

Administrative Tasks

Monitoring

16

Copyright
© Postgres Professional, 2017–2025
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Alexey Beresnev
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is,” and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

OS Tools

Сumulative Statistics

Server Message Log

External Monitoring Systems

3

OS Tools

Processes
ps, pgrep...
update_process_title parameter for updating the status of processes
cluster_name parameter for setting the cluster name

Resource usage
iostat, vmstat, sar, top...

Disk space
df, du, quota...

PostgreSQL runs on an operating system and to a certain extent depends
on its configuration.

PostgreSQL process information is accessible via OS tools. The server
parameter update_process_title (on by default) displays the state of each
process next to its title. The cluster_name parameter specifies the instance
name used to identify it among running processes.

Various tools are available to monitor the use of system resources (CPU,
RAM, disks) in Unix: iostat, vmstat, sar, top, etc.

Disk space monitoring is also necessary. The space occupied by the
database on disk can be viewed both from the database itself (see the Data
Organization module) and from the OS (with the du command). The amount
of disk space available is also displayed with the df command in the OS. If
disk quotas are used, they must also be taken into account.

The tools and approaches to monitoring differ significantly between various
OS and file systems, so we will not discuss them in detail.

https://postgrespro.com/docs/postgresql/16/monitoring-ps

https://postgrespro.com/docs/postgresql/16/diskusage

https://postgrespro.com/docs/postgresql/16/monitoring-ps
https://postgrespro.com/docs/postgresql/16/diskusage

4

Сumulative Statistics

Statistics Collection

Current System Activities

Command Execution Monitoring

Extensions

There are two primary sources of information about the state of the system.
The first one is statistical information collected by PostgreSQL and stored
inside the cluster.

5

Statistics Collection

Settings of cumulative statistics

parameter action

track_activities monitor current commands

track_counts collect table and index access statistics

track_functions monitor user function calls
off by default

track_io_timing monitor block read and write timing statistics
off by default

track_wal_io_timing monitor write timing of WAL operations
off by default

The cumulative statistics system in PostgreSQL collects and provides data
on server operations. Cumulative statistics track access to tables and
indexes at both the disk block and row levels. Additionally, they record
details such as the number of rows, vacuum and analyze operations for
each table.

It is also possible to track the number of user function calls and their
execution time.

The amount of information collected is controlled by several server
parameters, since the more information is collected, the greater the
overhead.

https://postgrespro.com/docs/postgresql/16/monitoring-stats

https://postgrespro.com/docs/postgresql/16/monitoring-stats

6

Architecture

server
process

server
process

backend shared
memory

transaction
statistics

 between transactions

cumulative
statistics

PGDATA/pg_stat/

statistics
snapshot

stats_fetch_consistency

normal
server shutdown

cumulative
statistics

none
cache
snapshot

Backends collect statistics in running transactions. The process stores this
data in shared memory, updating it at most once per second (compile-time
setting).

Cumulative statistics are stored in PGDATA/pg_stat/ during a normal server
shutdown and reloaded upon startup. In case of a crash shutdown, all
counters are reset.

Backend may cache statistical data. The caching level is controlled by the
stats_fetch_consistency parameter.
● none — no caching; statistics reside only in shared memory.
● cache — statistics for a single object are cached.
● snapshot — statistics for the entire database are cached.

Cache is the default mode, which balances consistency and performance
efficiency.

Cached statistics are not refreshed and are discarded at the end of a
transaction, or when pg_stat_clear_snapshot() is called.

Due to latency and caching, the backend will not always have the latest
statistics, but it is seldom necessary.

Cumulative	Statistics

=>	CREATE	DATABASE	admin_monitoring;

CREATE	DATABASE

=>	\c	admin_monitoring

You	are	now	connected	to	database	"admin_monitoring"	as	user	"student".

Enable	collection	of	I/O	statistics	first:

=>	ALTER	SYSTEM	SET	track_io_timing=on;

ALTER	SYSTEM

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

Monitoring	server	activity	only	makes	sense	if	there	is	any	activity.	We	can	imitate	load	with	pgbench,	a	standard	benchmarking
utility.

First,	it	creates	a	number	of	tables	and	fills	them	with	data.

student$	pgbench	-i	admin_monitoring

dropping	old	tables...
NOTICE:		table	"pgbench_accounts"	does	not	exist,	skipping
NOTICE:		table	"pgbench_branches"	does	not	exist,	skipping
NOTICE:		table	"pgbench_history"	does	not	exist,	skipping
NOTICE:		table	"pgbench_tellers"	does	not	exist,	skipping
creating	tables...
generating	data	(client-side)...
100000	of	100000	tuples	(100%)	done	(elapsed	0.25	s,	remaining	0.00	s)
vacuuming...
creating	primary	keys...
done	in	0.64	s	(drop	tables	0.00	s,	create	tables	0.03	s,	client-side	generate	0.29	s,	
vacuum	0.12	s,	primary	keys	0.18	s).

