

Architecture
Buffer Cache and WAL

16

Copyright
© Postgres Professional, 2017–2025
Authors Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Igor Gnatyuk
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo by: Oleg Bartunov (Phu monastery, Bhrikuti Peak, Nepal)

Use of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is,” and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

Buffer Cache

Replacement Algorithm

Write-Ahead Log

Checkpoint

Processes Related to the Buffer Cache and WAL

3

Buffer array
data page (8 KB)
additional information

“Dirty” buffers
asynchronous write

Locks in memory
for shared access

Buffer Cache

PostgreSQL
postmaster

backend

OS

background processes

shared memory

buffer cache

dirty
buffer

cache

The buffer cache is used to smooth out the difference between the RAM and
disk speed. It consists of an array of buffers which contain data pages and
some additional information (for example, the file name and the position of
the page inside this file).

The page size is usually 8 KB; the size can only be changed when building
PostgreSQL.

Any work with data pages goes through the buffer cache. If any process is
going to work with the page, it first tries to find it in the cache. If the page
does not exist, the process requests the operating system to read this page
and places it in the buffer cache. (Note that the OS can read the page either
from disk or from its own cache.)

After the page is written to the buffer cache, it can be accessed repeatedly
without the overhead of operating system calls.

If a process has changed the data in the page, the corresponding buffer
becomes “dirty”. The modified page must be written on disk, but for
performance reasons, the recording occurs asynchronously and may be
delayed.

The buffer cache, like other shared memory structures, is protected by locks
to control concurrent access. Although locks are implemented effectively,
access to the buffer cache is not nearly as fast as simply accessing RAM.
Therefore, in general, the less data a query reads and modifies, the faster it
will work.

4

Replacement

Least Recently Used
replacement

dirty buffer is
written on disk

another page is read
into the vacant space

PostgreSQL
postmaster

backend

background processes

shared memory

buffer cache

OS
cache

The buffer cache size is usually not so large as to fit the entire database. It is
limited by the available RAM. Also, the larger the buffer cache, the greater
the overhead. Therefore, when reading the next page, sooner or later the
buffer cache has to run out of space. In this case, page replacement
happens.

The replacement algorithm selects a page in the cache that has been used
less often than others. If the selected buffer is dirty, the page is written on
disk first to store the changes made to it. Then, a new page is written into
the buffer.

This replacement is called LRU (Least Recently Used). It keeps the most
frequently accessed data in the cache. Such “hot” blocks of data are not
very common, and this approach helps to significantly reduce the number of
requests to OS (and disk operations), provided enough cache memory.

The	Impact	of	Buffer	Cache	on	Query	Execution

Creating	a	new	database	in	the	cluster	and	connecting	to	it	(for	more	details	about	databases,	see	the	Data	Organization	module):

=>	CREATE	DATABASE	arch_wal_overview;

CREATE	DATABASE

=>	\c	arch_wal_overview

You	are	now	connected	to	database	"arch_wal_overview"	as	user	"student".

Create	a	table:

=>	CREATE	TABLE	t(n	integer);

CREATE	TABLE

Populate	it	with	rows:

=>	INSERT	INTO	t	SELECT	id	FROM	generate_series(1,100_000)	AS	id;

INSERT	0	100000

The	shared_buffers	parameter	indicates	the	buffer	cache	size:

=>	SHOW	shared_buffers;

	shared_buffers	

	128MB
(1	row)

The	default	value	is	too	low.	In	the	real	world,	you	should	increase	it	immediately	after	server	installation	(it	will	be	applied	after
restart).

Restart	the	server	to	wipe	the	cache	clean.

=>	\q

student$	sudo	pg_ctlcluster	16	main	restart

student$	psql	arch_wal_overview

Now,	let’s	compare	the	behaviour	of	the	system	as	we	run	a	query	once,	and	then	the	same	query	again.	Query	plans	is	not	the	topic
of	this	course,	but	we	will	peek	into	them	every	now	and	again.	The	EXPLAIN	ANALYZE	command	used	below	will	execute	the
query	as	well	as	display	the	execution	plan	and	some	extra	details:

=>	EXPLAIN	(analyze,	buffers,	costs	off,	timing	off)
SELECT	*	FROM	t;

																	QUERY	PLAN																	
--
	Seq	Scan	on	t	(actual	rows=100000	loops=1)
			Buffers:	shared	read=443
	Planning:
			Buffers:	shared	hit=12	read=8	dirtied=1
	Planning	Time:	0.212	ms
	Execution	Time:	22.889	ms
(6	rows)

The	“Buffers:	shared”	line	shows	the	buffer	utilization.

read	—	the	number	of	buffers	where	pages	had	to	be	read	from	disk.

