Backup
Overview

Pos gres

Copyright

© Postgres Professional, 2017-2025

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov, Alexey Beresnev
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is,”
and Postgres Professional company has no obligations to provide
maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

OOOOOOOOOOOO

Topics Pos{gres

Logical Backup
Physical Backup

Logical Backup

What Is Logical Backup
Table Backup

Database Backup
Cluster Backup

of] PROFESSIONAL

Logical Backup Posigres

SQL commands to restore data from scratch

+ can backup a separate object or database

+ can recover on a cluster running different major version
+ can recover on a different architecture

— low speed

— can restore to the moment of the backup only

There are two types of backup: logical and physical.

Logical backup is a set of SQL commands that restores a cluster (or
database, or a separate object) from scratch.

Such a backup is, in fact, a plain text file, which gives a certain flexibility.
For example, you can make a copy of only those objects that are needed;
you can edit the file by changing the names or data types, etc.

In addition, SQL commands can be executed on a different version of the
DBMS or on a different architecture. Only compatibility at the command level
IS required, binary compatibility is not necessary.

However, for a large database, this mechanism is inefficient, since executing
the commands (in particular, creation of indexes) will take a long time.
Moreover, it is possible to restore the system from such a backup only to the
moment at which the backup was made.

https://postgrespro.com/docs/postgresgl/16/backup-dump

https://postgrespro.ru/docs/postgresql/16/backup-dump

COPY: Table Backup Pogga’?“é“g

Backup

output of a table contents or a query results into a file, stream or program

Restore

insertion of rows from a file or input stream into an existing table

Server variant Client variant
SQL COPY command psql \COPY command
the file must be accessible the file must be accessible
to the postgres user to the user who has launched psql
on the server on the client

If you want to save only the contents of one table, you can use the COPY
command.

The command writes a table (or the result of an arbitrary query) either to a
file or to an output stream, or sends it as input to another program. You can
specify options such as format (plain text, csv or binary), field separator,
NULL string representaion, etc.

The opposite variant of the COPY command reads fields from a file or input
stream and inserts them into a table. The table isn’t cleared, the new rows
are simply appended to the existing ones.

The COPY command is significantly faster than similar INSERT commands,
because the client does not need to access the server repeatedly, and the
server does not have to analyze the commands multiple times.

https://postgrespro.com/docs/postgresql/16/sql-copy

In psql, there is a client version of the COPY command with a similar syntax.
Unlike the server version, which is an SQL command, the client version is a
psql command.

The file name in the SQL command corresponds to a file on the database
server. The user running PostgreSQL (usually postgres) must have access
to this file. In the client version, the file is accessed on the client, and only
the content is transmitted to the server.

https://postgrespro.com/docs/postgresgl/16/app-psql

https://postgrespro.ru/docs/postgresql/16/sql-copy
https://postgrespro.ru/docs/postgresql/16/app-psql

COPY

Create a database and a table in it.

=> CREATE DATABASE backup_overview;

CREATE DATABASE

=> \c backup_overview

You are now connected to database "backup overview" as user "student".
=> CREATE TABLE t(id numeric, s text);

CREATE TABLE

=> INSERT INTO t VALUES (1, 'Hello World!'), (2, ''), (3, NULL);
INSERT 0 3

=> SELECT * FROM t;

(3 rows)

Here is how the COPY command outputs the table:

=> COPY t TO STDOUT;

1 Hello World!
2
3 \N

Note that an empty string and NULL are different things, despite the output not telling us that.

You can input the data in a similar way:
=> TRUNCATE TABLE t;
TRUNCATE TABLE

=> COPY t FROM STDIN;

1 Hi there!
2

3 \N

\.

COPY 3

Let’s check:
=> \pset null ‘<null>’
Null display is "<null>".

=> SELECT * FROM t;

id | s
T Iy
1 | Hi there!

2 |
3 | <null>

(3 rows)

of] PROFESSIONAL

pg_dump: Database Backup Posigres

Backup
outputs an SQL script or an archive
in a special format with a TOC to a stream or file
supports parallel execution

can define what objects to backup
(tables, schemas, only DML or only DDL, etc.)

