

Replication

Overview of Physical Replication

16

Copyright
© Postgres Professional, 2017–2025
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Igor Gnatyuk
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is”, and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

Replication Types

Physical Replication

Log Levels

Replication Use Cases

Switching to Standby

3

Replication Types

Data synchronization between servers

Purposes
fault tolerance, high availability
scalability

Physical replication
synchronization at the level of pages and row versions

Logical replication
synchronization at the level of table rows

A single database server may not meet the requirements.

A single server is a potential point of failure. Two (or more) servers allow the
system to maintain availability in case of a failure (fault tolerance) or, more
broadly, in any scenario, such as during scheduled maintenance (high
availability).

One server may not be able to handle the load. Scaling up (upgrading server
resources) may be inefficient or even impossible. However, the workload
can be distributed across multiple servers (scaling).

Database systems can access shared data.

The solution is to have multiple servers managing the same data.
Replication refers to the process of synchronizing this data.

Depending on the level at which synchronization occurs, there are two types
of replication: physical replication synchronizes changes at the data page
level and transaction statuses and logical replication synchronizes changes
at the table row level.

4

Physical Replication

Mechanism
one server transfers WAL records to another server, and the second server
replays the received records

Features

primary-standby: data flow in one direction only
binary server compatibility is required
only the cluster as a whole can be replicated

The idea of physical replication is that one server transfers WAL records to
another server, and the second server replays the received records like in
crash recovery.

During physical replication, servers have assigned roles: primary and
standby. The primary transfers WAL records to standby (in the form of files
or a stream of records). The standby applies these records to its data files.
The WAL record application is purely mechanical, without “understanding
the meaning” of the changes, so binary compatibility between servers is
important (the same platform and major PostgreSQL version). Since the
WAL is shared across the entire cluster, only the cluster as a whole can be
replicated.

5

Physical Replication

main server
(primary)

WAL segments

select, insert
update, delete

backup server
(standby)

wal sender wal receiver startup

WAL archive

alternative
WAL source

streaming
replication

To set up replication between two servers, we create a replica from a
physical backup of the primary server. Normally, restoring such a backup
would create a new independent server. However, when replication is
enabled, the standby server operates in continuous recovery mode: it
constantly applies new WAL records received from the primary server
(handled by the startup process). This way, the replica is constantly
maintained in an almost up-to-date state.

There are two ways to deliver WALs from the primary to the standby. The
one used more commonly in production is streaming replication.

In this case, the replica (walreceiver process) connects to the primary
(walsender process) via the replication protocol and receives the WAL
record stream. This minimizes the replica lag and can even eliminate it
entirely (in synchronous mode).

If the system is set for continuous archiving, file-based replication is
possible. In this case, the replica will lag noticeably as the file archive is
updated only when a WAL segment is switched.

In practice, file-based replication is used in addition to streaming replication.
If the replica cannot receive the next WAL entry via the replication protocol, it
will try to read it from the archive.

https://postgrespro.com/docs/postgresql/16/high-availability

https://postgrespro.com/docs/postgresql/16/high-availability

6

WAL Levels

wal_level parameter

minimal < replica

crash recovery crash recovery

restore from backup,
 replication

Since standby only receives the information contained in the WAL, all data
necessary for synchronization shall be recorded into the WAL.

The amount of data stored in each WAL record is controlled by the wal_level
parameter.

Prior to PostgreSQL 10 the default level was minimal, which guaranteed
only crash recovery. Replication cannot function at this level because some
changes are directly written to persistent storage for reliability, bypassing
WAL.

In PostgreSQL 10+ the default level is replica. At this level all data changes
are recorded into the WAL, that enables restoring the system from
pg_basebackup hot backups, as well as physical streaming replication.

As backup and replication are highly-demanded features, the default level
was switched to replica.

Physical	Replication	Configuration

Setting	up	streaming	replication	between	two	servers.	We	will	focus	on	the	simplest	configuration;	replication	is	covered	in	detail
in	the	DBA3	administrator	course.

Required	configuration	parameters	to	be	checked:

=>	SELECT	name,	setting	FROM	pg_settings
WHERE	name	in	('wal_level','max_wal_senders');

						name							|	setting	
-----------------+---------
	max_wal_senders	|	10
	wal_level							|	replica
(2	rows)

Starting	with	PostgreSQL	10,	default	parameters	already	have	appropriate	values.

