Architecture
Buffer Cache and WAL

Pos gres

Copyright

© Postgres Professional, 2017-2025

Authors Egor Rogov, Pavel Luzanov, llya Bashtanov, Igor Gnatyuk

Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo by: Oleg Bartunov (Phu monastery, Bhrikuti Peak, Nepal)

Use of Course Materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is,” and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

o)) PROFESSIONAL

Topics Posggres

Buffer Cache

Replacement Algorithm

Write-Ahead Log

Checkpoint

Processes Related to the Buffer Cache and WAL

Buffer Cache Posigres

Buffer array — PostgreSQL
data page (8 KB) o g
. . . ¥y X) <
additional information backend
“Dirty” buffers :% backgrou.rd procksses
dirty
asynchronous write shared memory / buffer
buffer cache [:[]E;ﬂ[][]EZﬂEJIAAIE‘jfE\i}\J//

Locks in memory

for shared access

(

/A/) os
ma)OC

cache

The buffer cache is used to smooth out the difference between the RAM and
disk speed. It consists of an array of buffers which contain data pages and
some additional information (for example, the file name and the position of
the page inside this file).

The page size is usually 8 KB; the size can only be changed when building
PostgreSQL.

Any work with data pages goes through the buffer cache. If any process is
going to work with the page, it first tries to find it in the cache. If the page
does not exist, the process requests the operating system to read this page
and places it in the buffer cache. (Note that the OS can read the page either
from disk or from its own cache.)

After the page is written to the buffer cache, it can be accessed repeatedly
without the overhead of operating system calls.

If a process has changed the data in the page, the corresponding buffer
becomes “dirty”. The modified page must be written on disk, but for
performance reasons, the recording occurs asynchronously and may be
delayed.

The buffer cache, like other shared memory structures, is protected by locks
to control concurrent access. Although locks are implemented effectively,
access to the buffer cache is not nearly as fast as simply accessing RAM.
Therefore, in general, the less data a query reads and modifies, the faster it
will work.

o)) PROFESSIONAL

Replacement Posigres

PostgreSQL
Least Recently Used postmaster 9
replacement :

dirty buffer is backend
written on disk — backgroul“ld procksses

another page is read
into the vacant space shared memory

buffer cache [DDDD@DDD]

(

: .
ma)OC

cache

The buffer cache size is usually not so large as to fit the entire database. It is
limited by the available RAM. Also, the larger the buffer cache, the greater
the overhead. Therefore, when reading the next page, sooner or later the
buffer cache has to run out of space. In this case, page replacement
happens.

The replacement algorithm selects a page in the cache that has been used
less often than others. If the selected buffer is dirty, the page is written on
disk first to store the changes made to it. Then, a new page is written into
the buffer.

This replacement is called LRU (Least Recently Used). It keeps the most
frequently accessed data in the cache. Such “hot” blocks of data are not
very common, and this approach helps to significantly reduce the number of
requests to OS (and disk operations), provided enough cache memory.

The Impact of Buffer Cache on Query Execution

Creating a new database in the cluster and connecting to it (for more details about databases, see the Data Organization module):
=> CREATE DATABASE arch_wal_overview;

CREATE DATABASE

=> \c arch_wal_overview

You are now connected to database "arch wal overview" as user "student".
Create a table:

=> CREATE TABLE t(n integer);

CREATE TABLE

Populate it with rows:

=> INSERT INTO t SELECT id FROM generate_series(1,100_000) AS id;

INSERT 0 100000

The shared_buffers parameter indicates the buffer cache size:

=> SHOW shared_buffers;

shared buffers

The default value is too low. In the real world, you should increase it immediately after server installation (it will be applied after
restart).

Restart the server to wipe the cache clean.

=> \q

student$ sudo pg_ctlcluster 16 main restart
student$ psql arch_wal_overview

Now, let’s compare the behaviour of the system as we run a query once, and then the same query again. Query plans is not the topic
of this course, but we will peek into them every now and again. The EXPLAIN ANALYZE command used below will execute the
query as well as display the execution plan and some extra details:

=> EXPLAIN (analyze, buffers, costs off, timing off)
SELECT * FROM t;

QUERY PLAN
Seq Scan on t (actual rows=100000 loops=1)
Buffers: shared read=443
Planning:
Buffers: shared hit=12 read=8 dirtied=1
Planning Time: 0.212 ms
Execution Time: 22.889 ms
(6 rows)

The “Buffers: shared” line shows the buffer utilization.
o read — the number of buffers where pages had to be read from disk.