Restore

SQL script via psql
archive with TOC via pg_restore
(can define what objects to restore and supports parallel execution)

the new database must be created from template0
roles and tablespaces must be created in advance

The pg_dump utility creates a full-scale database backup. Depending on the
options, it provides either an SQL script containing commands that create
the required objects, or a file in a special format with a table of contents.

Restoring from an SQL script is as simple as executing it in psql.
https://postgrespro.com/docs/postgresqgl/16/app-padump

Restoring from an archive is done using the pg_restore tool. It reads the file
and translates it into regular psgl commands. The advantage is that it allows
you to specify what objects to restore at the recovery stage, not just at the
backup stage. Moreover, this type of backup and restore supports parallel
execution.

https://postgrespro.com/docs/postaresql/16/app-parestore

The database for restore must be created from the database templateO,
since all changes made in templatel will also be backed up. In addition, the
necessary roles and tablespaces must be created in advance, since these
objects belong to the entire cluster. After restore, it is recommended to run
the ANALYZE command to collect fresh statistics.

https://postgrespro.ru/docs/postgresql/16/app-pgdump
https://postgrespro.ru/docs/postgresql/16/app-pgrestore

of] PROFESSIONAL

pg_dumpall: Cluster Backup PoS)Eres

Backup

makes a backup of the entire cluster, including roles and tablespaces
outputs an SQL script to the console or to a file

parallel execution is not supported, but you can dump only the global objects
and then use pg_dump

Restore
via psql

pg_dumpall creates a backup of the entire cluster, including roles and
tablespaces.

Since pg_dumpall requires access to all objects of all databases, it is usually
run by the superuser. pg_dumpall connects to each database in the cluster
one by one and backups them using pg_dump. In addition, it also stores
data related to the cluster as a whole.

The result of pg_dumpall is a script for psqgl. Other formats are not
supported. This means that pg_dumpall does not support parallel execution,
which can be a problem for larger clusters. In this case, you can use the
--globals-only option to backup only roles and tablespaces, and then backup
all the databases using pg_dump.

https://postgrespro.com/docs/postgresagl/16/app-pg-dumpall

https://postgrespro.ru/docs/postgresql/16/app-pg-dumpall

pg_dump Utility

Take a look at pg_dump output in a plain text format. Note the way data from the table is saved.

If any changes were made to templatel, they will make it into the backup, too. Therefore, when restoring a database, it is best to create one on
the target from templateO (the --create option adds the necessary commands automatically).

student$ pg_dump -d backup_overview --create

-- PostgreSQL database dump

\restrict ZbyUxC9tvz6k4H2IIy7Dc8vE06970mv9216n7svBkyH2nGzSmADrNWcMpeqIipT

-- Dumped from database version 16.10 (Ubuntu 16.10-1.pgdg24.04+1)
-- Dumped by pg dump version 16.10 (Ubuntu 16.10-1.pgdg24.04+1)

SET statement timeout = 0;

SET lock_timeout = 0;

SET idle in transaction session timeout = 0;

SET client_encoding = 'UTF8';

SET standard_conforming_strings = on;

SELECT pg_catalog.set config('search path', '', false);
SET check_function_bodies = false;

SET xmloption = content;

SET client min messages = warning;

SET row_security = off;

-- Name: backup overview; Type: DATABASE; Schema: -; Owner: student

CREATE DATABASE backup_overview WITH TEMPLATE = template® ENCODING = 'UTF8' LOCALE PROVIDER = libc LOCALE = 'en US.UTF-8';

ALTER DATABASE backup_overview OWNER TO student;

\unrestrict ZbyUxC9tvz6k4H2IIy7Dc8vE06970mv9216n7svBkyH2nGzSmADrNWcMpeqIipT
\connect backup_overview
\restrict ZbyUxC9tvz6k4H2IIy7Dc8vE06970mv9216n7svBkyH2nGzSmADrNWcMpeqIipT

SET statement_ timeout = 0;

SET lock_timeout = 0;

SET idle_in_transaction_session_timeout = 0;

SET client_encoding = 'UTF8';

SET standard_conforming strings = on;

SELECT pg_catalog.set config('search path', '', false);
SET check_function_bodies = false;

SET xmloption = content;

SET client_min_messages = warning;

SET row_security = off;

SET default tablespace = '';

SET default table access method = heap;

-- Name: t; Type: TABLE; Schema: public; Owner: student

CREATE TABLE public.t (
id numeric,
s text

);

ALTER TABLE public.t OWNER TO student;

-- Data for Name: t; Type: TABLE DATA; Schema: public; Owner: student

COPY public.t (id, s) FROM stdin;
1 Hi there!