Ensure	pg_hba.conf	allows	replication	protocol	connections:

=>	SELECT	type,	user_name,	address,	auth_method	FROM	pg_hba_file_rules
WHERE	'replication'	=	ANY(database);

	type		|	user_name	|		address		|		auth_method		
-------+-----------+-----------+---------------
	local	|	{all}					|											|	trust
	host		|	{all}					|	127.0.0.1	|	scram-sha-256
	host		|	{all}					|	::1							|	scram-sha-256
(3	rows)

The	necessary	permissions	are	already	in	place.

Let’s	deploy	a	standby	from	a	physical	backup,	for	this	we	use	the	pg_basebackup	tool.

The	target	copy	directory	must	be	empty	or	non-existent:

student$	rm	-rf	/home/student/tmp/backup

The	--checkpoint=fast	option	requests	the	utility	to	perform	an	immediate	checkpoint	(without	delays),	while	-R	adds	standby
configuration	settings:

student$	pg_basebackup	--pgdata=/home/student/tmp/backup	-R	--checkpoint=fast

The	utility	creates	a	sample	configuration	file...

student$	cat	/home/student/tmp/backup/postgresql.auto.conf

#	Do	not	edit	this	file	manually!
#	It	will	be	overwritten	by	the	ALTER	SYSTEM	command.
primary_conninfo	=	'user=student	passfile=''/home/student/.pgpass''	
channel_binding=prefer	host=''/var/run/postgresql''	port=5432	sslmode=prefer	
sslnegotiation=postgres	sslcompression=0	sslcertmode=allow	sslsni=1	
ssl_min_protocol_version=TLSv1.2	gssencmode=prefer	krbsrvname=postgres	gssdelegation=0	
target_session_attrs=any	load_balance_hosts=disable'

...	and	a	signal	file	that	instructs	the	standby	to	enter	continuous	recovery	mode:

student$	ls	-l	/home/student/tmp/backup/*.signal

-rw-------	1	student	student	0	Sep	24	17:03	/home/student/tmp/backup/standby.signal

The	cluster	where	we	are	deploying	the	standby	has	been	pre-initialized.	If	the	server	is	running,	it	must	be	stopped	first:

student$	sudo	pg_ctlcluster	16	replica	stop

Cluster	is	not	running.

The	copy	was	placed	in	the	home	directory	of	student	user,	and	now	we	transfer	it	to	the	cluster	data	directory	and	make	postgres
user	the	owner	of	the	files:

student$	sudo	rm	-rf	/var/lib/postgresql/16/replica

student$	sudo	mv	/home/student/tmp/backup	/var/lib/postgresql/16/replica

student$	sudo	chown	-R	postgres:	/var/lib/postgresql/16/replica

Now	we	can	start	the	server:

student$	sudo	pg_ctlcluster	16	replica	start

Let’s	examine	the	standby	processes.

student$	sudo	head	-n	1	'/var/lib/postgresql/16/replica/postmaster.pid'

25056

student$	ps	-o	pid,command	--ppid	25056

				PID	COMMAND
		25057	postgres:	16/replica:	checkpointer	
		25058	postgres:	16/replica:	background	writer	
		25059	postgres:	16/replica:	startup	recovering	000000010000000000000003
		25060	postgres:	16/replica:	walreceiver	streaming	0/3000060

The	walreceiver	process	receives	the	WAL	stream,	and	the	startup	process	applies	changes.

Compare	these	with	the	primary	processes.

student$	sudo	head	-n	1	'/var/lib/postgresql/16/main/postmaster.pid'

24648

student$	ps	-o	pid,command	--ppid	24648

				PID	COMMAND
		24649	postgres:	16/main:	checkpointer	
		24650	postgres:	16/main:	background	writer	
		24652	postgres:	16/main:	walwriter	
		24653	postgres:	16/main:	autovacuum	launcher	
		24654	postgres:	16/main:	logical	replication	launcher	
		24697	postgres:	16/main:	student	student	[local]	idle
		25061	postgres:	16/main:	walsender	student	[local]	streaming	0/3000060

The	walsender	process	sends	WAL	records	to	the	standby.

