Data Organization

System Catalog

Pos gres

Copyright

© Postgres Professional, 2017-2025

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov, Alexey Beresnev
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is,”
and Postgres Professional company has no obligations to provide
maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

Topics Pos{gres

What Is the System Catalog and how to Access It
System Catalog Objects and their Location
Object Naming Rules

Special Data Types

of] PROFESSIONAL

System Catalog Posigres

A set of tables and views
describing all objects in a database cluster
Schemas

primary schema: pg_catalog
alternative representation: information_schema (SQL standard)

SQL access

view: SELECT
change: CREATE, ALTER, DROP

psql access

commands for convenient data visualization

The system catalog is a collection of tables and views that describe all
database objects. It is metadata for the contents of the cluster:
https://postgrespro.com/docs/postgresql/16/catalogs

Starting from version 14 of PostgreSQL, primary keys and unique
constraints have been added for most system catalog tables.

You can access this metadata using regular SQL queries. SELECT
commands can give you a description of an object, and DDL (Data Definition
Language) commands let you add and modify objects.

All system catalog tables and views are located in the pg_catalog schema.
There is another schema, as defined by the SQL standard:
information_schema. It is more stable and portable than pg_catalog, but
does not reflect specific features of PostgreSQL.

Client programs can read the contents of the system catalog and display it to
the user in a convenient way. For example, GUI-based development and
management environments usually come with a hierarchical object
navigation tool.

The psql client also offers a number of convenient built-in commands
specifically designed for working with the system catalog. Most of these
commands start with \d (as in “describe”). For the full list of commands and
their descriptions, see:

https://postgrespro.com/docs/postgresql/16/app-psql#APP-PSQL-META-CO
MMANDS

We will look at the most commonly used ones in the demo.
The course materials also include the catalogs.pdf file that features a
diagram of the main system catalog tables and related psgl commands.

https://postgrespro.com/docs/postgresql/16/catalogs
https://postgrespro.com/docs/postgresql/16/app-psql#APP-PSQL-META-COMMANDS
https://postgrespro.com/docs/postgresql/16/app-psql#APP-PSQL-META-COMMANDS

Cluster-Level Objects Pogga’?“éé

shared
cluster objects
il

postgres [I

! object ‘ object m ‘ object m ! object object ||

,,,,,,,,,,,,

,,,,,,,,,,,,

objects in
this database

*1 object m ‘ object m ‘ object m ‘ object m ‘ object m
catalo ublic schema catalo ublic
Pg_ ¢} p! pg_ [¢] p!

In a database cluster, each database has its own set of system catalog
tables. However, there are several system catalog objects that are shared
between all cluster databases. The most obvious example is the list of the

databases themselves.

These tables are stored outside of any single database, but at the same time
they are accessible from any database within the cluster.

Naming Rules Posgres

Object (table, view) and column name prefixes

pg_database.datname

\ﬂ_/ \ﬂ_/

common prefix column prefix
for all objects (usually derived from

the object name)

Object names are always lowercase

All system catalog tables and views begin with the prefix pg_. In order to

avoid potential conflicts, it is not recommended to create your own objects
starting with pg_.

Column names have a three-letter prefix, which is usually derived from the
name of the table. There is no underscore after the prefix. There are some
exceptions to this rule, such as the oid column and others.

Object names are always stored in lowercase.

Specific pg_catalog Objects

Create a database and some test objects:

=> CREATE DATABASE data_catalog;

CREATE DATABASE

=> \c data_catalog

You are now connected to database "data catalog" as user "student".

=> CREATE TABLE employees(
id integer GENERATED ALWAYS AS IDENTITY PRIMARY KEY,
name text,
manager integer

);
CREATE TABLE

=> CREATE VIEW top_managers AS
SELECT * FROM employees WHERE manager IS NULL;

CREATE VIEW

=> CREATE TEMP TABLE emp_salaries(
employee integer,
salary numeric

);

CREATE TABLE
We are familiar with some of the system catalog tables from the previous lesson. This is databases:
=> SELECT * FROM pg_database WHERE datname = 'data_catalog’' \gx

<] RECORD 1 J--renmnmmmmamnann

oid | 16386
datname | data catalog
datdba | 16384
encoding | 6
datlocprovider | c
datistemplate | f
datallowconn | t
datconnlimit | -1
datfrozenxid | 722
datminmxid | 1
dattablespace | 1663
datcollate | en US.UTF-8
datctype | en US.UTF-8
daticulocale |

daticurules |
datcollversion | 2.39

datacl |

And schemas:

