

Data Organization

Low Level

16

Copyright
© Postgres Professional, 2017–2025
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Alexey Beresnev
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is,” and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

Data Files

Forks: Main, Visibility Map, Free Space Map

Oversized Row Versions and TOAST

3

Object Forks

NNN_vm

NNN_fsm

1 GB
segment

main

fsm

vmNNN_fsm

NNN_fsm.1

NNN

NNN.1

NNN.2

pg_relation_size

Usually, each database object that stores data (table, index, sequence,
materialized view) has several corresponding forks. Each fork contains a
specific type of data.

Initially, each fork contains a single file. The file name is a numeric identifier
and may include a suffix derived from the fork name.

The file gradually increases in size until it reaches 1 GB, at which point the
next file for the same fork is created. Such files are sometimes called
segments.The segment sequence number is appended to the end of the file
name. The pg_relation_size function displays the total size of a fork.

The 1 GB file size limit was established in the past to support file systems
that cannot operate with larger file sizes. A different file size limit can be set
during source code compilation with the --with-segsize option.

So, a single database object may consist of multiple files on disk. A small
table will have three corresponding files on disk, and an index will have two.
All object files belonging to the same tablespace and the same database are
stored in the same directory. This may become an issue as some file
systems may perform poorly on directories with a large number of files.

4

Forks

Main fork
actual data (row versions)
exists for all objects

Initialization fork (init)
“template” of the main fork
used in case of failure; exists only for unlogged tables

Visibility map (vm)
exists only for tables

Free space map (fsm)
exists for both tables and indexes

There are several types of forks.

The main fork contains the data itself, namely table row versions and index
records. The main fork file names match the identifier. All objects have a
main fork.

The file names of the initialization fork end with the _init suffix. This fork
exists only for unlogged tables (created with the UNLOGGED clause) and
their indexes. Such objects do not differ from regular ones, except that
actions performed on them are not logged in WAL. This makes operations
on them faster, but their content cannot be recovered if a failure occurs.
During a recovery PostgreSQL just removes all the forks of such objects and
writes the initialization fork in place of the main fork. The result is an empty
table.

https://postgrespro.com/docs/postgresql/16/storage-init

The vm (visibility map) fork’s filenames end in _vm. The fork exists only for
tables, separate MVCC for indexes is not supported.

The fsm (free space map) fork’s filenames end in _fsm. This fork exists for
both tables and indexes.

These two maps were discussed in the Architecture module.

https://postgrespro.com/docs/postgresql/16/storage-fsm

https://postgrespro.com/docs/postgresql/16/storage-vm

https://postgrespro.com/docs/postgresql/16/storage-init
https://postgrespro.com/docs/postgresql/16/storage-fsm
https://postgrespro.com/docs/postgresql/16/storage-vm

File	Locations

=>	CREATE	DATABASE	data_lowlevel;

CREATE	DATABASE

=>	\c	data_lowlevel

You	are	now	connected	to	database	"data_lowlevel"	as	user	"student".

Create	a	table	and	look	where	its	files	are.

=>	CREATE	TABLE	t(
		id	integer	PRIMARY	KEY	GENERATED	ALWAYS	AS	IDENTITY,	
		n	numeric
);

CREATE	TABLE

=>	INSERT	INTO	t(n)	SELECT	id	FROM	generate_series(1,10_000)	AS	id;

INSERT	0	10000

To	form	additional	forks,	we	will	execute	vacuuming:

=>	VACUUM	t;

VACUUM

The	path	to	the	main	file	relative	to	PGDATA	is	shown	with	the	following	function:

=>	SELECT	pg_relation_filepath('t');

	pg_relation_filepath	

	base/16386/16388
(1	row)

Since	the	table	is	located	in	the	pg_default	tablespace,	the	path	starts	with	“base”,	followed	by	the	database	directory:

=>	SELECT	oid	FROM	pg_database	WHERE	datname	=	'data_lowlevel';

		oid		

	16386
(1	row)

Then	follows	the	file	name.	You	can	get	it	using	the	query:

=>	SELECT	relfilenode	FROM	pg_class	WHERE	relname	=	't';

	relfilenode	

							16388
(1	row)

But	the	pg_relation_filepath	function	is	more	convenient	because	it	returns	the	full	path	so	that	you	don’t	need	to	run	several
queries	on	the	system	catalog.