The	state	of	the	replication	can	be	checked	on	the	primary	server:

=>	SELECT	*	FROM	pg_stat_replication	\gx

-[RECORD	1]----+------------------------------
pid														|	25061
usesysid									|	16384
usename										|	student
application_name	|	16/replica
client_addr						|	
client_hostname		|	
client_port						|	-1
backend_start				|	2025-09-24	17:03:26.069788+03
backend_xmin					|	
state												|	streaming
sent_lsn									|	0/3000060
write_lsn								|	0/3000060
flush_lsn								|	0/3000060
replay_lsn							|	0/3000060
write_lag								|	00:00:00.054771
flush_lag								|	00:00:00.070437
replay_lag							|	00:00:00.07073
sync_priority				|	0
sync_state							|	async
reply_time							|	2025-09-24	17:03:26.142566+03

*_lsn	values	indicate	which	WAL	records	were	sent	to	the	standby,	received	by	it,	written	to	disk	and	applied.
sync_state	is	synchronous	or	asynchronous	replication	(we	will	explain	it	in	detail	later).

8

Standby Usage

Allowed
read-only queries (SELECT, COPY TO, cursors)
setting server parameters (SET, RESET)
transaction management (BEGIN, COMMIT, ROLLBACK...)
creating a backup (pg_basebackup)

Not allowed
any changes (INSERT, UPDATE, DELETE, TRUNCATE, nextval...)
locks expecting changes (SELECT FOR UPDATE...)
DDL commands (CREATE, DROP...), including creating temporary tables
maintenance commands (VACUUM, ANALYZE, REINDEX...)
access control (GRANT, REVOKE...)
triggers and advisory locks do not work

By default, the standby operates in the hot standby mode. In this mode,
client connections are allowed but restricted to read-only operations. Setting
server parameters and transaction management commands will also work.
For example, you can start a (read-only) transaction with a specific isolation
level.

In addition, the standby can also be used for making backups (taking into
account the possible lag behind the primary).

In hot standby mode, no data changes (including sequences), locks, DDL
commands, commands such as VACUUM, ANALYZE and REINDEX or
access control commands are allowed on the standby. Basically, anything
that changes the data in any way is not accepted.

If required, the standby can be run in warm standby mode by setting the
parameter hot_standby = off. In this case, client connections will be
completely disabled.

https://postgrespro.com/docs/postgresql/16/hot-standby

https://postgrespro.com/docs/postgresql/16/hot-standby

Standby	Usage

Run	several	commands	on	the	primary	server:

=>	CREATE	DATABASE	replica_overview_physical;

CREATE	DATABASE

=>	\c	replica_overview_physical

You	are	now	connected	to	database	"replica_overview_physical"	as	user	"student".

=>	CREATE	TABLE	test(id	integer	PRIMARY	KEY,	descr	text);

CREATE	TABLE

Check	the	standby:

student$	psql	-p	5433	-d	replica_overview_physical

=>	SELECT	*	FROM	test;

	id	|	descr	
----+-------
(0	rows)

Let’s	insert	a	row	into	the	table	on	the	primary	server:

=>	INSERT	INTO	test	VALUES	(1,	'One');

INSERT	0	1

=>	SELECT	*	FROM	test;

	id	|	descr	
----+-------
		1	|	One
(1	row)

So,	replication	is	working	correctly,	and	queries	are	executed	successfully	on	the	standby.	No	changes	can	be	made	on	standby
directly:

=>	INSERT	INTO	test	VALUES	(2,	'Two');

ERROR:		cannot	execute	INSERT	in	a	read-only	transaction

10

Standby Usage

data storage reliability

main server
(primary)

WAL segments

select, insert
update, delete

backup server
(standby)

wal sender wal receiver startup

synchronous
replication

The replication mechanism offers flexible system design options for a variety
of applications. Let’s consider several typical cases and possible solutions.

One of the key objectives is ensuring data storage reliability.

As a reminder, transaction commits can operate in synchronous or
asynchronous modes. In synchronous mode, the commit is not completed
until the data is safely written to persistent storage. In asynchronous mode,
there is a risk of losing some committed data, but commits do not wait for
disk writes, improving system performance.

A similar principle is applied to replication: in synchronous mode
(synchronous_commit = on), when a standby is present, the commit waits
not only for the WAL to be written to disk but also for confirmation that the
WAL records have been received by the synchronous standby. This further
enhances reliability (ensuring data is not lost even if the primary server fails)
but also increases latency, slowing down the system.