Let’s	reset	the	previously	accumulated	database	statistics.

=>	SELECT	pg_stat_reset();

	pg_stat_reset	

(1	row)

Including	instance	I/O	statistics:

=>	SELECT	pg_stat_reset_shared('io');

	pg_stat_reset_shared	

(1	row)

Start	the	TPC-B	test	and	let	it	run	for	a	few	seconds:

student$	pgbench	-T	10	admin_monitoring

pgbench	(16.10	(Ubuntu	16.10-1.pgdg24.04+1))
starting	vacuum...end.
transaction	type:	<builtin:	TPC-B	(sort	of)>
scaling	factor:	1
query	mode:	simple
number	of	clients:	1
number	of	threads:	1
maximum	number	of	tries:	1
duration:	10	s
number	of	transactions	actually	processed:	1132
number	of	failed	transactions:	0	(0.000%)

latency	average	=	8.830	ms
initial	connection	time	=	9.071	ms
tps	=	113.252776	(without	initial	connection	time)

Now,	let’s	check	the	statistics	on	table	access	in	terms	of	rows:

=>	SELECT	*
FROM	pg_stat_all_tables
WHERE	relid	=	'pgbench_accounts'::regclass	\gx

-[RECORD	1]-------+------------------------------
relid															|	16393
schemaname										|	public
relname													|	pgbench_accounts
seq_scan												|	0
last_seq_scan							|	
seq_tup_read								|	0
idx_scan												|	2264
last_idx_scan							|	2025-09-24	17:01:10.103752+03
idx_tup_fetch							|	2264
n_tup_ins											|	0
n_tup_upd											|	1132
n_tup_del											|	0
n_tup_hot_upd							|	329
n_tup_newpage_upd			|	803
n_live_tup										|	0
n_dead_tup										|	1065
n_mod_since_analyze	|	1132
n_ins_since_vacuum		|	0
last_vacuum									|	
last_autovacuum					|	
last_analyze								|	
last_autoanalyze				|	
vacuum_count								|	0
autovacuum_count				|	0
analyze_count							|	0
autoanalyze_count			|	0

And	in	terms	of	tables:

=>	SELECT	*
FROM	pg_statio_all_tables
WHERE	relid	=	'pgbench_accounts'::regclass	\gx

-[RECORD	1]---+-----------------
relid											|	16393
schemaname						|	public
relname									|	pgbench_accounts
heap_blks_read		|	0
heap_blks_hit			|	7775
idx_blks_read			|	269
idx_blks_hit				|	5873
toast_blks_read	|	
toast_blks_hit		|	
tidx_blks_read		|	
tidx_blks_hit			|	

There	are	similar	views	for	indexes:

=>	SELECT	*
FROM	pg_stat_all_indexes
WHERE	relid	=	'pgbench_accounts'::regclass	\gx

-[RECORD	1]-+------------------------------
relid									|	16393
indexrelid				|	16407
schemaname				|	public
relname							|	pgbench_accounts
indexrelname		|	pgbench_accounts_pkey
idx_scan						|	2264
last_idx_scan	|	2025-09-24	17:01:10.103752+03
idx_tup_read		|	3074
idx_tup_fetch	|	2264

=>	SELECT	*
FROM	pg_statio_all_indexes
WHERE	relid	=	'pgbench_accounts'::regclass	\gx

-[RECORD	1]-+----------------------
relid									|	16393
indexrelid				|	16407
schemaname				|	public
relname							|	pgbench_accounts
indexrelname		|	pgbench_accounts_pkey
idx_blks_read	|	269
idx_blks_hit		|	5873

These	views	can	be	used	to	pinpoint	unused	indexes.	Such	indexes	not	only	occupy	useful	space	on	the	disk,	but	also	waste
resources	on	updates	every	time	data	in	the	table	changes.

There	are	also	views	for	user-defined	and	system	objects	(all,	user,	sys),	current	transaction	statistics	(pg_stat_xact*),	and	more.