Let’s	have	a	look	at	the	files	themselves.	Only	the	OS	user	postgres	has	access	to	PGDATA,	so	run	the	ls	on	their	behalf:

postgres$	ls	-l	/var/lib/postgresql/16/main/base/16386/16388*

-rw-------	1	postgres	postgres	450560	Sep	24	17:00	
/var/lib/postgresql/16/main/base/16386/16388
-rw-------	1	postgres	postgres		24576	Sep	24	17:00	
/var/lib/postgresql/16/main/base/16386/16388_fsm
-rw-------	1	postgres	postgres			8192	Sep	24	17:00	
/var/lib/postgresql/16/main/base/16386/16388_vm

There	are	three	forks:	the	main	fork,	the	free	space	map	(fsm)	and	the	visibility	map	(vm).

You	can	view	the	index	files	in	a	similar	way:

=>	\d	t

																												Table	"public.t"
	Column	|		Type			|	Collation	|	Nullable	|											Default												
--------+---------+-----------+----------+------------------------------
	id					|	integer	|											|	not	null	|	generated	always	as	identity
	n						|	numeric	|											|										|	
Indexes:
				"t_pkey"	PRIMARY	KEY,	btree	(id)

=>	SELECT	pg_relation_filepath('t_pkey');

	pg_relation_filepath	

	base/16386/16393
(1	row)

postgres$	ls	-l	/var/lib/postgresql/16/main/base/16386/16393*

-rw-------	1	postgres	postgres	245760	Sep	24	17:00	
/var/lib/postgresql/16/main/base/16386/16393

And	files	for	the	sequence	that	has	been	created	for	the	primary	key:

=>	SELECT	pg_relation_filepath(pg_get_serial_sequence('t','id'));

	pg_relation_filepath	

	base/16386/16387
(1	row)

postgres$	ls	-l	/var/lib/postgresql/16/main/base/16386/16387*

-rw-------	1	postgres	postgres	8192	Sep	24	17:00	
/var/lib/postgresql/16/main/base/16386/16387

For	an	index,	the	free	space	map	is	built	only	when	empty	pages	exist,	while	a	sequence	has	only	a	main	fork.

Temporary	tables	are	stored	in	the	same	way	as	permanent	tables.

=>	CREATE	TEMP	TABLE	temp	AS	SELECT	*	FROM	t;

SELECT	10000

=>	VACUUM	temp;

VACUUM

=>	SELECT	pg_relation_filepath('temp');

	pg_relation_filepath	

	base/16386/t4_16397
(1	row)

A	prefix	matching	the	schema	number	is	added	to	the	filename	for	temporary	objects.

postgres$	ls	-l	/var/lib/postgresql/16/main/base/16386/t4_16397*

-rw-------	1	postgres	postgres	450560	Sep	24	17:00	
/var/lib/postgresql/16/main/base/16386/t4_16397
-rw-------	1	postgres	postgres		24576	Sep	24	17:00	
/var/lib/postgresql/16/main/base/16386/t4_16397_fsm
-rw-------	1	postgres	postgres			8192	Sep	24	17:00	
/var/lib/postgresql/16/main/base/16386/t4_16397_vm

The	oid2name	additional	supplied	extension	lets	you	quickly	and	easily	find	out	which	database	objects	relate	to	which	files.