=> EXPLAIN (analyze, buffers, costs off, timing off)
SELECT * FROM t;

QUERY PLAN
Seq Scan on t (actual rows=100000 loops=1)
Buffers: shared hit=443
Planning Time: 0.039 ms
Execution Time: 11.580 ms
(4 rows)

e hit — the number of buffers where requested pages were found.

Note that on the second query execution, not only the execution time went down, but the planning time too (because system catalog
pages are cached as well).

Write-ahead Log (WAL) Pos{gres

Problem: when a crash occurs, data from RAM that is not
written on disk is lost

WAL

stream of records of the actions being performed,
can be used to redo the steps lost during the crash

records are written to disk earlier than the changed data

WAL tracks changes to

pages in tables, indexes and other objects
transaction status (clog)

WAL does not track changes to

temporary and unlogged tables

Having a buffer cache (and other buffers in RAM) increases performance at
the cost of reliability. When a crash happens, all buffer cache content is lost.
If the crash occurs on the OS or hardware level, the content of OS buffers
will also be lost (the OS may have its own failsafes for this).

To increase reliability, PostgreSQL uses the Write-ahead log. When
performing any operation, the WAL records minimum necessary information
about the operation to be able to perform it again. The record must be
written into the disk (or another persistent storage) before the data modified
by the operation is (that is why it is called Write-ahead log).

WAL files are located in the PGDATA/pg_wal directory.

All objects that are being worked on in RAM have their operations logged.
These include tables, indexes and other objects, as well as transaction
statuses. Operations with temporary tables (tables which exist only during
the scope of a session or a transaction and are only available to the user
who has created them) are not logged. You can also set a regular table to be
explicitly unlogged. The table will be quicker to work with, but will be wiped
on crash.

https://postgrespro.com/docs/postgresql/16/wal-intro

https://postgrespro.com/docs/postgresql/16/wal-intro

Write-Ahead Log

The WAL can be considered as a continuous stream of records. Each record has a unique ID called an LSN (Log Sequence Number).
This 64-bit number represents the record’s byte offset from the start of the WAL.

The current WAL position can be seen with pg_current_wal_lsn function:
=> SELECT pg_current_wal_lsn();

pg_current wal 1lsn

0/2378028
(1 row)

The position is displayed as two 32-bit numbers separated by a slash. Let’s save it for future reference.
Now let’s perform some operations and see what’s changed.

=> UPDATE t SET n = 100_001 WHERE n = 1;

UPDATE 1

=> SELECT pg_current_wal_lsn();

pg_current wal 1sn

0/237B040
(1 row)

It’s not the absolute values we’re interested in, but the distance between them, as it shows the size of generated WAL records in
bytes:

=> SELECT '0/237B040'::pg_lsn - '0/2378028'::pg_lsn AS bytes;

The WAL is stored in files in a separate catalog (PGDATA/pg_wal). By default, the files are 16 MB each, but you can change that
during cluster initialization.

In addition to browsing the files by means of the OS, you can also display them by the following command:
=> SELECT * FROM pg_ls_waldir() ORDER BY name LIMIT 10;

name | size | modification

000000010000000000000002 | 16777216 | 2025-09-24 16:58:26+03
000000010000000000000003 | 16777216 | 2025-09-24 16:58:18+03
(2 rows)

o)) PROFESSIONAL

Checkpoint Pos{gres

Regular flushing of all dirty buffers to disk

ensures that all data changes before the checkpoint get to the disk
limits the size of the WAL required for recovery

Crash recovery

starts from the last checkpoint
WAL records are replayed one-by-one to restore data

recovery
start

required WAL files

- .
® : ® : » xid
checkpoint checkpoint crash

When PostgreSQL crashes, it enters the recovery mode on the next start.
The data on disk at this point is inconsistent. Changes to hot pages were in
the buffer cache, and are now lost, while some of the later changes have
been flushed to disk already.