2
3 \N
\.

-- PostgreSQL database dump complete

\unrestrict ZbyUxC9tvz6k4H2IIy7Dc8vE06970mv9216n7svBkyH2nGzSmADrNWcMpeqIipT

As an example, let’s copy the table into another database.

=> CREATE DATABASE backup_overview2;

CREATE DATABASE

student$ pg_dump -d backup_overview --table=t | psql -d backup_overview2

SET
SET
SET
SET
SET
set config

(1 row)

SET

SET

SET

SET

SET

SET

CREATE TABLE
ALTER TABLE
COPY 3

student$ psql -d backup_overview2

| => SELECT * FROM t;

wWwN =

(3 rows)

Physical Backup

What Is Physical Backup
Cold and Hot Backups
Replication Protocol
Standalone Backup
Continuous WAL Archiving

10

of] PROFESSIONAL

Physical Backup Pos{gres

Crash recovery mechanism is used: copy of data and WAL

+ restore speed

+ can restore a cluster to a certain point in time

— cannot restore a separate database, only the cluster as a whole
— can restore only on the same architecture and major version

11

Physical backup uses the crash recovery mechanism. This requires:
* base backup — a copy of cluster files (data files and system files),
* aset of write-ahead logs needed to restore consistency.

If the file system is already consistent (the backup was made when the
server was stopped correctly), then the WALs are not required.

However, with the WAL archive, it is possible to get cluster state at any point
in time. This way, the cluster can be restored to the state right before the
crash (or at any moment before that, if needed).

High restore speed and the ability to create a backup on the fly without
stopping the server make physical backup the main choice for routine
backup needs.

https://postgrespro.com/docs/postgresqgl/16/backup-file

https://postgrespro.com/docs/postgresgl/16/continuous-archiving

https://postgrespro.ru/docs/postgresql/16/backup-file
https://postgrespro.ru/docs/postgresql/16/continuous-archiving

o)) PROFESSIONAL

Hot or Cold Posigres

Cold backup Hot backup
Cluster files are the server is off the server was shut the server is
backed up when... down incorrectly running
required
WALs are... not required required since the required for the
last checkpoint duration of the file

copy
stored in
the file system
server

must not delete WALs
too early

12

Physical backup creates a copy of the database cluster files at some point.

If a backup is created while the server is stopped, it's called “cold”. A cold
backup either contains consistent data (if the server was shut down
correctly), or contains all the logs necessary for recovery (for example, if the
OS has done a data snapshot). This simplifies restore, but requires that the
server is stopped.

If a backup is created while the server is running (which requires certain
additional actions since you can't copy files just like that), it is called “hot”.
The procedure is more complicated, but can be performed without stopping
the server.

For hot backup, the copy of the cluster files will be inconsistent. However,
the crash recovery mechanism can also be successfully applied to restore
from backup. This will require the WALSs for at least the duration of the file

copy.

Standalone Backup Pogga“?é%

Base copy + WAL
Backup via pg_basebackup

connects to the server over the replication protocol

performs a checkpoint

copies the database cluster files into a specified directory

saves all WAL segments generated during the copying process
Restore

deploy the standalone backup
start the server

13

Hot backups are created with the pg_basebackup tool.
First, it performs a checkpoint. Then, the cluster files are copied.

All WAL files generated by the server during the time from the checkpoint to
the end of file copying are also added to the backup. The resulting backup is
called standalone because it contains all the data necessary for recovery.