You	can	view	all	databases:

student$	/usr/lib/postgresql/16/bin/oid2name

All	databases:
				Oid		Database	Name		Tablespace

		16386		data_lowlevel		pg_default
						5							postgres		pg_default
		16385								student		pg_default
						4						template0		pg_default
						1						template1		pg_default

All	objects	in	a	database:

student$	/usr/lib/postgresql/16/bin/oid2name	-d	data_lowlevel

From	database	"data_lowlevel":
		Filenode		Table	Name

					16388											t
					16397								temp

All	tablespaces	in	a	database:

student$	/usr/lib/postgresql/16/bin/oid2name	-d	data_lowlevel	-s

All	tablespaces:
			Oid		Tablespace	Name

		1663							pg_default
		1664								pg_global

Find	the	file	name	by	table	name:

student$	/usr/lib/postgresql/16/bin/oid2name	-d	data_lowlevel	-t	t

From	database	"data_lowlevel":
		Filenode		Table	Name

					16388											t

Or	the	table	name	by	file	name:

student$	/usr/lib/postgresql/16/bin/oid2name	-d	data_lowlevel	-f	16388

From	database	"data_lowlevel":
		Filenode		Table	Name

					16388											t

Fork	Sizes

You	can	get	the	size	of	the	files	that	comprise	a	fork	from	the	file	system,	but	there	is	an	easier	way	to	get	the	size	of	each	fork
individually:

=>	SELECT	pg_relation_size('t','main')	main,
										pg_relation_size('t','fsm')	fsm,
										pg_relation_size('t','vm')	vm;

		main		|		fsm		|		vm		
--------+-------+------
	450560	|	24576	|	8192
(1	row)

6

TOAST

A row version must fit into one page
some fields can be compressed
some fields can be moved into a TOAST table
fields can be both compressed and moved

TOAST table
located in the pg_toast (pg_toast_temp_N) schema
supported by its own index
contains chunks of oversized values, each chunk is smaller than a page
retrieved only when the oversized field is accessed
has its own row versions
used transparently for the application

Any row version in PostgreSQL must fit entirely into one page. Oversized
row versions are stored using TOAST, The Oversized Attributes Storage
Technique. TOAST comprises several approaches to storing oversized field
values. Firstly, the value can be compressed so that the row version fits into
the page. Secondly, the value can be moved from the row version to a
separate service table. Both strategies can be applied to the same row
versions: some values would be compressed, some moved, some
compressed and moved.

Any table can have a separate TOAST table (with a dedicated index)
created for it, if necessary. Such tables and indexes are located in a
separate schema named pg_toast and, therefore, are usually not visible (for
temporary tables, pg_toast_temp_N schema is used, similarly to the regular
pg_temp_N).

The row versions in the TOAST table must also fit into one page each, so
longer values are split into multiple chunks, and are transparently “glued
together” by PostgreSQL when the application demands.

TOAST table is used only when oversized values are accessed. Besides
that, TOAST tables have their own row versions. Whenever a data update in
the main table does not affect the oversized value, the new row version will
refer to the same TOAST value, saving disk space.

https://postgrespro.com/docs/postgresql/16/storage-toast

https://postgrespro.com/docs/postgresql/16/storage-toast

TOAST

The	table	t	has	a	numeric	type	column.	This	type	can	hold	very	large	numbers.	For	example:

=>	SELECT	length((123456789::numeric	^	12345::numeric)::text);

	length	

		99890
(1	row)

However,	when	inserted	into	the	table,	this	humongous	value	does	not	change	the	table	size:

=>	SELECT	pg_relation_size('t','main');

	pg_relation_size	

											450560
(1	row)

=>	INSERT	INTO	t(n)	SELECT	123456789::numeric	^	12345::numeric;

INSERT	0	1

=>	SELECT	pg_relation_size('t','main');

	pg_relation_size	

											450560
(1	row)

Since	the	row	version	does	not	fit	into	a	single	page,	the	value	of	attribute	n	is	stored	in	a	separate	TOAST	table.	TOAST	tables	and
their	indexes	are	created	automatically	for	all	tables	that	include	potentially	“oversized”	data	types	and	are	used	as	needed.