To restore consistency, PostgreSQL sequentially reads the WAL records,
replaying the changes that did not make it to the disk. This way, the state of
all transactions at the time of the crash is restored. Then, any transactions
that have not been logged as committed are considered aborted.

However, logging all changes throughout a server’s lifetime and replaying
everything from day one after each crash is impractical, if not impossible.
Instead, PostgreSQL uses checkpoints. Every now and then, it forces all
dirty buffers to disk (including clog buffers, which store transaction statuses).

A checkpoint is the moment in time when the flushing of all data to disk is
started. However, you only have a valid checkpoint when the flushing of all
such buffers is complete. It ensures that all data changes up to this point are
safe in persistent memory.

In production environments with a large buffer cache, a checkpoint can flush
many dirty buffers, so the server spreads this flushing over time to smooth
out the I/O load.

When a crash occurs, recovery is started from the last completed
checkpoint. Consequently, it is sufficient to store WAL files only as far back
as the last completed checkpoint goes.

Crash Recovery Using WAL

Modified table pages exist in the buffer cache but haven’t been written to disk yet. During normal shutdown, the server performs a
checkpoint to flush all dirty pages to disk. However, we’ll simulate a system crash by sending a signal to the postmaster process.

student$ sudo kill -QUIT $(sudo head -n 1 /var/lib/postgresql/16/main/postmaster.pid)
When the server comes back up, it should begin the recovery. Let’s try:

student$ sudo pg ctlcluster 16 main start

student$ psql arch_wal_overview

=> SELECT min(n), max(n) FROM t;

min | max
_____ L .

2 | 100001
(1 row)

All the changes have been recovered.

After performing a checkpoint, PostgreSQL automatically deletes WAL files that are no longer necessary for recovery.

o)) PROFESSIONAL

Performance Posigres

PostgreSQL
Synchronous mode S—
write on commit I P
backend :)
acken backend walwriter | | checkpointer
—
Asynchronous mode }
background write shared memory
walwriter @ @ [buffer cache]
[cache] S

ma)

transaction
status

10

The WAL approach is faster than working directly with disk without a buffer
cache. Firstly, a WAL record is smaller than an entire page of data.
Secondly, the WAL is written sequentially (and usually not read until a crash
occurs), which is better for basic hard disk drives.

Performance can also be managed via configuration settings. If the records
are stored to disk immediately (synchronous mode), this guarantees that the
commited transaction will not be lost. But recording to disk is expensive and
forces the committing backend process to wait in line. To prevent WAL
records from getting “stuck” in the OS cache, PostgreSQL relies on call of
the fsync function, which forces the data into persistent storage.

There is also asynchronous mode, which has a background process
walwriter constantly flushing WAL records to disk, with a certain delay. It is
more efficient at the cost of some reliability, but still ensures consistency
after crash recovery.

In fact, both modes work together. WAL records of a long transaction are
written asynchronously (to free up WAL buffers). And if a page is getting

flushed to disk and the corresponding WAL record is not there yet, it will

immediately be flushed in synchronous mode.

o)) PROFESSIONAL

Main Processes Posigres

] PostgreSQL
WAL writer Sostmaster
Checkpo inter [ez
.4 14 Al A
flush all backend walwriter | | checkpointer | | bgwriter
dirty buffers —

shared memory

@ @ [buffer cache]

Background writer

flush some
dirty buffers

Backends [cache] oS

flush replaced v
dirty buffer D D @

11

Let’'s take a step back and look at the processes that maintain the buffer
cache and the WAL.

First, there is walwriter. This process writes WAL records to disk in
asynchronous mode. In synchronous mode, this job is handled by the
backend that commits the transaction.

Second, checkpointer, the checkpoint process. It periodically flushes all dirty
buffers to disk.

Third, bgwriter (or background writer). It operates similarly to checkpointer,
but it only flushes some of the dirty buffers, specifically, those that are most
likely to be replaced soon. It frees up buffer space so that when backend
selects a buffer to put a new page in, it does not have to flush the old
contents of the buffer to disk itself.