There are also intermediate configuration options that do not provide
absolute reliability guarantees but still reduce the risk of data loss.

11

Standby Usage

long-running analytical queries (reports)

main server
(primary)

WAL segments

select, insert
update, delete

backup server
(standby)

wal sender wal receiver startup

standby
may fall behind,

conflicting records
 are deferred

conflicts:
removal of row versions

by vacuuming and
exclusive locks

As mentioned earlier, long-running queries hold back the vacuum horizon,
preventing the removal of obsolete row versions. If certain tables are being
actively modified during this time, they can grow significantly in size.
This is why standbys are often used for long-running analytical queries.

A subtle issue arises when WAL records from the primary server conflict with
queries running on the standby. There are two main sources of such
records:

1. The primary server removes row versions that are no longer needed there
but are still required by queries on the standby.

2. Exclusive locks on the primary that are incompatible with queries on the
standby.

So, standby for reports is typically configured to accept WAL records from
the primary but delay their application if they conflict with running queries.
This means the standby’s data may lag behind the primary, but for analytical
workloads, this is acceptable.

12

Multiple Stanbys

main server
(primary)

WAL segments

select, insert
update, delete

backup server
(standby A)

wal sender
backup server

(standby B)
wal sender

wal receiver startup

wal receiver startup

feedback

feedback

Multiple standbys can be connected to the primary server to distribute OLTP
read workloads.

OLTP queries should not be long-running. This enables effective use of
replication protocol feedback between standbys and the primary server. In
this case, the primary server maintains awareness of the transaction horizon
required by queries on standbys, preventing vacuum from removing needed
row versions. Essentially, this feedback mechanism achieves the same
result as if all queries were executing locally on the primary server.

However, replication provides only the basic mechanism. External tools
(load balancers) are required for automatic workload distribution. It is
important to note that data consistency between the primary and standbys is
not guaranteed — even in synchronous replication. Applications reading
from a single server will, of course, maintain consistency, but consistency is
no longer guaranteed when reading from multiple servers simultaneously.
Replicas may return either stale data or changes not yet visible on the
primary. These topics are discussed in detail in the DBA3 Backup and
Replication course.

13

no additional load on the primary and redistribution of network traffic

Cascading Replication

main server
(primary)

WAL segments

select, insert
update, delete

backup server
(standby B)

wal sender

backup server
(standby A)

wal senderwal receiver startup wal receiver startup

Multiple standbys connected to a single primary server will generate
additional load on it. Network load should also be considered when
transmitting multiple copies of the WAL stream.

To reduce this load, standbys can be arranged in a cascade configuration,
where servers relay WAL records to each other in a chain. The further
downstream from the primary, the greater potential lag may accumulate in
the replicated data.

Note that cascaded synchronous replication is not supported — the primary
can only synchronize with directly connected standbys. However, the
primary collects feedback from all standbys in the cascade.

14

“time machine”
can recover to a specific point in time without WAL archive

Delayed Replication

WAL application delay

main server
(primary)

WAL segments

select, insert
update, delete

backup server
(standby)

wal sender wal receiver startup

A useful feature is the ability to view data at and recover to an arbitrary point
in time. It is particularly useful for recovering from user errors where
incorrect actions need to be rolled back.

The regular archive-based point-in-time recovery mechanism can work here,
but it requires a lot of preparation and takes a lot of time. And PostgreSQL
itself does not allow to make data snapshots for a given moment in the past.

The solution is to have a standby apply WAL records not immediately, but
with a certain delay.

In this course, we do not cover the required configurations for each of the
provided options. For detailed information, refer to the DBA3 Backup and
Replication course.

15

Switching to Standby

Scheduled switchover
shutdown of the main server for maintenance without interruption of service

manual mode

Emergency switchover
switch to a standby due to a primary server failure

manual mode,
but can be automated with external cluster software

An existing standby can be used to replace the primary server.

There are different reasons for switchover to a backup server. If it is
maintenance time on the primary, the switchover can be performed routinely
at a convenient time. If it is the primary failure, on the other hand, the
switchover has to be performed as quickly as possible to avoid service
downtime.

Even in case of a failure, switchover is performed manually unless
specialized cluster software is used to monitor server status and initiate the
switchover automatically.

Switching	to	a	Standby

To	switch	a	standby	from	recovery	to	normal	mode	use	the	appropriate	command.