You	can	find	the	name	and	oid	of	the	TOAST	table:

=>	SELECT	relname,	relfilenode	FROM	pg_class	WHERE	oid	=	(
				SELECT	reltoastrelid	FROM	pg_class	WHERE	oid	=	't'::regclass
);

				relname					|	relfilenode	
----------------+-------------
	pg_toast_16388	|							16391
(1	row)

And	here	are	the	TOAST	table	files:

postgres$	ls	-l	/var/lib/postgresql/16/main/base/16386/16391*

-rw-------	1	postgres	postgres	57344	Sep	24	17:00	
/var/lib/postgresql/16/main/base/16386/16391
-rw-------	1	postgres	postgres	24576	Sep	24	17:00	
/var/lib/postgresql/16/main/base/16386/16391_fsm

When	it	comes	to	oversized	values,	there	are	several	strategies	that	can	be	employed.	The	name	of	the	current	strategy	is	listed	in
the	Storage	column:

=>	\d+	t

																																																						Table	"public.t"
	Column	|		Type			|	Collation	|	Nullable	|											Default												|	Storage	|	
Compression	|	Stats	target	|	Description	
--------+---------+-----------+----------+------------------------------+---------+-------
------+--------------+-------------
	id					|	integer	|											|	not	null	|	generated	always	as	identity	|	plain			|							
						|														|	
	n						|	numeric	|											|										|																														|	main				|							
						|														|	
Indexes:
				"t_pkey"	PRIMARY	KEY,	btree	(id)
Access	method:	heap

plain	—	TOAST	is	not	used	(type	has	a	fixed	length)

extended	—	both	compression	and	out-of-line	storage	are	used
external	—	compression	is	not	used,	only	out-of-line	storage
main	—	such	fields	are	processed	last	and	are	moved	to	the	toast	table	only	if	compression	is	not	enough

A	storage	strategy	is	assigned	for	each	column	when	creating	a	table.	It	can	be	specified	explicitly,	and	the	default	value	depends	on
the	data	type.

If	necessary,	the	strategy	can	be	modified	later.	For	example,	if	you	know	that	data	in	a	column	is	already	compressed,	you	can
switch	the	strategy	to	external.

For	example:

=>	ALTER	TABLE	t	ALTER	COLUMN	n	SET	STORAGE	external;

ALTER	TABLE

This	operation	does	not	change	the	existing	data,	but	defines	the	strategy	to	be	used	for	new	row	versions.

8

Table Size

pg_total_relation_size

pg_indexes_sizepg_table_size

Table TOAST Indexes

As already mentioned, the size of a single fork can be obtained by the
pg_relation_size function. To get the total object size, other functions can be
used:
● pg_table_size shows the size of the table and its TOAST part (the TOAST

table and its index), but not the regular index sizes. The same function
can be used to find the size of an individual index: both tables and
indexes are relations, and despite the name, the function accepts any
relation as an input.

● pg_indexes_size sums up the sizes of all table indexes except the
TOAST table index.

● pg_total_relation_size shows the full size of the table, along with all its
indexes.

Table	Size

The	size	of	a	table	(including	the	TOAST	table	and	its	index):

=>	SELECT	pg_table_size('t');

	pg_table_size	

								581632
(1	row)

Total	size	of	all	table	indexes:

=>	SELECT	pg_indexes_size('t');

	pg_indexes_size	

										245760
(1	row)

You	can	get	the	size	of	a	single	index	by	using	the	pg_table_size	function.	Indexes	have	no	TOASTs,	so	the	function	only	shows	the
size	of	all	index	forks	(main,	fsm).

Currently,	the	table	t	has	just	the	primary	key	index,	so	its	size	matches	the	size	returned	by	pg_indexes_size:

=>	SELECT	pg_table_size('t_pkey')	AS	t_pkey;

	t_pkey	

	245760
(1	row)

Total	table	size,	including	TOAST	and	all	indexes:

=>	SELECT	pg_total_relation_size('t');

	pg_total_relation_size	

																	827392
(1	row)

10

Takeaways

An object comprises several forks

A fork consists of one or more segment files

Oversized row versions are stored using TOAST

11

Practice

1. Create an unlogged table in a custom tablespace and make sure
that it has an init fork.

Delete the created tablespace.