You	can	view	global	statistics	across	the	whole	database:

=>	SELECT	*
FROM	pg_stat_database
WHERE	datname	=	'admin_monitoring'	\gx

-[RECORD	1]------------+------------------------------
datid																				|	16386
datname																		|	admin_monitoring
numbackends														|	1
xact_commit														|	1151
xact_rollback												|	0
blks_read																|	271
blks_hit																	|	23586
tup_returned													|	18198
tup_fetched														|	3397
tup_inserted													|	1132
tup_updated														|	3397
tup_deleted														|	0
conflicts																|	0
temp_files															|	0
temp_bytes															|	0
deadlocks																|	0
checksum_failures								|	
checksum_last_failure				|	
blk_read_time												|	9.558
blk_write_time											|	1.286
session_time													|	22558.675
active_time														|	9416.434
idle_in_transaction_time	|	546.994
sessions																	|	2
sessions_abandoned							|	0
sessions_fatal											|	0
sessions_killed										|	0
stats_reset														|	2025-09-24	17:00:59.741821+03

It	provides	a	lot	of	data	on	the	number	of	deadlocks	occurred,	committed	and	cancelled	transactions,	utilization	of	temporary	files,
and	checksum	errors.	It	also	maintains	total	session	count	and	statistics	on	sessions	terminated	for	various	reasons.

The	numbackends	column	specifically	indicates	the	current	number	of	active	backend	processes	connected	to	this	database.

For	monitoring	I/O	operations	at	the	server	level,	administrators	can	query	the	pg_stat_io	view.	Let’s	first	execute	a	checkpoint
operation,	then	examine	the	resulting	page	read	and	write	counts	categorized	by	process	type:

=>	CHECKPOINT;

CHECKPOINT

=>	SELECT	backend_type,	sum(hits)	hits,	sum(reads)	reads,	sum(writes)	writes
FROM	pg_stat_io
GROUP	BY	backend_type;

				backend_type					|	hits		|	reads	|	writes	
---------------------+-------+-------+--------
	background	worker			|					0	|					0	|						0
	client	backend						|	23772	|			271	|						0
	walsender											|					0	|					0	|						0
	standalone	backend		|					0	|					0	|						0
	autovacuum	worker			|			563	|					0	|						0
	autovacuum	launcher	|					0	|					0	|						0
	background	writer			|							|							|						0
	startup													|					0	|					0	|						0
	checkpointer								|							|							|			2870
(9	rows)

8

Current Activities

Configuration

statistics parameter

current activities and waits track_activities
of backends on by default
and background processes

The current activities of all backends and background processes are
displayed in the pg_stat_activity view. We will focus on it more in the demo.

This view depends on the track_activities parameter (enabled by default).

Current	Activities

Let’s	imitate	a	scenario	when	one	process	blocks	another,	and	then	figure	it	out	using	system	views.

Create	a	table	with	one	row:

=>	CREATE	TABLE	t(n	integer);

CREATE	TABLE

=>	INSERT	INTO	t	VALUES(42);

INSERT	0	1

Start	two	sessions,	one	of	which	changes	the	table	and	does	not	complete	the	transaction:

student$	psql	-d	admin_monitoring

=>	BEGIN;

BEGIN

=>	UPDATE	t	SET	n	=	n	+	1;

UPDATE	1

And	the	other	tries	to	change	the	same	row	and	gets	blocked:

student$	psql	-d	admin_monitoring

=>	UPDATE	t	SET	n	=	n	+	2;

View	data	about	backend	processes:

=>	SELECT	pid,	query,	state,	wait_event,	wait_event_type,	pg_blocking_pids(pid)
FROM	pg_stat_activity
WHERE	backend_type	=	'client	backend'	\gx

-[RECORD	1	
]----+---
pid														|	20100
query												|	UPDATE	t	SET	n	=	n	+	1;
state												|	idle	in	transaction
wait_event							|	ClientRead
wait_event_type		|	Client
pg_blocking_pids	|	{}
-[RECORD	2	
]----+---
pid														|	19121
query												|	SELECT	pid,	query,	state,	wait_event,	wait_event_type,	
pg_blocking_pids(pid)+
																	|	FROM	pg_stat_activity																																																		
					+
																	|	WHERE	backend_type	=	'client	backend'	
state												|	active
wait_event							|	
wait_event_type		|	
pg_blocking_pids	|	{}
-[RECORD	3	
]----+---
pid														|	20188
query												|	UPDATE	t	SET	n	=	n	+	2;
state												|	active
wait_event							|	transactionid
wait_event_type		|	Lock
pg_blocking_pids	|	{20100}

The	state	“idle	in	transaction”	means	that	the	session	has	started	a	transaction,	but	isn’t	doing	anything	at	the	moment,	and	the
transaction	isn’t	closed.	This	could	become	a	problem	if	the	situation	comes	up	regularly	(for	example,	because	of	poor	application
code	or	driver	errors),	because	an	open	transaction	holds	a	data	snapshot	and	prevents	vacuuming.