=>	SELECT	pg_is_in_recovery();	--	is	it	a	standby?

	pg_is_in_recovery	

	t
(1	row)

student$	sudo	pg_ctlcluster	16	replica	promote

Starting	with	PostgreSQL	12,	it	can	be	done	with	the	pg_promote	SQL	function.

=>	SELECT	pg_is_in_recovery();	--	let’s	check	again:	is	it	a	standby?

	pg_is_in_recovery	

	f
(1	row)

We	have	two	completely	independent	servers	running	at	the	same	time.

=>	INSERT	INTO	test	VALUES	(2,	'Two');

INSERT	0	1

It	is	extremely	important	to	ensure	that	an	application	connects	to	only	one	of	the	servers	to	avoid	split-brain	scenarios	where	data
becomes	irreconcilably	divided	between	servers.

17

Takeaways

Physical replication mechanism works by delivering
WAL records to the standby and applying them there

streaming WAL records or transferring files

Physical replication creates an exact copy of the entire cluster

 unidirectional, requires binary compatibility

core mechanism for solving multiple use cases

19

Practice

1. Set up physical streaming replication between the two servers in
synchronous mode. Verify that replication works as intended.
Make sure that when the standby is stopped, commits on the
primary are not completed.

2. By default, conflicting WAL records on the standby are delayed
for up to 30 seconds. Disable the delay and verify that long-
running queries on the standby are canceled if the primary
deletes and vacuums required row versions.
Then enable feedback and confirm that it prevents cancellations
by delaying primary vacuums.

1. To do this, set the following parameters on the primary using ALTER
SYSTEM:
● synchronous_commit = on
● synchronous_standby_names = '"16/replica"'

2. The max_standby_streaming_delay parameter defines how long the
standby will wait for conflicting queries to complete before canceling them.
Set it to 0. Enable feedback by setting hot_standby_feedback = on.
Apply both settings using ALTER SYSTEM and reload the configuration.

To simulate a long-running query on a small dataset, use pg_sleep() in
queries.

1.	Synchronous	Replication

Deploy	the	standby	as	shown	in	the	demonstration:

student$	pg_basebackup	--pgdata=/home/student/tmp/backup	-R	--checkpoint=fast

student$	sudo	pg_ctlcluster	16	replica	stop

Cluster	is	not	running.

student$	sudo	rm	-rf	/var/lib/postgresql/16/replica

student$	sudo	mv	/home/student/tmp/backup	/var/lib/postgresql/16/replica

student$	sudo	chown	-R	postgres:	/var/lib/postgresql/16/replica

Starting	the	standby.

student$	sudo	pg_ctlcluster	16	replica	start

Let’s	configure	synchronous	replication	on	the	primary.	By	default,	synchronous	mode	is	enabled,	but	transaction	commit	records
are	only	synchronized	with	the	local	file	system:

=>	SHOW	synchronous_commit;

	synchronous_commit	

	on
(1	row)

The	synchronization	remains	unconfigured:

=>	SHOW	synchronous_standby_names;

	synchronous_standby_names	

(1	row)

There	can	be	several	standbys,	and	the	primary	must	know	which	one	to	synchronize	with.	The	standby	is	represented	by	the	name
specified	in	its	cluster_name	parameter:

student$	psql	-p	5433	

=>	SHOW	cluster_name;

	cluster_name	

	16/replica
(1	row)

=>	ALTER	SYSTEM	SET	synchronous_standby_names	=	'"16/replica"';

ALTER	SYSTEM

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

=>	SELECT	sync_state	FROM	pg_stat_replication;

	sync_state	

	sync
(1	row)

The	standby	starts	successfully.

=>	CREATE	DATABASE	replica_overview_physical;

CREATE	DATABASE

=>	\c	replica_overview_physical

You	are	now	connected	to	database	"replica_overview_physical"	as	user	"student".

Now	stop	the	standby...

student$	sudo	pg_ctlcluster	16	replica	stop

...and	attempt	to	execute	a	transaction:

=>	CREATE	TABLE	test(n	integer);

The	operation	hangs	until	the	standby	restarts	and	replication	is	restored:

student$	sudo	pg_ctlcluster	16	replica	start

CREATE	TABLE

2.	Conflicting	Records

student$	psql	-p	5433	-d	replica_overview_physical

We	disable	delayed	conflict	resolution:

=>	ALTER	SYSTEM	SET	max_standby_streaming_delay	=	0;

ALTER	SYSTEM

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

Insert	rows	into	the	table:

=>	INSERT	INTO	test(n)	SELECT	id	FROM	generate_series(1,10)	AS	id;

INSERT	0	10

Execute	a	long-running	query	on	the	standby...

