby. This further
enhances reliability (ensuring data is not lost even if the primary server fails)
but also increases latency, slowing down the system.

There are also intermediate configuration options that do not provide
absolute reliability guarantees but still reduce the risk of data loss.

Standby Usage Poggﬁ?éﬁ

long-running analytical queries (reports)

mair_1 server backup server
(primary) (standby) standby

- may fall behind,
» 4 conflicting records

6 »d are deferred
select, insert wal sender | | wal receiver startup
update, delete 4

' conflicts:
- removal of row versions
[D:Dj:‘]j by vacuuming and
m exclusive locks

WAL segments

11

As mentioned earlier, long-running queries hold back the vacuum horizon,
preventing the removal of obsolete row versions. If certain tables are being
actively modified during this time, they can grow significantly in size.

This is why standbys are often used for long-running analytical queries.

A subtle issue arises when WAL records from the primary server conflict with
gueries running on the standby. There are two main sources of such
records:

1. The primary server removes row versions that are no longer needed there
but are still required by queries on the standby.

2. Exclusive locks on the primary that are incompatible with queries on the
standby.

So, standby for reports is typically configured to accept WAL records from
the primary but delay their application if they conflict with running queries.
This means the standby’s data may lag behind the primary, but for analytical
workloads, this is acceptable.

Multiple Stanbys Pogga’iﬁ“é%

backup server
(standby A)

main server e startup
(primary)
select, insert backup server
update, delete (standby B)
WAL segments) ‘

12

Multiple standbys can be connected to the primary server to distribute OLTP
read workloads.

OLTP queries should not be long-running. This enables effective use of
replication protocol feedback between standbys and the primary server. In
this case, the primary server maintains awareness of the transaction horizon
required by queries on standbys, preventing vacuum from removing needed
row versions. Essentially, this feedback mechanism achieves the same
result as if all queries were executing locally on the primary server.

However, replication provides only the basic mechanism. External tools
(load balancers) are required for automatic workload distribution. It is
important to note that data consistency between the primary and standbys is
not guaranteed — even in synchronous replication. Applications reading
from a single server will, of course, maintain consistency, but consistency is
no longer guaranteed when reading from multiple servers simultaneously.
Replicas may return either stale data or changes not yet visible on the
primary. These topics are discussed in detail in the DBA3 Backup and
Replication course.

Cascading Replication Pogga’ﬁsé’%

no additional load on the primary and redistribution of network traffic

main server backup server backup server
(primary) (standby A) (standby B)

= B =

select, insert wal sender wal recelver startup wal sender wal receiver startup
update, delete

D]Z
(LT
AT

WAL segments

13

Multiple standbys connected to a single primary server will generate
additional load on it. Network load should also be considered when
transmitting multiple copies of the WAL stream.

To reduce this load, standbys can be arranged in a cascade configuration,
where servers relay WAL records to each other in a chain. The further
downstream from the primary, the greater potential lag may accumulate in
the replicated data.

Note that cascaded synchronous replication is not supported — the primary
can only synchronize with directly connected standbys. However, the
primary collects feedback from all standbys in the cascade.

Delayed Replication Pogga’ﬁsé’%

“time machine”
can recover to a specific point in time without WAL archive

main server backup server
(primary) (standby)

select, insert wal sender | > wal receiver startup
update, delete

=]

m WAL application delay /

WAL segments

Y4
VAN

14

A useful feature is the ability to view data at and recover to an arbitrary point
in time. It is particularly useful for recovering from user errors where
incorrect actions need to be rolled back.

The regular archive-based point-in-time recovery mechanism can work here,
but it requires a lot of preparation and takes a lot of time. And PostgreSQL
itself does not allow to make data snapshots for a given moment in the past.

The solution is to have a standby apply WAL records not immediately, but
with a certain delay.