The	administrator	has	a	parameter	idle_in_transaction_session_timeout	at	their	disposal	to	force	sessions	to	close	after	their
transaction	is	idle	for	a	certain	period	of	time.	The	idle_session_timeout	parameter	forcibly	terminates	sessions	that	remain	idle
beyond	the	specified	duration.

You	can	also	terminate	a	blocking	session	manually.	First,	you	need	the	blocked	process	ID.	The	function	pg_blocking_pids	can	help
you	with	that:

=>	SELECT	pid	AS	blocked_pid
FROM	pg_stat_activity
WHERE	backend_type	=	'client	backend'
AND	cardinality(pg_blocking_pids(pid))	>	0;

	blocked_pid	

							20188
(1	row)

Instead,	you	can	use	a	query	on	the	locks	table.	It	will	return	two	rows	in	this	case:	one	transaction	has	been	granted	the	lock,	while
the	other	is	waiting	for	it.

=>	SELECT	locktype,	transactionid,	pid,	mode,	granted
FROM	pg_locks
WHERE	transactionid	IN	(
		SELECT	transactionid	FROM	pg_locks	WHERE	pid	=	20188	AND	NOT	granted
);

			locktype				|	transactionid	|		pid		|					mode						|	granted	
---------------+---------------+-------+---------------+---------
	transactionid	|										1884	|	20100	|	ExclusiveLock	|	t
	transactionid	|										1884	|	20188	|	ShareLock					|	f
(2	rows)

Generally,	you	have	to	keep	the	lock	type	in	mind.

Running	query	can	be	cancelled	with	the	pg_cancel_backend	function.	The	transaction	is	idle	in	our	case,	so	we	use	the
pg_terminate_backend	to	terminate	the	session:

=>	SELECT	pg_terminate_backend(b.pid)
FROM	unnest(pg_blocking_pids(20188))	AS	b(pid);

	pg_terminate_backend	

	t
(1	row)

The	unnest	function	is	necessary	because	pg_blocking_pids	returns	an	array	of	process	IDs	that	block	the	specified	process.	There	is
only	one	in	our	examples,	but	there	can	be	multiple.

Locks	are	discussed	in	more	detail	in	the	DBA2	course.

Check	the	backends:

=>	SELECT	pid,	query,	state,	wait_event,	wait_event_type
FROM	pg_stat_activity
WHERE	backend_type	=	'client	backend'	\gx

-[RECORD	1]---+--
pid													|	19121
query											|	SELECT	pid,	query,	state,	wait_event,	wait_event_type+
																|	FROM	pg_stat_activity																																+
																|	WHERE	backend_type	=	'client	backend'	
state											|	active
wait_event						|	
wait_event_type	|	
-[RECORD	2]---+--
pid													|	20188
query											|	UPDATE	t	SET	n	=	n	+	2;
state											|	idle
wait_event						|	ClientRead
wait_event_type	|	Client

Only	two	remain,	and	the	blocked	one	has	completed	its	transaction	successfully.

The	pg_stat_activity	view	shows	the	information	not	only	about	backend	processes,	but	also	about	the	system	background	processes
running	on	the	instance:

=>	SELECT	pid,	backend_type,	backend_start,	state
FROM	pg_stat_activity;

		pid		|									backend_type									|									backend_start									|	state		
-------+------------------------------+-------------------------------+--------
	19026	|	autovacuum	launcher										|	2025-09-24	17:00:50.561805+03	|	
	19027	|	logical	replication	launcher	|	2025-09-24	17:00:50.563514+03	|	
	19121	|	client	backend															|	2025-09-24	17:00:58.475998+03	|	active
	20188	|	client	backend															|	2025-09-24	17:01:17.314073+03	|	idle
	19023	|	background	writer												|	2025-09-24	17:00:50.478885+03	|	
	19022	|	checkpointer																	|	2025-09-24	17:00:50.477168+03	|	
	19025	|	walwriter																				|	2025-09-24	17:00:50.559965+03	|	
(7	rows)