All you need to restore using a standalone backup is to deploy the backup
and start the server. It will use the WALS to restore consistency on startup if

necessary, and will be ready to go.
https://postgrespro.com/docs/postaresql/16/app-pabasebackup

https://postgrespro.com/docs/postgresql/16/app-pgbasebackup

of] PROFESSIONAL

Replication Protocol Posigres

Protocol

receiving the WAL stream
backup and replication control commands

Served by wal_sender process
wal_level = replica

Replication slot

a server object for receiving WAL records
remembers which record was read last
WAL segment is not deleted until fully read through the slot

14

The replication protocol allows the utility to connect to the server and collect
all WAL files generated during file copying. Despite the name, the protocol is
used not only for replication (which will be discussed in the next lesson), but
also for backup. The protocol can stream WAL records while data files are
being copied.

To prevent the server from deleting WAL files too early, the replication slot

can be employed, which keeps track of the last WAL record received by the
client.

Establishing a connection over the replication protocol requires a certain
configuration.

First, the initiating role must have the REPLICATION attribute (or be a
superuser). This role must also have the necessary permission in the
pg_hba.conf configuration file.

Second, the max_wal_senders parameter must be set sufficiently high.
This parameter limits the number of simultaneously running wal_sender
processes serving replication protocol connections.

Third, the wal_level parameter, which determines the amount of information
in the WAL, must be set to replica.

The default settings already satisfy all these requirements (for a local
connection).

https://postgrespro.com/docs/postgresal/16/protocol-replication

of] PROFESSIONAL

Standalone Backup Pos{gres

main server

—

select, insert o
update, delete o %

N4,

=] %

(| QO4
) %
gHERINEIN
WAL segments
base backup @
+

wAL [T
(LTI
[T D

15

The image on the left shows the main server. It processes incoming queries.
At the same time, WAL records are formed and the state of the databases
changes (first in the buffer cache, then on disk). WAL segments are
cyclically overwritten (to be precise, old segments are deleted, since the file
names are unique).

At the bottom of the picture is a backup copy (usually located on another
server). It contains a base copy of the data and a set of WAL files.

Standalone Backup

The default configuration is sufficient for replication protocol:

=> SELECT name, setting
FROM pg_settings
WHERE name IN ('wal_level', 'max_wal_senders');

name | setting
_________________ L
max_wal_senders | 10
wal level | replica
(2 rows)

The local connection permission for the replication protocol is also on in pg_hba.conf by default (not for all package distributions):

=> SELECT type, database, user_name, address, auth_method
FROM pg_hba_file_rules()
WHERE 'replication' = ANY(database);

type | database | user name | address | auth method

------- B e e S
local | {replication} | {all} | <null> | trust

host | {replication} | {all} | 127.0.0.1 | scram-sha-256
host | {replication} | {all} | ::1 | scram-sha-256
(3 rows)

Another database cluster, replica, has been initiated on the port 5433. Ubuntu package installs a tool we can use to verify that the
cluster is stopped:

student$ pg_lsclusters

Ver Cluster Port Status Owner Data directory Log file
16 main 5432 online postgres /var/lib/postgresql/16/main
/var/log/postgresql/postgresql-16-main.log

16 replica 5433 down postgres /var/lib/postgresql/16/replica
/var/log/postgresql/postgresql-16-replica.log

Create a backup. Use the default format (plain):
student$ rm -rf /home/student/tmp/basebackup
student$ pg_basebackup --pgdata=/home/student/tmp/basebackup --checkpoint=fast

The pg_basebackup utility performs a checkpoint immediately upon connecting to the server. By default, dirty buffers are written
gradually to avoid I/O peak loads (the process may take up to 4.5 minutes). When using --checkpoint=fast, buffers are written
without delays.

Restore Poggﬁﬁsi%

main server backup server

- —

select, insert select, insert

update, delete % ?}L—l update, delete

WAL segments &
base backup @
+

wAL [T
(LTI
[T D

17

During restore, the base backup, including the necessary WAL files, is
deployed, for example, on another server (shown on the right).

After the startup, it restores consistency and is ready to go. The system is
restored to the point in time when the backup was made. Of course, the
main server can go far ahead in the meantime.