2. Create a table with a column of the text type. What storage
strategy is used for this column?

Change the strategy to external and insert a short and a long row
into the table.

Check if the rows are in the TOAST table by making a direct
query to it. Explain why.

1.	Unlogged	Тable

student$	sudo	-u	postgres	mkdir	/var/lib/postgresql/ts_dir

=>	CREATE	TABLESPACE	ts	LOCATION	'/var/lib/postgresql/ts_dir';

CREATE	TABLESPACE

=>	CREATE	DATABASE	data_lowlevel;

CREATE	DATABASE

=>	\c	data_lowlevel

You	are	now	connected	to	database	"data_lowlevel"	as	user	"student".

=>	CREATE	UNLOGGED	TABLE	u(n	integer)	TABLESPACE	ts;

CREATE	TABLE

=>	INSERT	INTO	u(n)	SELECT	n	FROM	generate_series(1,1000)	n;

INSERT	0	1000

=>	SELECT	pg_relation_filepath('u');

												pg_relation_filepath													

	pg_tblspc/16386/PG_16_202307071/16387/16388
(1	row)

Let’s	look	at	the	table	files.

Note	that	the	ls	command	is	executed	on	behalf	of	the	postgres	user.	You	can	open	a	second	terminal	window	and	switch	to	another
user	with	the	following	command:

student$	sudo	-i	-u	postgres

Now,	in	the	same	window,	run:

postgres$	ls	-l	/var/lib/postgresql/16/main/pg_tblspc/16386/PG_16_202307071/16387/16388*

-rw-------	1	postgres	postgres	40960	Sep	24	17:09	
/var/lib/postgresql/16/main/pg_tblspc/16386/PG_16_202307071/16387/16388
-rw-------	1	postgres	postgres	24576	Sep	24	17:09	
/var/lib/postgresql/16/main/pg_tblspc/16386/PG_16_202307071/16387/16388_fsm
-rw-------	1	postgres	postgres					0	Sep	24	17:09	
/var/lib/postgresql/16/main/pg_tblspc/16386/PG_16_202307071/16387/16388_init

Drop	the	created	tablespace:

=>	DROP	TABLE	u;

DROP	TABLE

=>	DROP	TABLESPACE	ts;

DROP	TABLESPACE

student$	sudo	-u	postgres	rm	-rf	/var/lib/postgresql/ts_dir

2.	Table	with	a	Text	Column

=>	CREATE	TABLE	t(s	text);

CREATE	TABLE

=>	\d+	t

																																											Table	"public.t"
	Column	|	Type	|	Collation	|	Nullable	|	Default	|	Storage		|	Compression	|	Stats	target	|	
Description	
--------+------+-----------+----------+---------+----------+-------------+--------------+-

	s						|	text	|											|										|									|	extended	|													|														|	
Access	method:	heap

Dy	default,	the	extended	strategy	is	used	for	text	data.

Change	the	strategy	to	external:

=>	ALTER	TABLE	t	ALTER	COLUMN	s	SET	STORAGE	external;

ALTER	TABLE

=>	INSERT	INTO	t	(s)	VALUES	('Short	string.');

INSERT	0	1

=>	INSERT	INTO	t(s)	VALUES	(repeat('A',3456));

INSERT	0	1

Check	the	TOAST	table:

=>	SELECT	relname	FROM	pg_class	WHERE	oid	=	(
		SELECT	reltoastrelid	FROM	pg_class	WHERE	relname='t'
);

				relname					

	pg_toast_16391
(1	row)

The	TOAST	table	is	“hidden”,	because	it	is	located	in	a	schema	that	is	excluded	from	the	search	path.	This	is	a	good	thing,	because
TOAST	is	intended	to	work	transparently	for	the	user.	However,	there	still	are	ways	to	view	the	table:

=>	SELECT	chunk_id,	chunk_seq,	length(chunk_data)
FROM	pg_toast.pg_toast_16391
ORDER	BY	chunk_id,	chunk_seq;

	chunk_id	|	chunk_seq	|	length	
----------+-----------+--------
				16396	|									0	|			1996
				16396	|									1	|			1460
(2	rows)

Only	the	long	string	went	into	the	TOAST	table	(two	chunks,	total	size	matches	the	string	size).	The	short	string	wasn’t	TOAST’ed:
there	is	no	need,	as	it	fits	into	one	page.