Compare	that	to	what	the	OS	reports:

student$	sudo	head	-n	1	/var/lib/postgresql/16/main/postmaster.pid

19021

student$	ps	-o	pid,command	--ppid	19021

				PID	COMMAND
		19022	postgres:	16/main:	checkpointer	
		19023	postgres:	16/main:	background	writer	
		19025	postgres:	16/main:	walwriter	
		19026	postgres:	16/main:	autovacuum	launcher	
		19027	postgres:	16/main:	logical	replication	launcher	
		19121	postgres:	16/main:	student	admin_monitoring	[local]	idle
		20188	postgres:	16/main:	student	admin_monitoring	[local]	idle

10

Command Execution

Views for monitoring command executions

command execution

ANALYZE pg_stat_progress_analyze

CREATE INDEX, REINDEX pg_stat_progress_create_index

VACUUM pg_stat_progress_vacuum
including autovacuuming

CLUSTER, VACUUM FULL pg_stat_progress_cluster

Create base backup pg_stat_progress_basebackup

COPY pg_stat_progress_copy

You can monitor the progress of some potentially long-running commands
using the corresponding views.

The structures of the views are described in the documentation:

https://postgrespro.com/docs/postgresql/16/progress-reporting

Backup is discussed in the Backup module.

https://postgrespro.com/docs/postgresql/16/progress-reporting

11

Additional Statistics

Additional supplied extensions
pg_stat_statements query statistics

pgstattuple row versions statistics

pg_buffercache buffer cache status

Other extensions
pg_wait_sampling statistics for waits

pg_stat_kcache CPU and I/O statistics

pg_qualstats predicate statistics

…

There are extensions, both additional supplied and third-party, that enable
the collection of additional statistics.

For example, the pg_stat_statements extension collects information about
queries executed by the system, pg_buffercache provides tools for
monitoring the buffer cache, etc.

Many key extensions are discussed in more detail in the DBA2 and DEV2
courses.

12

Server Message Log

Log Record Configuration

Log File Rotation

Log Analysis

The other primary source of information about the state of the server is the
message log.

13

Server Message Log

Message receiver (log_destination = list)

stderr error stream
csvlog CSV format (if the collector is enabled)
jsonlog JSON format (if the collector is enabled)
syslog the syslog daemon
eventlog Windows event log

Message collector (logging_collector = on)

can provide additional info
never loses messages (unlike syslog)
writes stderr, csvlog and jsonlog to the log_directory/log_filename

The server log can be output in various formats and forwarded to various
destinations. The format and the destination are determined primarily by the
log_destination parameter (you can list multiple receivers separated by a
comma).

The stderr value (on by default) sends messages to the standard error
stream as plain text. The syslog value forwards messages to the syslog
daemon (for Unix systems), and the eventlog value does the same for the
Windows event log.

The message collector is an auxiliary process that collects additional
information from all PostgreSQL processes to supplement the basic log
messages. It is designed to keep track of every message, therefore it can
become the bottleneck in high-load environments.

The message collector is switched on and off by the logging_collector
parameter. When stderr is enabled, the messages are written into the file
defined by the log_filename parameter, which is located in the directory
defined by the log_directory parameter.

When the collector is on and csvlog is selected as a receiver, the info will
also be output into a CSV file log_filename.csv. With the jsonlog output
enabled, log files are written in JSON format and use the .json file extension.

14

What to Log?

Settings

information parameter

level of messages log_min_messages
long command execution time log_min_duration_statement
command execution time log_duration
application name application_name
checkpoints log_checkpoints
connections and disconnections log_(dis)connections
long lock waits log_lock_waits
command executed log_statement
temporary file usage log_temp_files
...

A lot of useful information can be output to the server message log. By
default, almost all output is disabled so as not to turn logging into the
bottleneck for the I/O subsystem. The administrator should decide what
information is important, provide the necessary disk space to store it, and
evaluate the impact of the log output on the overall system performance.

15

Log File Rotation

By the message collector
setting parameter
file name pattern log_filename
rotation time, minutes log_rotation_age
rotation file size, KB log_rotation_size
overwrite file log_truncate_on_rotation = on

combining file name patterns and rotation times allow for different rotation
schemes:

'postgresql-%H.log', '1h' 24 files a day
'postgresql-%a.log', '1d' 7 files a week

External tools
logrotate system utility

If all the log output goes into a single file, sooner or later the file will grow to
an unmanageable size, making administration and analysis highly
inconvenient. Therefore, a log rotation scheme is usually employed.

https://postgrespro.com/docs/postgresql/16/logfile-maintenance

The message collector has its own rotation tools. Some of the parameters
that configure them are listed on the slide.

The log_filename parameter can specify not just a name, but a file name
pattern using designated date and time characters.

The log_rotation_age parameter determines how long a file is used before
the output switches to a new one (and log_rotation_size is the file size at
which to switch to the next one).