=> SELECT * FROM pg_namespace WHERE nspname = 'public’ \gx

S RECORD 1 J---mmmmmmmm oo o e e e e e oo
oid | 2200

nspname | public

nspowner | 6171

nspacl | {pg_database owner=UC/pg database owner,=U/pg database owner}

pg_class is an important table that stores descriptions for multiple types of objects: tables, views, indexes, sequences. All these
objects in PostgreSQL are called relations, thus the prefix “rel” in the column names:

=> SELECT relname, relkind, relnamespace, relfilenode, relowner, relpersistence
FROM pg_class WHERE relname ~ '~(emp|top)"';

relname | relkind | relnamespace | relfilenode | relowner | relpersistence
------------------ B s e e e R
employees id seq | S | 2200 | 16387 | 16384 | p
employees | r | 2200 | 16388 | 16384 | p
employees pkey | 1 | 2200 | 16393 | 16384 | p
top _managers | v | 2200 | 0 | 16384 | p
emp_salaries | r | 16399 | 16401 | 16384 | t

(5 rows)

The object type is determined by the relkind column, while relpersistence distinguishes temporary objects from permanent ones.

When actively using temporary objects, the system catalog tables accumulate numerous obsolete row versions, which may degrade
query performance at all query processing stages. In such cases, timely catalog table vacuuming becomes essential.

Naturally, only a subset of columns in pg_class are relevant for each object type. Moreover, examining object names (rather than
identifiers like relnamespace, relowner, etc.) is more practical. For this purpose, there are specialized system views such as:

=> SELECT schemaname, tablename, tableowner
FROM pg_tables WHERE schemaname ~ '(public|pg_temp.+)";

schemaname | tablename | tableowner
____________ Ty,
public | employees | student
pg temp 4 | emp salaries | student
(2 rows)
=> SELECT *
FROM pg_views WHERE schemaname = ‘public’;
schemaname | viewname | viewowner | definition
------------ BT T
public | top managers | student | SELECT id, +
| | | name, +
| | | manager +
| | | FROM employees +
| | |

WHERE (manager IS NULL);

Using psql

psdl has a set of built-in commands for obtaining information from the system catalog. These short commands are more convenient
than making direct queries to system tables and views.

A list of all tables is obtained with the command:

=> \dt
List of relations
Schema | Name | Type | Owner
----------- R e L
pg temp 4 | emp_salaries | table | student
public | employees | table | student
(2 rows)

This command returns a list of all views in the public schema:
=> \dv public.*

List of relations

Schema | Name | Type | Owner

-------- B e
public | top managers | view | student
(1 row)

List of tables, views, indexes, and sequences:

=> \dtvis

List of relations

Schema | Name | Type | Owner | Table

----------- e e i
pg _temp 4 | emp salaries | table | student |

public | employees | table | student |

public | employees id seq | sequence | student |

public | employees pkey | index | student | employees
public | top managers | view | student |

(5 rows)

Appended with the + modifier, these commands will return more detailed data:

=> \dt+
List of relations
Schema | Name | Type | Owner | Persistence | Access method | Size
Description
----------- R e e e S e e h R T P
pg temp 4 | emp salaries | table | student | temporary | heap | 8192 bytes |
public | employees | table | student | permanent | heap | 8192 bytes |
(2 rows)

To get detailed information about a specific object, use the \d command (without any additional letters):
=> \d top_managers

View "public.top managers"

Column | Type | Collation | Nullable | Default
--------- L e R et T
id | integer |

| I
name | text | |
manager | integer | |

The + modifier still works:
=> \d+ top_managers

View "public.top managers"

Column | Type | Collation | Nullable | Default | Storage | Description
--------- B e e e S
id | integer | | plain

| I |
name | text | | | | extended |
manager | integer | | | | plain
View definition:
SELECT id,
name,
manager
FROM employees
WHERE manager IS NULL;

You can use the command not only on relations, but other objects as well, such as schemas (\dn) and functions (\df).