12

Practice+

1. Create a database.

Compare the database size returned by the pg_database_size
function with the total size of all tables in the database.

Explain the result.

2. TOAST supports two compression methods: pglz and lz4.

Use SQL to check whether PostgreSQL was compiled with these
methods support.

3. Create a text file of at least 10 MB size.
Load its contents into a table with a text field, first without
compression, and then using each of the algorithms. Compare the
final table size and the data loading time of all three options.

1. You can get the list of database tables from the pg_class table.

2. Using the pg_config view, you can find out which options were set for the
configure script when the server software was compiled. The string
containing the list of options is long; you can extract the necessary options
using the string_to_table function.

3. To obtain text for the experiment, you can take a sufficiently large binary
file (for example, the postgres executable) and convert it to text. For the
conversion, you can use the Base32 algorithm (the -w0 option disables line
breaks):

base32 -w0 < binary-file > text-file

1.	Comparing	the	Size	of	a	Database	to	the	Total	Size	of	its	Tables

=>	CREATE	DATABASE	data_lowlevel;

CREATE	DATABASE

=>	\c	data_lowlevel

You	are	now	connected	to	database	"data_lowlevel"	as	user	"student".

Even	an	empty	database	contains	some	system	catalog	tables.	The	list	of	all	relations	is	stored	in	pg_class.	Exclude	from	the
calculation:

Cluster-wide	tables	(they	do	not	belong	to	the	current	database)
Indexes	and	toast	tables	(they	are	automatically	taken	into	account	when	calculating	the	size)

=>	SELECT	sum(pg_total_relation_size(oid))
FROM	pg_class
WHERE	NOT	relisshared	--	local	database	objects
AND	relkind	=	'r';		--	ordinary	tables

			sum			

	7536640
(1	row)

The	size	of	the	database	is	a	bit	larger:

=>	SELECT	pg_database_size('data_lowlevel');

	pg_database_size	

										7696867
(1	row)

This	is	because	the	pg_database_size	function	returns	the	size	of	the	catalog	in	the	file	system,	and	the	catalog	contains	some	service
files.

=>	SELECT	oid	FROM	pg_database	WHERE	datname	=	'data_lowlevel';

		oid		

	16386
(1	row)

Note	that	the	ls	command	is	executed	on	behalf	of	the	postgres	user.	You	can	open	a	second	terminal	window	and	switch	to	another
user	with	the	following	command:

student$	sudo	-i	-u	postgres

Now,	in	the	same	window,	run:

postgres$	ls	-l	/var/lib/postgresql/16/main/base/16386/[^0-9]*

-rw-------	1	postgres	postgres				524	Sep	24	17:09	
/var/lib/postgresql/16/main/base/16386/pg_filenode.map
-rw-------	1	postgres	postgres	159700	Sep	24	17:09	
/var/lib/postgresql/16/main/base/16386/pg_internal.init
-rw-------	1	postgres	postgres						3	Sep	24	17:09	
/var/lib/postgresql/16/main/base/16386/PG_VERSION

pg_filenode.map	—	mapping	oid	of	some	tables	to	file	names;
pg_internal.init	—	system	catalog	cache;
PG_VERSION	—	PostgreSQL	version.

As	some	functions	operate	on	the	database	object	level,	and	others	on	the	file	system	level,	it	is	sometimes	hard	to	compare	the
results	directly.	The	same	goes	for	the	pg_tablespace_size	function.