The log_truncate_on_rotation flag determines if PostgreSQL should
overwrite existing files or append messages to them.

Different rotation schemes can be defined by using various file name
patterns and switch time combinations.

https://postgrespro.com/docs/postgresql/16/runtime-config-logging#RUNTIM
E-CONFIG-LOGGING-WHERE

Alternatively, rotation can be managed by external tools. For example,
Ubuntu package uses logrotate system utility (it is configured through the
/etc/logrotate.d/postgresql-common file).

https://postgrespro.com/docs/postgresql/16/logfile-maintenance
https://postgrespro.com/docs/postgresql/16/runtime-config-logging#RUNTIME-CONFIG-LOGGING-WHERE
https://postgrespro.com/docs/postgresql/16/runtime-config-logging#RUNTIME-CONFIG-LOGGING-WHERE

16

Log Analysis

OS tools
grep, awk...

Special analysis tools
pgBadger — requires a certain log configuration

There are different ways to analyze logs.

You can search for certain information using OS tools or specially designed
scripts.

The de facto standard for log analysis is the PgBadger application
https://github.com/darold/pgbadger, but it imposes certain restrictions on the
contents of the log. In particular, only messages in English are allowed.

https://github.com/darold/pgbadger

Log	Analysis

Let’s	consider	a	simple	case.	For	example,	display	all	messages	of	the	FATAL	level:

student$	sudo	grep	FATAL	/var/log/postgresql/postgresql-16-main.log	|	tail	-n	10

2025-09-24	16:56:05.228	MSK	[2750]	student@student	FATAL:		terminating	connection	due	to	
administrator	command
2025-09-24	17:01:19.114	MSK	[20100]	student@admin_monitoring	FATAL:		terminating	
connection	due	to	administrator	command

The	“terminating	connection”	message	is	caused	by	us	terminating	the	blocking	process.

Logs	are	usually	used	to	analyse	the	queries	that	execute	the	longest.	We	can	make	the	log	display	all	executed	commands	and	their
execution	times:

=>	ALTER	SYSTEM	SET	log_min_duration_statement=0;

ALTER	SYSTEM

=>	SELECT	pg_reload_conf();

	pg_reload_conf	

	t
(1	row)

Now,	run	a	command:

=>	SELECT	sum(random())	FROM	generate_series(1,1_000_000);

								sum								

	500636.5818178172
(1	row)

Check	the	log:

student$	sudo	tail	-n	1	/var/log/postgresql/postgresql-16-main.log

2025-09-24	17:01:20.752	MSK	[19121]	student@admin_monitoring	LOG:		duration:	371.316	ms		
statement:	SELECT	sum(random())	FROM	generate_series(1,1_000_000);

18

External Monitoring

Universal monitoring systems
Zabbix, Munin, Cacti...
cloud-based: Okmeter, NewRelic, Datadog...

PostgreSQL monitoring systems
pg_profile, pgpro_pwr
PGObserver
PostgreSQL Workload Analyzer (PoWA)
Open PostgreSQL Monitoring (OPM)
...

In practice, you need a full-fledged monitoring system that collects various
metrics from both PostgreSQL and the operating system, stores the history
of these metrics, displays them as readable graphs, notifies when certain
metrics exceed certain limits, etc.

PostgreSQL does not come with such a system by itself, it only provides the
means by which such information can be acquired. We have gone over them
already. Therefore, for full-scale monitoring, an external system is required.
There are quite a few such systems on the market. Some are universal and
come with PostgreSQL plugins or agents. These include Zabbix, Munin,
Cacti, cloud services such as Okmeter, NewRelic, Datadog, and others.

There are also systems specifically designed for PostgreSQL: PGObserver,
PoWA, OPM, etc. The pg_profile extension allows you to build snapshots of
static data and compare them, identifying resource-intensive operations and
their dynamics. pgpro_pwr is its extended, commercially available version.

https://postgrespro.com/docs/enterprise/16/pgpro-pwr

An incomplete but representative list of monitoring systems can be viewed
here: https://wiki.postgresql.org/wiki/Monitoring

https://postgrespro.com/docs/enterprise/16/pgpro-pwr
https://wiki.postgresql.org/wiki/Monitoring#Generic_monitoring_solutions_with_plugins

19

Takeaways

Monitoring collects data on server operations
both from the operating system and from the database points
of view

PostgreSQL provides cumulative statistics
and the server message log

Full-scale monitoring requires an external system

20

Practice

1. In a new database, create a table, insert several rows, and then
delete all rows.

Look at the table access statistics and reference the values
(n_tup_ins, n_tup_del, n_live_tup, n_dead_tup) against your
activity.