The S modifier makes the command display system objects in addition to user ones. You can use wildcard patterns to filter the
output:

=> \dfS pg*size

List of functions

Schema | Name | Result data type | Argument data types | Type
------------ B T L T T e
pg catalog | pg column size | integer | "any" | func
pg catalog | pg database size | bigint | name | func
pg catalog | pg database size | bigint | oid | func
pg catalog | pg_indexes size | bigint | regclass | func
pg catalog | pg _relation size | bigint | regclass | func
pg catalog | pg relation size | bigint | regclass, text | func
pg catalog | pg table size | bigint | regclass | func
pg catalog | pg tablespace size | bigint | name | func
pg catalog | pg tablespace size | bigint | oid | func
pg catalog | pg total relation size | bigint | regclass | func

(10 rows)

Usually, such psql commands have mnemonic names. For example, \df is describe function, \sf is show function:

=> \sf pg_catalog.pg_database_size(oid)

CREATE OR REPLACE FUNCTION pg catalog.pg database size(oid)
RETURNS bigint

LANGUAGE internal

PARALLEL SAFE STRICT

AS $function$pg database size oid$function$

You can get the full list of commands from the documentation or with the psql \? command.

Exploring the System Catalog Structure

All psql commands that describe objects query system catalog tables. To view these queries, set the psql variable ECHO_HIDDEN.
For example, to examine the employees table structure:

=> \set ECHO_HIDDEN on

=> \dt employees

SELECT n.nspname as "Schema",

c.relname as "Name",

CASE c.relkind WHEN 'r' THEN 'table' WHEN 'v' THEN 'view' WHEN 'm' THEN 'materialized
view' WHEN 'i' THEN 'index' WHEN 'S' THEN 'sequence' WHEN 't' THEN 'TOAST table' WHEN 'f'
THEN 'foreign table' WHEN 'p' THEN 'partitioned table' WHEN 'I' THEN 'partitioned index'
END as "Type",

pg catalog.pg get userbyid(c.relowner) as "Owner"

FROM pg catalog.pg class ¢
LEFT JOIN pg catalog.pg namespace n ON n.oid = c.relnamespace
LEFT JOIN pg catalog.pg am am ON am.oid = c.relam
WHERE c.relkind IN ('r','p','t','s",'")
AND c.relname OPERATOR(pg catalog.~) '~(employees)$' COLLATE pg catalog.default
AND pg catalog.pg table is visible(c.oid)

ORDER BY 1,2;
stk sk ok sk sk ok o ok sk ok ok ok sk ok ok sk ok ok ok sk ok

List of relations

Schema | Name | Type | Owner

-------- Rt T
public | employees | table | student
(1 row)

=> \unset ECHO_HIDDEN

Most system catalog tables feature primary keys (typically the oid column) and uniqueness constraints. As an example, the
pg_attribute table (containing relation attribute information) implements these constraints:

=> \d pg_attribute

Table "pg catalog.pg attribute"

Column | Type | Collation | Nullable | Default
---------------- B e
attrelid | oid | | not null |
attname | name | | not null |
atttypid | oid | | not null |
attlen | smallint | | not null |
attnum | smallint | | not null |
attcacheoff | integer | | not null |
atttypmod | integer | | not null |
attndims | smallint | | not null |
attbyval | boolean | | not null |
attalign | "char" | | not null |
attstorage | "char" | | not null |
attcompression | "char" | | not null |
attnotnull | boolean | | not null |
atthasdef | boolean | | not null |
atthasmissing | boolean | | not null |
attidentity | "char" | | not null |
attgenerated | "char" | | not null |
attisdropped | boolean | | not null |
attislocal | boolean | | not null |
attinhcount | smallint | | not null |
attstattarget | smallint | | not null |
attcollation | oid | | not null |
attacl | aclitem[] | | |
attoptions | text[] | C | |
attfdwoptions | text[] | C | |
attmissingval | anyarray | | |
Indexes:

"pg_attribute relid attnum index" PRIMARY KEY, btree (attrelid, attnum)
"pg_attribute relid attnam_index" UNIQUE CONSTRAINT, btree (attrelid, attname)

Referential integrity is maintained through foreign-key-like constraints with additional complexity: the referencing column may be
an array of elements, zero may represent undefined references. The pg_get_catalog_foreign_keys() function lists these pseudo-
foreign keys. For instance, pg_attribute references:

=> SELECT *
FROM pg_get_catalog_foreign_keys()
WHERE fktable = 'pg_attribute'::regclass;

fktable | fkcols | pktable | pkcols | is array | is opt
-------------- e e T R e S
pg attribute | {attrelid} | pg class | {oid} | f | f
pg attribute | {atttypid} | pg_type | {oid} | f | t
pg attribute | {attcollation} | pg collation | {oid} | f | t

(3 rows)

fktable, fkcols — referencing table and its columns
pktable, pkcols — key referenced

is_array — whether the referencing column is an array
is_opt — whether the referencing column can contain 0

Special Data Types Pogga’?ég

oid type — object identifier
oid column ensures object uniqueness in system catalog tables
integer with an auto increment

reg* types
oid aliases for some system catalog tables
(regclass for pg_class, etc.)

converting the text name of an object to the oid type and vice versa

Most system catalog tables use a column with oid name and data type of
the same name as a primary key.

The oid (Object Identifier) type is a 32 bit integer (about 4 billion possible
values) with an auto increment.

There are several special data types (in fact, oid aliases) starting with reg
that are used to convert object names to oids and back.

https://postgrespro.com/docs/postgresql/16/datatype-oid

https://postgrespro.com/docs/postgresql/16/datatype-oid

oid and reg* Data Types

As shown before, table and view descriptions are stored in pg_class table, and column descriptions are in a separate pg_attribute
table. So, to get a list of columns in a specific table, you need to join pg_class and pg_attribute:

=> SELECT a.attname, a.atttypid
FROM pg_attribute a
WHERE a.attrelid = (
SELECT oid FROM pg_class WHERE relname = 'employees’
)
AND a.attnum > 0;

attname | atttypid

_________ P
id | 23
name | 25
manager | 23

(3 rows)

Using reg* types, the query can be simplified by omitting the explicit access to pg_class:

=> SELECT a.attname, a.atttypid

FROM pg_attribute a

WHERE a.attrelid = 'employees'::regclass
AND a.attnum > 0;

attname | atttypid

_________ e
id | 23
name | 25
manager | 23

(3 rows)

Here, the string “employees” was converted to the oid type. Similarly, oid can be displayed as a text value:

=> SELECT a.attname, a.atttypid::regtype
FROM pg_attribute a

WHERE a.attrelid = 'employees'::regclass
AND a.attnum > 0;

attname | atttypid

_________ L -
id | integer
name | text
manager | integer
(3 rows)
Alist of all reg* types:
=> \dT reg*
List of data types
Schema | Name | Description
____________ g
pg catalog | regclass | registered class
pg catalog | regcollation | registered collation
pg catalog | regconfig | registered text search configuration
pg catalog | regdictionary | registered text search dictionary
pg catalog | regnamespace | registered namespace
pg catalog | regoper | registered operator
pg catalog | regoperator | registered operator (with args)
pg catalog | regproc | registered procedure
pg catalog | regprocedure | registered procedure (with args)
pg catalog | regrole | registered role
pg catalog | regtype | registered type

(11 rows)

of] PROFESSIONAL

Takeaways Posigres

The system catalog contains cluster metadata stored within the
cluster itself

SQL access and additional psql commands

Some system catalog tables are stored in databases,
some are shared across the entire cluster

The system catalog uses special data types

of] PROFESSIONAL

Practice Posigres

Get a description of the pg_class table.
Get a detailed description of the pg_tables view.

Create a database and a temporary table in it.
Get a complete list of schemas in the database, including system
schemas.

4. Get a list of views in the information_schema.

5. What queries does the following psql command perform?
\d+ pg_views

10

1. Description of pg_class

=> \d pg_class

oid
relname
relnamespace
reltype
reloftype
relowner
relam
relfilenode
reltablespace
relpages
reltuples
relallvisible
reltoastrelid
relhasindex
relisshared
relpersistence
relkind
relnatts
relchecks
relhasrules
relhastriggers
relhassubclass
relrowsecurity
relforcerowsec
relispopulated
relreplident
relispartition
relrewrite
relfrozenxid
relminmxid
relacl
reloptions
relpartbound
Indexes:

Table "pg catalog.pg class"

urity

I
+
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Type

|
name |
oid |
oid |
oid |
oid |
oid |
oid |
oid |
integer |
real |
integer |
oid |
boolean |
boolean |
“char" |
"char" |
smallint |
smallint |
boolean |
boolean |
boolean |
boolean |
boolean |
boolean |
“char" |
boolean |
oid |
xid |
xid |
aclitem[] |
text[] |
pg_node tree |

| Collation

C
C

Nullable

"pg_class oid index" PRIMARY KEY, btree (oid)