Restore

Move the new backup into replica cluster directory (after making sure the cluster is stopped):
student$ sudo pg ctlcluster 16 replica status

pg ctl: no server running

student$ sudo rm -rf /var/lib/postgresql/16/replica

student$ sudo mv /home/student/tmp/basebackup/ /var/lib/postgresql/16/replica
The cluster files must belong to the postgres user.

student$ sudo chown -R postgres:postgres /var/lib/postgresql/16/replica
Verify the contents:

student$ sudo 1s -1 /var/lib/postgresql/16/replica

total 344

SrW------- 1 postgres postgres 225 Sep 24 17:02 backup label
Srw------- 1 postgres postgres 268206 Sep 24 17:02 backup manifest
drwx------ 8 postgres postgres 4096 Sep 24 17:02 base
drwx------ 2 postgres postgres 4096 Sep 24 17:02 global
drwx------ 2 postgres postgres 4096 Sep 24 17:02 pg commit ts
drwx------ 2 postgres postgres 4096 Sep 24 17:02 pg_dynshmem
drwx------ 4 postgres postgres 4096 Sep 24 17:02 pg logical
drwx------ 4 postgres postgres 4096 Sep 24 17:02 pg multixact
drwx------ 2 postgres postgres 4096 Sep 24 17:02 pg notify
drwx------ 2 postgres postgres 4096 Sep 24 17:02 pg replslot
drwx------ 2 postgres postgres 4096 Sep 24 17:02 pg serial
drwx------ 2 postgres postgres 4096 Sep 24 17:02 pg_snapshots
drwx------ 2 postgres postgres 4096 Sep 24 17:02 pg_stat
drwx------ 2 postgres postgres 4096 Sep 24 17:02 pg stat tmp
drwx------ 2 postgres postgres 4096 Sep 24 17:02 pg subtrans
drwx------ 2 postgres postgres 4096 Sep 24 17:02 pg_tblspc
drwx------ 2 postgres postgres 4096 Sep 24 17:02 pg twophase
SrwW------- 1 postgres postgres 3 Sep 24 17:02 PG_VERSION
drwx------ 3 postgres postgres 4096 Sep 24 17:02 pg wal
drwx------ 2 postgres postgres 4096 Sep 24 17:02 pg xact
SrW------- 1 postgres postgres 88 Sep 24 17:02 postgresql.auto.conf

When started, the cluster will begin restore.

student$ sudo pg ctlcluster 16 replica start
Now both servers run concurrently and independently.
Main server:

=> INSERT INTO t VALUES (4, 'Main server');
INSERT 0 1

=> SELECT * FROM t;

<null>

Server restored from the backup:

student$ psql -p 5433 -d backup_overview
| => INSERT INTO t VALUES (4, 'Backup');
| INSERT 0 1

| => SELECT * FROM t;

id | s
L T T J e,
1 | Hi there!

2 |
3
4 | Backup

(4 rows)

WAL Archive PoSdgras

File archive

WAL segments are archived as they are switched
controlled by the server
archiving happens with a delay

Streaming archive

a stream of WAL records is continuously recorded into the archive
external tools required
delays are minimal

19

The hot backup concept can be improved upon even further. Since we have
a copy of the database cluster files and WALSs, then by constantly saving
new logs, we will be able to restore the system not only at the time of
copying files, but also at any point in time after that.

There are two ways to go about it. The first is to archive old WAL files before
deleting them. There are server settings for that. Unfortunately, with this
option, a WAL file will not be archived until the server switches to writing to
another WAL file.

The second way is to continuously read WAL entries using the replication
protocol and write them into the same archive. This way, delays are minimal,
but a separate tool has to be set up to receive the stream data and archive
it.

File WAL Archive Posigres

Archiver process

Parameters

archive_mode = on

archive_command shell command to copy a WAL segment
to a separate storage

Algorithm

when switching to a new WAL segment, the archive_command is called
if the command is completed with the status 0, the segment is deleted

if the command returns anything else (or if the command is not specified),
the segment remains until the attempt is successful

20

The file WAL archive is managed by the archiver background process.

An arbitrary shell command can be defined as the archive_command
parameter to be used for copying. The mechanism itself is enabled by the
archive_mode = on.