Perform a vacuum, check the statistics again and compare with
the previous figures.

2. Create a deadlock with two transactions.

See what information is recorded in the server message log.

2. Deadlock is a situation when two (or more) transactions are waiting for
each other to complete first. Unlike a normal lock, transactions have no way
to get out of deadlock, and the DBMS has to resolve it by forcibly
interrupting one of the transactions.

The easiest way to reproduce a deadlock is on a table with two rows. The
first transaction changes (and locks) the first row, and the second one locks
the second row. Then the first transaction tries to change the second row,
discovers that it is locked, and starts waiting. And then the second
transaction tries to change the first row, and also waits for the lock to be
released.

Table	Access	Statistics

Create	a	database	and	a	table:

=>	CREATE	DATABASE	admin_monitoring;

CREATE	DATABASE

=>	\c	admin_monitoring

You	are	now	connected	to	database	"admin_monitoring"	as	user	"student".

=>	CREATE	TABLE	t(n	numeric);

CREATE	TABLE

=>	INSERT	INTO	t	SELECT	1	FROM	generate_series(1,1000);

INSERT	0	1000

=>	DELETE	FROM	t;

DELETE	1000

Check	access	statistics.

=>	SELECT	*	FROM	pg_stat_all_tables	WHERE	relid	=	't'::regclass	\gx

-[RECORD	1]-------+------------------------------
relid															|	16387
schemaname										|	public
relname													|	t
seq_scan												|	1
last_seq_scan							|	2025-09-24	17:10:17.420811+03
seq_tup_read								|	1000
idx_scan												|	
last_idx_scan							|	
idx_tup_fetch							|	
n_tup_ins											|	1000
n_tup_upd											|	0
n_tup_del											|	1000
n_tup_hot_upd							|	0
n_tup_newpage_upd			|	0
n_live_tup										|	0
n_dead_tup										|	1000
n_mod_since_analyze	|	2000
n_ins_since_vacuum		|	1000
last_vacuum									|	
last_autovacuum					|	
last_analyze								|	
last_autoanalyze				|	
vacuum_count								|	0
autovacuum_count				|	0
analyze_count							|	0
autoanalyze_count			|	0

We	inserted	1000	rows	(n_tup_ins	=	1000),	then	removed	1000	rows	(n_tup_del	=	1000).

No	live	row	versions	remain	(n_live_tup	=	0),	all	1000	rows	are	dead	(n_dead_tup	=	1000).

Run	vacuuming.

=>	VACUUM;

VACUUM

=>	SELECT	*	FROM	pg_stat_all_tables	WHERE	relid	=	't'::regclass	\gx

-[RECORD	1]-------+------------------------------
relid															|	16387
schemaname										|	public
relname													|	t
seq_scan												|	1
last_seq_scan							|	2025-09-24	17:10:17.420811+03
seq_tup_read								|	1000
idx_scan												|	
last_idx_scan							|	
idx_tup_fetch							|	
n_tup_ins											|	1000
n_tup_upd											|	0
n_tup_del											|	1000
n_tup_hot_upd							|	0
n_tup_newpage_upd			|	0
n_live_tup										|	0
n_dead_tup										|	0
n_mod_since_analyze	|	2000
n_ins_since_vacuum		|	0
last_vacuum									|	2025-09-24	17:10:18.878693+03
last_autovacuum					|	
last_analyze								|	
last_autoanalyze				|	
vacuum_count								|	1
autovacuum_count				|	0
analyze_count							|	0
autoanalyze_count			|	0

Dead	row	versions	vacuumed	(n_dead_tup	=	0),	vacuuming	performed	one	time	(vacuum_count	=	1).

2.	Deadlocks

=>	INSERT	INTO	t	VALUES	(1),(2);

INSERT	0	2

One	transaction	locks	the	first	row	of	the	table...

student$	psql	

=>	\c	admin_monitoring

You	are	now	connected	to	database	"admin_monitoring"	as	user	"student".

=>	BEGIN;

BEGIN

=>	UPDATE	t	SET	n	=	10	WHERE	n	=	1;

UPDATE	1

The	other	locks	the	second	row...

student$	psql	

=>	\c	admin_monitoring

You	are	now	connected	to	database	"admin_monitoring"	as	user	"student".

=>	BEGIN;

BEGIN

=>	UPDATE	t	SET	n	=	200	WHERE	n	=	2;

UPDATE	1

Now,	the	first	transaction	tries	to	change	the	second	row	and	waits	for	it	to	release...