In this course, we do not cover the required configurations for each of the
provided options. For detailed information, refer to the DBA3 Backup and
Replication course.

of] PROFESSIONAL

Switching to Standby Pos{gres

Scheduled switchover

shutdown of the main server for maintenance without interruption of service
manual mode

Emergency switchover

switch to a standby due to a primary server failure

manual mode,
but can be automated with external cluster software

15

An existing standby can be used to replace the primary server.

There are different reasons for switchover to a backup server. If it is
maintenance time on the primary, the switchover can be performed routinely
at a convenient time. If it is the primary failure, on the other hand, the
switchover has to be performed as quickly as possible to avoid service
downtime.

Even in case of a failure, switchover is performed manually unless
specialized cluster software is used to monitor server status and initiate the
switchover automatically.

Switching to a Standby

To switch a standby from recovery to normal mode use the appropriate command.
| => SELECT pg_is_in_recovery(); -- is it a standby?

pg _is in recovery

student$ sudo pg_ctlcluster 16 replica promote
Starting with PostgreSQL 12, it can be done with the pg_promote SQL function.
| => SELECT pg_is_in_recovery(); -- let’s check again: is it a standby?

pg _is in recovery

We have two completely independent servers running at the same time.
| => INSERT INTO test VALUES (2, 'Two');

| INSERT @ 1

It is extremely important to ensure that an application connects to only one of the servers to avoid split-brain scenarios where data
becomes irreconcilably divided between servers.

of] PROFESSIONAL

Takeaways Posigres

Physical replication mechanism works by delivering
WAL records to the standby and applying them there

streaming WAL records or transferring files
Physical replication creates an exact copy of the entire cluster

unidirectional, requires binary compatibility
core mechanism for solving multiple use cases

17

Practice Pogga’?éﬁ

1. Set up physical streaming replication between the two servers in
synchronous mode. Verify that replication works as intended.
Make sure that when the standby is stopped, commits on the
primary are not completed.

2. By default, conflicting WAL records on the standby are delayed
for up to 30 seconds. Disable the delay and verify that long-
running queries on the standby are canceled if the primary
deletes and vacuums required row versions.

Then enable feedback and confirm that it prevents cancellations
by delaying primary vacuums.

19

1. To do this, set the following parameters on the primary using ALTER
SYSTEM:

e synchronous_commit = on
e synchronous_standby_names = "'16/replica

2. The max_standby_streaming_delay parameter defines how long the
standby will wait for conflicting queries to complete before canceling them.
Set it to 0. Enable feedback by setting hot_standby feedback = on.

Apply both settings using ALTER SYSTEM and reload the configuration.

To simulate a long-running query on a small dataset, use pg_sleep() in
gueries.

1. Synchronous Replication

Deploy the standby as shown in the demonstration:

student$ pg_basebackup --pgdata=/home/student/tmp/backup -R --checkpoint=fast
student$ sudo pg_ctlcluster 16 replica stop

Cluster is not running.

student$ sudo rm -rf /var/lib/postgresql/16/replica

student$ sudo mv /home/student/tmp/backup /var/lib/postgresql/16/replica
student$ sudo chown -R postgres: /var/lib/postgresql/16/replica

Starting the standby.

student$ sudo pg ctlcluster 16 replica start

Let’s configure synchronous replication on the primary. By default, synchronous mode is enabled, but transaction commit records
are only synchronized with the local file system:

=> SHOW synchronous_commit;

synchronous_commit

on
(1 row)

The synchronization remains unconfigured:
=> SHOW synchronous_standby_names;

synchronous_standby names

There can be several standbys, and the primary must know which one to synchronize with. The standby is represented by the name
specified in its cluster_name parameter:

student$ psql -p 5433
| => SHOW cluster_name;

cluster name

16/replica
(1 row)

=> ALTER SYSTEM SET synchronous_standby names = '"16/replica"';
ALTER SYSTEM
=> SELECT pg_reload_conf();

pg_reload conf

=> SELECT sync_state FROM pg_stat_replication;

sync_state

sync
(1 row)

The standby starts successfully.