The algorithm goes as follows. When a WAL segment is filled, the copy
command is called. If it is completed with a zero status, the segment can be
deleted safely. Otherwise, the segment (and the ones following it) will not be
deleted, and the server will periodically try to execute the command until it
returns 0.

https://postgrespro.com/docs/postgresgl/16/continuous-archiving

https://postgrespro.ru/docs/postgresql/16/continuous-archiving

File WAL Archive Posigres

main server

select, insert
update, delete

(\m:

archive_command

LTI
LTI

WAL segments AR
L]
archiing (I 1

WAL archive

¥
base backup @

This figure shows the main server with continuous archiving set up. Filled
WAL segments are copied to a separate archive using the command defined
by the archive_command parameter. Usually, the archive is located on a
separate server, and it also stores the base backup (or several, from multiple
points in time).

W

21

Streamed WAL Archive Pogga’?“e"%

pg_receivewal utility
connects over the replication protocol (can use a replication slot)
and stores WAL records stream in segment files

the starting position is the beginning of the segment following the last filled
segment in the directory,
or the start of current segment, if the directory is empty

unlike the file archive, records are written continuously

parameters have to be reconfigured when changing servers

22

Another solution is to use the pg_receivewal utility, which receives WAL
records via the stream replication protocol and writes segments to the
archive.

pg_receivewal usually runs on a separate “archive” server and connects to
the main server with the parameters specified in the command line options.
It can (and should) use a replication slot in order to ensure that records are
not lost.

pg_receivewal generates files in the same way as the server does, and
writes them to the specified directory. Segments that have not yet been filled
in are written with the .partial suffix.

When launched, the utility starts archiving from the beginning of the
segment, following the newest completed archive segment. If the archive is
empty (first run), archiving starts from the beginning of the current segment.

When switching to a new server, pg_receivewal must be stopped and
restarted with new parameters.

PostgreSQL does not include built-in tools to run the utility in the background
(daemonization) or for automatic startup (as a service). To achieve this, you
should use operating system features.

https://postgrespro.com/docs/postgresaql/16/app-pgreceivewal

https://postgrespro.com/docs/postgresql/16/app-pgreceivewal

Streamed WAL Archive Pogga’?ég

main server

=

select, insert
update, delete

[T IT]
WAL segments
1
]
(T TT]
LTI
(LITTIT 1]
LTI
LTI
INEENIEN

WAL archive
23

pg_receivewal connects to the server over the stream replication protocol.
The connection is handled by a separate wal sender process (this must be
taken into account when setting the max_wal_senders parameter).

pg_receivewal saves data without waiting for the entire segment to be
received.

of] PROFESSIONAL

Base Backup + Archive Pos{gres

Configured continuous WAL archiving

Backup via pg_basebackup

connects to the server over the replication protocol

performs a checkpoint
are not required

copies the cluster files into a specified directory

Restore

deploy the backup

set configuration parameters
(command to read WAL from the archive, target recovery point)

create a recovery.signal file
start the server

24

To create a backup with continuous archiving configured, the same
pg_basebackup tool is used, but with a different set of parameters. The
difference is that the WAL files are not saved to the backup, since they are
already in the archive.

Restore is more complicated in this case. In addition to deploying the base
backup, some recovery settings must be specified:

* restore_command (inverse of archive_command, it copies files from the
archive to the server);

* target restore point.

In addition, a recovery.signal file is needed. If present at server startup, the
file tells the server to enter the managed recovery mode (the contents of the
file is ignored).

of] PROFESSIONAL

Restore Pos}gres

main server backup server
did not make it
into the archive

restore_command

(LTI T (L IITTT] LTI IT]
CITIT T CITIT T
WAL segments (T IITIT 1]
CITTTIT]
CIITTTT]

WAL archive

¥
base backup @

The restore procedure (for example, after main server crash) is performed
as follows. A base backup is deployed on another (or the same) server and a
recovery.signal file is created. The server starts up and starts reading WAL
segments from the archive using restore_command and applying them.

Note that during file archiving, the last incomplete WAL segment at the main
server will not be archived. However, the segment can be manually added to
the pg_wal directory on the backup server, if this option is available. There
may be several such segments in case of archiving failure.