=>	UPDATE	t	SET	n	=	20	WHERE	n	=	2;

While	the	second	transaction	waits	for	the	first	row	to	release...

=>	UPDATE	t	SET	n	=	100	WHERE	n	=	1;

...and	so	a	deadlock	occurs.	The	server	terminates	one	of	the	transactions:

ERROR:		deadlock	detected
DETAIL:		Process	39229	waits	for	ShareLock	on	transaction	739;	blocked	by	process	39101.
Process	39101	waits	for	ShareLock	on	transaction	740;	blocked	by	process	39229.
HINT:		See	server	log	for	query	details.
CONTEXT:		while	updating	tuple	(0,1)	in	relation	"t"

The	other	transaction	gets	unblocked:

UPDATE	1

Check	the	message	log:

student$	sudo	tail	-n	8	/var/log/postgresql/postgresql-16-main.log

2025-09-24	17:10:23.149	MSK	[39229]	student@admin_monitoring	ERROR:		deadlock	detected
2025-09-24	17:10:23.149	MSK	[39229]	student@admin_monitoring	DETAIL:		Process	39229	waits	
for	ShareLock	on	transaction	739;	blocked	by	process	39101.
	 Process	39101	waits	for	ShareLock	on	transaction	740;	blocked	by	process	39229.
	 Process	39229:	UPDATE	t	SET	n	=	100	WHERE	n	=	1;
	 Process	39101:	UPDATE	t	SET	n	=	20	WHERE	n	=	2;
2025-09-24	17:10:23.149	MSK	[39229]	student@admin_monitoring	HINT:		See	server	log	for	
query	details.
2025-09-24	17:10:23.149	MSK	[39229]	student@admin_monitoring	CONTEXT:		while	updating	
tuple	(0,1)	in	relation	"t"
2025-09-24	17:10:23.149	MSK	[39229]	student@admin_monitoring	STATEMENT:		UPDATE	t	SET	n	=	
100	WHERE	n	=	1;

21

Practice+

1. Install the pg_stat_statements extension.

Execute several queries.

See what information gets into the pg_stat_statements view.

1. To install the extension, before executing the CREATE EXTENSION
command, change the value of the shared_preload_libraries parameter, and
restart the server.

https://postgrespro.com/docs/postgresql/16/pgstatstatements

https://postgrespro.com/docs/postgresql/16/pgstatstatements

1.	The	pg_stat_statements	Extension

The	extension	collects	planning	and	execution	statistics	for	all	queries.

For	the	extension	to	work,	a	module	with	the	same	name	has	to	be	loaded.	To	do	that,	add	the	module	name	to
shared_preload_libraries	and	restart	the	server.	This	is	usually	done	through	postgresql.conf,	but	for	the	purpose	of	the	demo	we
will	set	it	using	the	ALTER	SYSTEM	command.

=>	ALTER	SYSTEM	SET	shared_preload_libraries	=	'pg_stat_statements';

ALTER	SYSTEM

=>	\q

student$	sudo	pg_ctlcluster	16	main	restart

student$	psql	

=>	CREATE	DATABASE	admin_monitoring;

CREATE	DATABASE

=>	\c	admin_monitoring

You	are	now	connected	to	database	"admin_monitoring"	as	user	"student".

=>	CREATE	EXTENSION	pg_stat_statements;

CREATE	EXTENSION

Now,	run	some	queries:

=>	CREATE	TABLE	t(n	numeric);

CREATE	TABLE

=>	SELECT	format('INSERT	INTO	t	VALUES	(%L)',	x)
FROM	generate_series(1,5)	AS	x	\gexec

INSERT	0	1
INSERT	0	1
INSERT	0	1
INSERT	0	1
INSERT	0	1

=>	DELETE	FROM	t;

DELETE	5

=>	DROP	TABLE	t;

DROP	TABLE

Check	the	statistics	for	the	most	frequently	executed	query.

=>	SELECT	query,	calls,	total_exec_time
FROM	pg_stat_statements
ORDER	BY	calls	DESC	LIMIT	1;

											query											|	calls	|			total_exec_time			
---------------------------+-------+---------------------
	INSERT	INTO	t	VALUES	($1)	|					5	|	0.14766400000000002
(1	row)

The	shared	library	is	no	longer	required	—	restoring	the	original	parameter	value:

=>	ALTER	SYSTEM	RESET	shared_preload_libraries;

ALTER	SYSTEM

=>	\q

student$	sudo	pg_ctlcluster	16	main	restart