"pg class relname nsp index" UNIQUE CONSTRAINT, btree (relname, relnamespace)
"pg class tblspc relfilenode index" btree (reltablespace, relfilenode)

2. Detailed Description of pg tables

=> \d+ pg_table

Column |
............. +
schemaname |
tablename |
tableowner
tablespace |
hasindexes |
hasrules |
hastriggers |
rowsecurity |
View definition

S

name
boolean
boolean
boolean
boolean

View "pg catalog.pg tables"

SELECT n.nspname AS schemaname,
c.relname AS tablename,
pg get userbyid(c.relowner) AS tableowner,
t.spcname AS tablespace,

0o 00

.relhasindex AS hasindexes,
.relhasrules AS hasrules,
.relhastriggers AS hastriggers,

c.relrowsecurity AS rowsecurity

FROM pg clas

S C

Collation | Nullable | Default

LEFT JOIN pg namespace n ON n.oid = c.relnamespace
LEFT JOIN pg tablespace t ON t.oid = c.reltablespace

WHERE c.relkind = ANY (ARRAY['r'::"char",

'p'::"char"]);

Storage | Description

3. List of All Schemas

=> CREATE DATABASE data_catalog;

CREATE DATABASE

=> \c data_catalog

You are now connected to database "data catalog" as user "student".
=> CREATE TEMP TABLE t(n integer);

CREATE TABLE

=> \dnS
List of schemas
Name | Owner

____________________ ot
information schema | postgres
pg_catalog | postgres

pg_temp 4 | postgres

pg toast | postgres
pg_toast_temp 4 | postgres

public | pg_database owner
(6 rows)

Temporary tables are stored in schemas named pg_temp_N, where N is a number. Such schemas are created for each session where
temporary objects appear, so there can be multiple schemas. To get the name of the schema for the current session, use the
following system function:

=> SELECT pg_my_temp_schema()::regnamespace;

pg_my temp schema

pg _temp 4
(1 row)

In general, the exact name of the schema is not required: you can access temporary objects in your session by using just pg_temp:
=> SELECT * FROM pg_temp.t;

n

(0 rows)

We already know what some of the schemas are there for, and we will learn more about the rest (pg_toast*) in a later lesson.

4. Get a List of Views in the information_schema

Use the template:

=> \dv information_schema.*

Schema

information schema
information_ schema
information schema
information_ schema
information schema
information schema
information_ schema
information schema
information_ schema
information schema
information schema
information_ schema
information schema
information_ schema
information schema
information schema
information_ schema
information schema
information_ schema
information schema
information schema
information_ schema
information schema
information_ schema
information schema
information schema
information_ schema
information schema
information_ schema
information schema
information schema
information_ schema
information schema
information_ schema
information schema
information schema
information_ schema
information schema
information_ schema
information schema
information schema
information_ schema
information schema
information_ schema
information schema
information schema
information_ schema
information schema
information_ schema
information schema
information schema
information_ schema
information schema
information_ schema
information schema
information schema
information schema
information schema
information_ schema
information schema
information schema
information_ schema
information schema
information_ schema
information schema
(65 rows)

_pg_fore

List of relations
Name

ign_data_wrappers

_pg_foreign servers

_pg _foreign table columns

_pg_foreign_tables
_pg_user _mappings

administrable_role_authorizations

applicable roles
attributes
character_sets

check constraint routine usage

check constraints

collation character_set applicability

collations
column_column_usage
column_domain usage
column_options
column_privileges
column_udt usage
columns

constraint column usage

constrai
data_typ
domain c
domain u
domains

element_
enabled
foreign data wrapper options
foreign
foreign_
foreign_
foreign
foreign
information schema catalog name

key colu
paramete
referent

nt_table_usage
e privileges
onstraints

dt usage

types
roles

data wrappers
server _options
servers
table options
tables

mn_usage
rs
ial constraints

role column grants
role routine grants
role table grants
role udt grants
role usage grants

routine
routine |
routine
routine_

column_usage
privileges
routine usage
sequence_usage

routine table usage
routines

schemata

sequences

table constraints
table privileges
tables

transforms

triggered update columns

triggers
udt_privileges
usage privileges
user _defined types

user_mapping options

user_mappings

view column_usage
view routine usage
view table usage
views

5. Queries to the System Catalog

To see the queries psql runs, use the ECHO_HIDDEN variable:

=> \set ECHO_HIDDEN on

=> \d+ pg_views

postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres

3k 3k 3k ok ok ok k ko k OUERY >k 3k 3k 3k ok k ok ok k ok

SELECT c.oid,
n.nspname,
c.relname
FROM pg catalog.pg class c
LEFT JOIN pg catalog.pg namespace n ON n.oid = c.relnamespace
WHERE c.relname OPERATOR(pg catalog.~) '~(pg views)$' COLLATE pg catalog.default
AND pg catalog.pg table is visible(c.oid)
ORDER BY 2, 3;

3k 3k 3k 3k ok ok k ok ok ok ke ok ok ok ok ok >k %k >k >k >k >k >k >k >k >k

kKoK ok ok ok ok >k OUERY kK ok ok >k kok ok >k

SELECT c.relchecks, c.relkind, c.relhasindex, c.relhasrules, c.relhastriggers,
c.relrowsecurity, c.relforcerowsecurity, false AS relhasoids, c.relispartition,
pg catalog.array to string(c.reloptions || array(select 'toast.' || x from
pg catalog.unnest(tc.reloptions) x), ', ')
, c.reltablespace, CASE WHEN c.reloftype = 0 THEN '' ELSE
c.reloftype::pg catalog.regtype::pg catalog.text END, c.relpersistence, c.relreplident,
am.amname
FROM pg catalog.pg class c
LEFT JOIN pg catalog.pg class tc ON (c.reltoastrelid = tc.oid)
LEFT JOIN pg catalog.pg am am ON (c.relam = am.oid)
WHERE c.oid = '12028';

3k 3k 3k sk ok ok ok ok ok ok sk sk ok ok sk ok ok >k >k >k >k >k k ok ok k

>k 3k 3k ok ok ok ok ok ok OUERY >k 3k 3k 3k ok k ok ok ok ok

SELECT a.attname,

pg catalog.format type(a.atttypid, a.atttypmod),

(SELECT pg_catalog.pg get expr(d.adbin, d.adrelid, true)

FROM pg catalog.pg attrdef d

WHERE d.adrelid = a.attrelid AND d.adnum = a.attnum AND a.atthasdef),

a.attnotnull,

(SELECT c.collname FROM pg catalog.pg collation c, pg catalog.pg type t

WHERE c.oid = a.attcollation AND t.oid = a.atttypid AND a.attcollation <>
t.typcollation) AS attcollation,

a.attidentity,

a.attgenerated,

a.attstorage,

pg catalog.col description(a.attrelid, a.attnum)
FROM pg catalog.pg attribute a
WHERE a.attrelid = '12028' AND a.attnum > O AND NOT a.attisdropped
ORDER BY a.attnum;

3k 3k 3k 3k 5k 5k 3k 5k 5k 3k 5K 3K K K K K K K K Kk >k >k k k >k
3k >k >k 3k >k >k %k ok >k QUERY 3k >k >k %k >k >k %k k kK k
SELECT pg catalog.pg get viewdef('12028'::pg catalog.oid, true);

3k >k ok ok ok >k ok ok ok >k ok ok ok >k ok ok ok >k ok ok ok >k Kok k

3k 3k sk ok ok ok ok ok ok QUERY 3k 3k 3k sk ok ok ok ok ok ok

SELECT r.rulename, trim(trailing ';' from pg_catalog.pg get ruledef(r.oid, true))
FROM pg catalog.pg rewrite r
WHERE r.ev_class = '12028' AND r.rulename != ' RETURN' ORDER BY 1;

>k >k ok ok ok >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kok k >k

View "pg_catalog.pg views"

Column | Type | Collation | Nullable | Default | Storage | Description
------------ B s L e e S
schemaname | name | | | | plain
viewname | name | | | | plain |
viewowner | name | | | | plain |
| | I |

definition | text
View definition:

SELECT n.nspname AS schemaname,

c.relname AS viewname,

pg_get userbyid(c.relowner) AS viewowner,

pg_get viewdef(c.oid) AS definition

FROM pg class c

LEFT JOIN pg namespace n ON n.oid = c.relnamespace

WHERE c.relkind = 'v'::"char";

| extended

psql ran five queries to display this result.

=> \set ECHO_HIDDEN off