25

Restore

main server

)

WAL segments

of] PROFESSIONAL

Posygres

backup server

target
restore point
restore_command
I TTTTT] =
LTI
(LITTIT 1]
LTI T
LTI

waL archive LL T TT'T]

¥
base backup @

26

The backup server reads WAL segments from the pg_wal directory and

applies them (in the absence of a segment, making an attempt to copy it
from the archive), ultimately bringing the state of the databases up to date.
The maximum possible loss is the last incomplete WAL segment that has
not been archived, and only if it cannot be copied manually for some reason.

By default, all available log entries are applied. If a target restore point is

specified, recovery will stop after reaching it.

of] PROFESSIONAL

Restore Pos}gres

main server backup server

——
select, insert
update, delete

(] archive_command N

HINIREEN (LI TT |

CITIT T (LTI IT] 4
WAL segments (I TI]
WAL archive D:Dj:‘m

+
base backup @

After that, the backup server goes into normal operation: processing
incoming queries, archiving WAL segments, and so on.

27

The restored server can act as the primary server from now on, but in this
case it should be deployed on sufficiently powerful hardware in the first
place to avoid performance degradation.

of] PROFESSIONAL

Takeaways Posigres

Logical backup creates
SQL commands to restore the state of database objects

copy command, pg_dump and pg_dumpall utilities

Physical backup creates a copy of the cluster files +
a set of WAL files

pg_basebackup utility
WAL archive

file or stream
can restore the system to an arbitrary point in time

28

Practice Pogza’?éﬁ

1. Create a database and a table in it with several rows.

2. Make a logical backup of the database using pg_dump.
Delete the database and restore it from the backup you made.

3. Make a standalone physical backup of the cluster using
pg_basebackup.

Modify the table.

Restore into a new cluster from the backup you made and verify
that the restored database does not contain any of the later
changes.

29

3. replica cluster has already been created in the course VM on port 5433.
Use this cluster to restore into.

The cluster data directory is /var/lib/postgresql/16/replica.
To connect to it, specify the port number: psql -p 5433

1. Database and Table

=> CREATE DATABASE backup_overview;

CREATE DATABASE

=> \c backup_overview

You are now connected to database "backup overview" as user "student".
=> CREATE TABLE t(n integer);

CREATE TABLE

=> INSERT INTO t VALUES (1), (2), (3);

INSERT 0 3

2. Logical Backup

Create a backup:

student$ pg_dump -f /home/student/tmp/backup_overview.dump -d backup_overview --create
Delete the database and restore it from the backup:

=> \c postgres

You are now connected to database "postgres" as user "student".

=> DROP DATABASE backup_overview;

DROP DATABASE

student$ psql -f /home/student/tmp/backup_overview.dump

SET
SET
SET
SET
SET
set config

(1 row)

SET

SET

SET

SET

CREATE DATABASE
ALTER DATABASE
You are now connected to database "backup overview" as user "student".
SET

SET

SET

SET

SET

set config

(1 row)

SET

SET

SET

SET

SET

SET

CREATE TABLE
ALTER TABLE
COPY 3

=> \c backup_overview
You are now connected to database "backup overview" as user "student".

=> SELECT * FROM t;

w wN =

(

rows)

3. Physical Standalone Backup

Creating a backup with a fast checkpoint:

student$ rm -rf /home/student/tmp/backup

student$ pg_basebackup --pgdata=/home/student/tmp/backup --checkpoint=fast
Make sure the second server is stopped and deploy the backup:

student$ sudo pg ctlcluster 16 replica status

pg ctl: no server running

student$ sudo rm -rf /var/lib/postgresql/16/replica

student$ sudo mv /home/student/tmp/backup /var/lib/postgresql/16/replica
student$ sudo chown -R postgres:postgres /var/lib/postgresql/16/replica
Change the table:

=> DELETE FROM t;

DELETE 3

Start the server from backup:

student$ sudo pg ctlcluster 16 replica start

student$ psql -p 5433 -d backup_overview

| => SELECT * FROM t;

W wWwN =

(

rows)

of] PROFESSIONAL

Practice+ Posigres

1. Set up stream archiving on the main cluster using pg_receivewal.

Create a standalone backup of the main cluster (without WAL)
using pg_basebackup.

3. In the main cluster, create a database and a table in it.

4. Restore the replica cluster from the base backup using the
archive. Verify that the database and the table are also restored.