=>	SELECT	pg_sleep(5),	count(*)	FROM	test;

...meanwhile,	delete	table	rows	and	perform	vacuuming	on	the	primary:

=>	DELETE	FROM	test;

DELETE	10

=>	VACUUM	VERBOSE	test;

INFO:		vacuuming	"replica_overview_physical.public.test"
INFO:		table	"test":	truncated	1	to	0	pages
INFO:		finished	vacuuming	"replica_overview_physical.public.test":	index	scans:	0
pages:	1	removed,	0	remain,	1	scanned	(100.00%	of	total)
tuples:	10	removed,	0	remain,	0	are	dead	but	not	yet	removable
removable	cutoff:	737,	which	was	1	XIDs	old	when	operation	ended
new	relfrozenxid:	737,	which	is	3	XIDs	ahead	of	previous	value
frozen:	0	pages	from	table	(0.00%	of	total)	had	0	tuples	frozen
index	scan	not	needed:	1	pages	from	table	(100.00%	of	total)	had	10	dead	item	identifiers	
removed
avg	read	rate:	0.000	MB/s,	avg	write	rate:	3.321	MB/s
buffer	usage:	10	hits,	0	misses,	4	dirtied
WAL	usage:	6	records,	1	full	page	images,	8675	bytes
system	usage:	CPU:	user:	0.00	s,	system:	0.00	s,	elapsed:	0.00	s
VACUUM

Vacuuming	removed	all	row	versions	(tuples:	10	removed).	The	standby	query	fails	with	an	error:

ERROR:		canceling	statement	due	to	conflict	with	recovery
DETAIL:		User	query	might	have	needed	to	see	row	versions	that	must	be	removed.

Repeat	the	experiment	with	feedback	enabled.

=>	ALTER	SYSTEM	SET	hot_standby_feedback	=	on;

ALTER	SYSTEM

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

=>	INSERT	INTO	test(n)	SELECT	id	FROM	generate_series(1,10)	AS	id;

INSERT	0	10

=>	SELECT	pg_sleep(5),	count(*)	FROM	test;

=>	DELETE	FROM	test;

DELETE	10

=>	VACUUM	VERBOSE	test;

INFO:		vacuuming	"replica_overview_physical.public.test"
INFO:		finished	vacuuming	"replica_overview_physical.public.test":	index	scans:	0
pages:	0	removed,	1	remain,	1	scanned	(100.00%	of	total)
tuples:	0	removed,	10	remain,	10	are	dead	but	not	yet	removable
removable	cutoff:	738,	which	was	2	XIDs	old	when	operation	ended
new	relfrozenxid:	738,	which	is	1	XIDs	ahead	of	previous	value
frozen:	0	pages	from	table	(0.00%	of	total)	had	0	tuples	frozen
index	scan	not	needed:	0	pages	from	table	(0.00%	of	total)	had	0	dead	item	identifiers	
removed
avg	read	rate:	0.000	MB/s,	avg	write	rate:	31.250	MB/s
buffer	usage:	8	hits,	0	misses,	1	dirtied
WAL	usage:	1	records,	0	full	page	images,	188	bytes
system	usage:	CPU:	user:	0.00	s,	system:	0.00	s,	elapsed:	0.00	s
VACUUM

Now,	the	vacuum	does	not	delete	the	row	versions	because	it	is	aware	of	a	query	running	on	the	standby	(10	are	dead	but	not	yet
removable)	and	the	query	is	completed	successfully:

	pg_sleep	|	count	
----------+-------
										|				10
(1	row)

Results:

In	the	first	case	(max_standby_streaming_delay),	application	of	WAL	records	on	the	standby	is	delayed.
In	the	second	case	(hot_standby_feedback),	the	vacuuming	on	the	primary	is	delayed.

Disable	synchronous	replication.

=>	ALTER	SYSTEM	RESET	synchronous_standby_names;

ALTER	SYSTEM

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