Fourth, there are backends that put data into the buffer cache. Whenever a
buffer being replaced is still dirty (despite the efforts of checkpointer and
bgwriter), the backend will flush it to disk.

WAL Levels Pos{gres

Minimal
guarantees crash recovery
Replica (default)

backup
replication: transmit the WAL on another server and replay it there

Logical

logical replication: information about adding, changing,
and deleting table rows

12

WAL was developed as a data protection tool to mitigate the risk of data loss
due to crashes.

However, the WAL mechanism turned out to have other applications, if it is
supplemented with additional information.

The data stored in the WAL is controlled by the wal_level parameter.
* The minimal level is sufficient to recover after a crash, and nothing else.

* The replica level stores additional information that allows WAL to be used
for backup and replication. During replication, WAL records are
transmitted to another server and applied there, creating an exact copy
(replica) of the original server.

« Atthe logical level, information is added to the WAL that allows decoding
“physical” WAL records and forming “logical” records of adding, changing
and deleting table rows. This enables logical replication (see
corresponding lessons of DEV2 and DBA3 courses for details).

Takeaways po%aﬁ;g

Buffer cache increases performance by reducing the number of
disk operations

WAL ensures reliability
WAL size is kept in check by checkpoints
WAL has multiple uses:

crash recovery
backup
replication

13

o)) PROFESSIONAL

Practice Posigres

1. Using the OS tools, find the processes responsible for the buffer
cache and the WAL.

2. Stop PostgreSQL in fast mode; start it again. Check the server
message log.

3. Now stop PostgreSQL in immediate mode; start it again.
Check the server message log and compare with the previous
one.

14

2. To stop in fast mode, use the command

pg_ctlcluster 16 main stop

This makes the server abort all open connections and perform a checkpoint
before shutting down, so that all data is flushed to disk and consistent. In

this mode, the shutdown may take some time, but on startup the server will
be good to go right away.

3. To stop in immediate mode, use the command

pg_ctlcluster 16 main stop -m immediate --skip-systemctl-redirect
The server will also abort open connections, but will not perform a
checkpoint. Data on disk will be inconsistent, like after a crash. In this mode,

the server shuts down quickly, but will have to restore data consistency
using WAL on startup.

If your PostgreSQL is compiled from source code, the fast stop command
will be

pg_ctl stop

and the immediate stop command will be
pg_ctl stop -m immediate

1. Operating System Processes

First, get the postmaster process ID. It is stored in the first line of postmaster.pid. This file is located in the data directory and is
created every time the server starts.

student$ sudo cat /var/lib/postgresql/16/main/postmaster.pid

32548
/var/lib/postgresql/16/main
1758722835
5432
/var/run/postgresql
localhost

1342266 32770
ready

Now, find all the processes spawned by postmaster:
student$ sudo ps -o pid,command --ppid 32548

PID COMMAND
32549 postgres: 16/main: checkpointer
32550 postgres: 16/main: background writer
32552 postgres: 16/main: walwriter
32553 postgres: 16/main: autovacuum launcher
32554 postgres: 16/main: logical replication launcher
32597 postgres: 16/main: student student [local] idle

The processes that serve the buffer cache and the WAL include:

e checkpointer
e background writer
o walwriter

2. Stop in Fast Mode

To easily separate old messages from new ones, clear the message log before restarting the server. Do not do this on a real
production server.

student$ sudo -u postgres truncate -cs@ /var/log/postgresql/postgresql-16-main.log
student$ sudo pg_ctlcluster 16 main stop

student$ sudo pg ctlcluster 16 main start

Server message log:

student$ cat /var/log/postgresql/postgresql-16-main.log

2025-09-24 17:07:19.702 MSK [32548] LOG: received fast shutdown request

2025-09-24 17:07:19.718 MSK [32548] LOG: aborting any active transactions

2025-09-24 17:07:19.719 MSK [32597] student@student FATAL: terminating connection due to
administrator command

2025-09-24 17:07:19.733 MSK [32548] LOG: background worker "logical replication
launcher" (PID 32554) exited with exit code 1