2.	TOAST	Compression	Methods	Support

The	pg_config	view	displays	options	passed	to	the	configure	script	during	PostgreSQL	compilation.

=>	SELECT	*	FROM	(
		SELECT	string_to_table(setting,	'''	''')	AS	setting	
		FROM	pg_config	WHERE	name	=	'CONFIGURE'
)	
WHERE	setting	~	'(lz|zs)';

			setting			

	--with-lz4
	--with-zstd
(2	rows)

Which	TOAST	compression	method	is	used	by	default?

=>	\dconfig	*toast*

	List	of	configuration	parameters
									Parameter									|	Value	
---------------------------+-------
	default_toast_compression	|	pglz
(1	row)

What	methods	are	available?

=>	SELECT	setting,	enumvals	FROM	pg_settings	WHERE	name	=	'default_toast_compression';

	setting	|		enumvals		
---------+------------
	pglz				|	{pglz,lz4}
(1	row)

3.	Comparison	of	Compression	Methods

Let’s	compare	compression	methods	using	text	data	as	an	example.

To	obtain	a	large	text	volume,	we	take	the	postgres	executable	file	and	convert	it	to	text	using	the	Base32	algorithm	(commonly
used	in	email	encoding).

student$	sudo	cat	/usr/lib/postgresql/16/bin/postgres	|	base32	-w0	>	/tmp/gram.input

The	resulting	text	file	is	sufficiently	large.

student$	ls	-l	--block-size=K	/tmp/gram.input

-rw-rw-r--	1	student	student	16392K	Sep	24	17:09	/tmp/gram.input

We	create	a	table	to	load	the	text	data.

For	the	txt	column,	we	set	the	external	storage	strategy,	which	allows	out-of-line	storage	but	prohibits	compression.

=>	CREATE	TABLE	t	(
		txt	text	STORAGE	EXTERNAL
);

CREATE	TABLE

Next,	we	load	the	data	from	the	text	file.

=>	\timing	on

Timing	is	on.

=>	COPY	t	FROM	'/tmp/gram.input';

COPY	1
Time:	400.517	ms

=>	\timing	off

Timing	is	off.

We	check	the	table	size,	including	TOAST	storage.

=>	SELECT	pg_table_size('t')/1024;

	?column?	

				17056
(1	row)

After	emptying	the	table,	we	activate	compression	using	pglz.

=>	TRUNCATE	TABLE	t;

TRUNCATE	TABLE

=>	ALTER	TABLE	t
ALTER	COLUMN	txt	SET	STORAGE	EXTENDED,
ALTER	COLUMN	txt	SET	COMPRESSION	pglz;

ALTER	TABLE

Now,	the	extended	strategy	is	applied,	allowing	both	compression	and	out-of-line	storage.

We	reload	the	data.

=>	\timing	on

Timing	is	on.

=>	COPY	t	FROM	'/tmp/gram.input';

COPY	1
Time:	1472.967	ms	(00:01.473)

=>	\timing	off

Timing	is	off.

=>	SELECT	pg_table_size('t')/1024;

	?column?	

				10376
(1	row)

The	table	size	is	significantly	reduced,	but	loading	time	has	been	increased	noticeably.

After	clearing	the	table	again,	we	set	lz4	compression.

=>	TRUNCATE	TABLE	t;

TRUNCATE	TABLE

=>	ALTER	TABLE	t	ALTER	COLUMN	txt	SET	COMPRESSION	lz4;

ALTER	TABLE

We	reload	the	data	once	again	and	compare	the	results.

=>	\timing	on

Timing	is	on.

=>	COPY	t	FROM	'/tmp/gram.input';

COPY	1
Time:	443.792	ms

=>	\timing	off

Timing	is	off.

=>	SELECT	pg_table_size('t')/1024;

	?column?	

				10712
(1	row)

The	lz4	algorithm	provides	slightly	worse	compression	than	pglz	but	operates	much	faster.

Finally,	we	delete	the	text	file.

student$	sudo	rm	-f	/tmp/gram.input