30

The replica cluster catalog is /var/lib/postgresqgl/16/replica.

The current file being written by the pg_receivewal utility has a .partial suffix.
Once writing is complete, the file is renamed. When recovering, use the
partial file along with the usual segments.

To connect to the replica cluster, specify the port number: psql -p 5433

1. Streaming Archive

Note that some commands are executed as the postgres user, and some as student.

Create a directory to store the WAL archive:

postgres$ mkdir /var/lib/postgresql/archive

Create a slot to avoid gaps in the archive:

postgres$ pg_receivewal --create-slot --slot=archive

Run the pg_receivewal utility in background. To do that, execute the following command in a separate terminal (or add & at the end
of the command in the same terminal).

postgres$ pg_receivewal -D /var/lib/postgresql/archive --slot=archive &

student$ sudo 1s -1 /var/lib/postgresql/archive

total 16384

SrwW------- 1 postgres postgres 16777216 Sep 24 17:12 000000010000000000000001.partial

2. Base Backup without WAL

student$ pg_basebackup --wal-method=none --pgdata=/home/student/tmp/backup --checkpoint=fast

NOTICE: WAL archiving is not enabled; you
copied through other means to complete the

student$ 1s -1 /home/student/tmp/backup

total 260

-rW------- 1 student
B R 1 student
drwx------ 6 student
drwx------ 2 student
drwx------ 2 student
drwx------ 2 student
drwx------ 4 student
drwx------ 4 student
drwx------ 2 student
drwx------ 2 student
drwx------ 2 student
drwx------ 2 student
drwx------ 2 student
drwx------ 2 student
drwx------ 2 student
drwx------ 2 student
drwx------ 2 student
SrW------- 1 student
drwx------ 3 student
drwx------ 2 student
-rW------- 1 student

student
student
student
student
student
student
student
student
student
student
student
student
student
student
student
student
student
student
student
student
student

3. New Database and Table

225
180378
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
3
4096
4096
88

=> CREATE DATABASE backup_overview;

CREATE DATABASE

=> \c backup_overview

Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep
Sep

24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24

must ensure that all required WAL segments are
backup

17:12 backup label
17:12 backup manifest
17:12 base

17:12 global

17:12 pg_commit_ts
17:12 pg_dynshmem
17:12 pg logical
17:12 pg multixact
17:12 pg notify
17:12 pg_replslot
17:12 pg_serial
17:12 pg _snapshots
17:12 pg_stat
17:12 pg stat tmp
17:12 pg_subtrans
17:12 pg_tblspc
17:12 pg twophase
17:12 PG_VERSION
17:12 pg wal

17:12 pg_xact
17:12 postgresql.auto.conf

You are now connected to database "backup overview" as user "student".

=> CREATE TABLE t(n integer);

CREATE TABLE
=> INSERT INTO t VALU

INSERT 0 3

ES (1),

4. Recovery Configuration

(2), (3);

Make sure the second server is stopped and push the backup:

student$ sudo pg_ctlcluster 16 replica status

pg ctl: no server running

student$ sudo rm -rf /var/lib/postgresql/16/replica

student$ sudo mv /home/student/tmp/backup /var/lib/postgresql/16/replica
Use the partial segment during recovery as well:

student$ echo "restore_command = ‘cp /var/lib/postgresql/archive/%f %p || cp
/var/lib/postgresql/archive/%f.partial %p'" | sudo tee
/var/lib/postgresql/16/replica/postgresql.auto.conf

restore command = 'cp /var/lib/postgresql/archive/sf %p || cp /var/lib/postgresql/archive/%f.partial %p'
student$ touch /var/lib/postgresql/16/replica/recovery.signal

student$ sudo chown -R postgres:postgres /var/lib/postgresql/16/replica

Start the server and see the result:

student$ sudo pg_ctlcluster 16 replica start

student$ psql -p 5433 -d backup_overview

| => SELECT * FROM t;

n

1
2
3
(3

rows)

Archiving is no longer necessary. Stop the utility and delete the slot to prevent it from interfering with WAL cleanup.
student$ sudo pkill pg_receivewal

postgres$ pg_receivewal --drop-slot --slot=archive