2025-09-24 17:07:19.735 MSK [32549] LOG: shutting down

2025-09-24 17:07:19.751 MSK [32549] LOG: checkpoint starting: shutdown immediate
2025-09-24 17:07:20.141 MSK [32549] LOG: checkpoint complete: wrote 5 buffers (0.0%); 0
WAL file(s) added, O removed, 0 recycled; write=0.141 s, sync=0.043 s, total=0.406 s;
sync files=4, longest=0.015 s, average=0.011 s; distance=0 kB, estimate=0 kB;
1sn=0/1921710, redo 1sn=0/1921710

2025-09-24 17:07:20.149 MSK [32548] LOG: database system is shut down

2025-09-24 17:07:20.631 MSK [32826] LOG: starting PostgreSQL 16.10 (Ubuntu
16.10-1.pgdg24.04+1) on x86 64-pc-linux-gnu, compiled by gcc (Ubuntu
13.3.0-6ubuntu2~24.04) 13.3.0, 64-bit

2025-09-24 17:07:20.632 MSK [32826] LOG: 1listening on IPv4 address "127.0.0.1", port 5432
2025-09-24 17:07:20.646 MSK [32826] LOG: Tlistening on Unix socket
"/var/run/postgresql/.s.PGSQL.5432"

2025-09-24 17:07:20.681 MSK [32829] LOG: database system was shut down at 2025-09-24
17:07:20 MSK

2025-09-24 17:07:20.706 MSK [32826] LOG: database system is ready to accept connections

3. Stop in Immediate Mode

student$ sudo -u postgres truncate -cs@ /var/log/postgresql/postgresql-16-main.log

student$ sudo pg_ctlcluster 16 main stop -m immediate --skip-systemctl-redirect

student$ sudo pg_ctlcluster 16 main start

Server message log:

student$ cat /var/log/postgresql/postgresql-16-main.log

2025-09-24 17:07:23.372 MSK [32826] LOG:
2025-09-24 17:07:23.394 MSK [32826] LOG:
2025-09-24 17:07:23.898 MSK [32999] LOG:
16.10-1.pgdg24.04+1) on x86 64-pc-linux-gnu, compiled by gcc (Ubuntu
13.3.0-6ubuntu2~24.04) 13.3.0, 64-bit
2025-09-24 17:07:23.899 MSK [32999] LOG:
2025-09-24 17:07:23.919 MSK [32999] LOG:
"/var/run/postgresql/.s.PGSQL.5432"

2025-09-24 17:07:
at 2025-09-24 17:
2025-09-24 17:07:

10.02 s, current

2025-09-24 17:07:

20.02 s, current

2025-09-24 17:07:

30.00 s, current

2025-09-24 17:08:

23.953

MSK [33002] LOG:

07:20 MSK

34.001
path:
44,007
path:
53.989
path:
01.219

MSK [33002] LOG:

./base/1/1249 vm

MSK [33002] LOG:

MSK [33002] LOG:

./base/5/2667

MSK [33002] LOG:

automatic recovery in progress
2025-09-24 17:08:01.239 MSK [33002] LOG:

least 24, got 0

2025-09-24 17:08:01.239 MSK [33002] LOG:
2025-09-24 17:08:01.285 MSK [33000] LOG:

wait

2025-09-24 17:08:01.388 MSK [33000] LOG:
WAL file(s) added, O removed, 0 recycled; write=0.029 s, sync=0.015 s, total=0.122 s;
sync files=2, longest=0.008 s, average=0.008 s; distance=0 kB, estimate=0 kB;

1sn=0/1921788,

redo 1sn=0/1921788

2025-09-24 17:08:01.410 MSK [32999] LOG:

received immediate shutdown request
database system is shut down
starting PostgreSQL 16.10 (Ubuntu

listening on IPv4 address "127.0.0.1", port 5432
listening on Unix socket

database system was interrupted; last known up
syncing data directory (fsync), elapsed time:

syncing data directory (fsync), elapsed time:

./base/16385/1247 fsm

syncing data directory (fsync), elapsed time:
database system was not properly shut down;
invalid record length at 0/1921788: expected at

redo is not required
checkpoint starting: end-of-recovery immediate

checkpoint complete: wrote 3 buffers (0.0%); 0

database system is ready to accept connections

Before starting to accept connections, the DBMS performed an automatic recovery.