=> CREATE DATABASE replica_overview_physical;

CREATE DATABASE

=> \c replica_overview_physical

You are now connected to database "replica overview physical" as user "student".
Now stop the standby...

student$ sudo pg_ctlcluster 16 replica stop

...and attempt to execute a transaction:

=> CREATE TABLE test(n integer);

The operation hangs until the standby restarts and replication is restored:

student$ sudo pg ctlcluster 16 replica start

CREATE TABLE

2. Conflicting Records

student$ psql -p 5433 -d replica_overview_physical

We disable delayed conflict resolution:

| => ALTER SYSTEM SET max_standby_streaming_delay = 0;
| ALTER SYSTEM

| => SELECT pg_reload_conf();

pg_reload conf

Insert rows into the table:

=> INSERT INTO test(n) SELECT id FROM generate_series(1,10) AS id;
INSERT 0 10

Execute a long-running query on the standby...

| => SELECT pg_sleep(5), count(*) FROM test;

..meanwhile, delete table rows and perform vacuuming on the primary:

=> DELETE FROM test;

DELETE 10

=> VACUUM VERBOSE test;

INFO: vacuuming "replica overview physical.public.test"

INFO: table "test": truncated 1 to 0 pages

INFO: finished vacuuming "replica overview physical.public.test": index scans: 0
pages: 1 removed, 0 remain, 1 scanned (100.00% of total)

tuples: 10 removed, 0 remain, 0 are dead but not yet removable

removable cutoff: 737, which was 1 XIDs old when operation ended

new relfrozenxid: 737, which is 3 XIDs ahead of previous value

frozen: 0 pages from table (0.00% of total) had 0 tuples frozen

index scan not needed: 1 pages from table (100.00% of total) had 10 dead item identifiers
removed

avg read rate: 0.000 MB/s, avg write rate: 3.321 MB/s

buffer usage: 10 hits, @ misses, 4 dirtied

WAL usage: 6 records, 1 full page images, 8675 bytes

system usage: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

VACUUM

Vacuuming removed all row versions (tuples: 10 removed). The standby query fails with an error:

ERROR: canceling statement due to conflict with recovery
DETAIL: User query might have needed to see row versions that must be removed.

Repeat the experiment with feedback enabled.
| => ALTER SYSTEM SET hot_standby_feedback = on;
| ALTER SYSTEM

| => SELECT pg_reload_conf();

pg reload conf

=> INSERT INTO test(n) SELECT id FROM generate_series(1,10) AS id;
INSERT 0 10

| => SELECT pg_sleep(5), count(*) FROM test;

=> DELETE FROM test;

DELETE 10

=> VACUUM VERBOSE test;

INFO: vacuuming "replica overview physical.public.test"

INFO: finished vacuuming "replica overview physical.public.test": index scans: 0
pages: 0 removed, 1 remain, 1 scanned (100.00% of total)

tuples: O removed, 10 remain, 10 are dead but not yet removable

removable cutoff: 738, which was 2 XIDs old when operation ended

new relfrozenxid: 738, which is 1 XIDs ahead of previous value

frozen: 0 pages from table (0.00% of total) had 0 tuples frozen

index scan not needed: 0 pages from table (0.00% of total) had 0 dead item identifiers
removed

avg read rate: 0.000 MB/s, avg write rate: 31.250 MB/s

buffer usage: 8 hits, 0 misses, 1 dirtied

WAL usage: 1 records, 0 full page images, 188 bytes

system usage: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

VACUUM

Now, the vacuum does not delete the row versions because it is aware of a query running on the standby (10 are dead but not yet
removable) and the query is completed successfully:

pg_sleep | count

Results:

o In the first case (max_standby_streaming_delay), application of WAL records on the standby is delayed.
o In the second case (hot_standby_feedback), the vacuuming on the primary is delayed.

Disable synchronous replication.

=> ALTER SYSTEM RESET synchronous_standby_ names;
ALTER SYSTEM

=> SELECT pg_reload_conf();

pg_reload conf