=>	EXPLAIN	(analyze,	buffers,	costs	off,	timing	off)
SELECT	*	FROM	t;

																	QUERY	PLAN																	
--
	Seq	Scan	on	t	(actual	rows=100000	loops=1)
			Buffers:	shared	hit=443
	Planning	Time:	0.039	ms
	Execution	Time:	11.580	ms
(4	rows)

hit	—	the	number	of	buffers	where	requested	pages	were	found.

Note	that	on	the	second	query	execution,	not	only	the	execution	time	went	down,	but	the	planning	time	too	(because	system	catalog
pages	are	cached	as	well).

6

Write-ahead Log (WAL)

Problem: when a crash occurs, data from RAM that is not
written on disk is lost

WAL
stream of records of the actions being performed;
can be used to redo the steps lost during the crash
records are written to disk earlier than the changed data

WAL tracks changes to
pages in tables, indexes and other objects
transaction status (clog)

WAL does not track changes to
temporary and unlogged tables

Having a buffer cache (and other buffers in RAM) increases performance at
the cost of reliability. When a crash happens, all buffer cache content is lost.
If the crash occurs on the OS or hardware level, the content of OS buffers
will also be lost (the OS may have its own failsafes for this).

To increase reliability, PostgreSQL uses the Write-ahead log. When
performing any operation, the WAL records minimum necessary information
about the operation to be able to perform it again. The record must be
written into the disk (or another persistent storage) before the data modified
by the operation is (that is why it is called Write-ahead log).

WAL files are located in the PGDATA/pg_wal directory.

All objects that are being worked on in RAM have their operations logged.
These include tables, indexes and other objects, as well as transaction
statuses. Operations with temporary tables (tables which exist only during
the scope of a session or a transaction and are only available to the user
who has created them) are not logged. You can also set a regular table to be
explicitly unlogged. The table will be quicker to work with, but will be wiped
on crash.

https://postgrespro.com/docs/postgresql/16/wal-intro

https://postgrespro.com/docs/postgresql/16/wal-intro

Write-Ahead	Log

The	WAL	can	be	considered	as	a	continuous	stream	of	records.	Each	record	has	a	unique	ID	called	an	LSN	(Log	Sequence	Number).
This	64-bit	number	represents	the	record’s	byte	offset	from	the	start	of	the	WAL.

The	current	WAL	position	can	be	seen	with	pg_current_wal_lsn	function:

=>	SELECT	pg_current_wal_lsn();

	pg_current_wal_lsn	

	0/2378028
(1	row)

The	position	is	displayed	as	two	32-bit	numbers	separated	by	a	slash.	Let’s	save	it	for	future	reference.

Now	let’s	perform	some	operations	and	see	what’s	changed.

=>	UPDATE	t	SET	n	=	100_001	WHERE	n	=	1;

UPDATE	1

=>	SELECT	pg_current_wal_lsn();

	pg_current_wal_lsn	

	0/237B040
(1	row)

It’s	not	the	absolute	values	we’re	interested	in,	but	the	distance	between	them,	as	it	shows	the	size	of	generated	WAL	records	in
bytes:

=>	SELECT	'0/237B040'::pg_lsn	-	'0/2378028'::pg_lsn	AS	bytes;

	bytes	

	12312
(1	row)

The	WAL	is	stored	in	files	in	a	separate	catalog	(PGDATA/pg_wal).	By	default,	the	files	are	16	MB	each,	but	you	can	change	that
during	cluster	initialization.

In	addition	to	browsing	the	files	by	means	of	the	OS,	you	can	also	display	them	by	the	following	command:

=>	SELECT	*	FROM	pg_ls_waldir()	ORDER	BY	name	LIMIT	10;

											name											|			size			|						modification						
--------------------------+----------+------------------------
	000000010000000000000002	|	16777216	|	2025-09-24	16:58:26+03
	000000010000000000000003	|	16777216	|	2025-09-24	16:58:18+03
(2	rows)

8

Checkpoint

Regular flushing of all dirty buffers to disk
ensures that all data changes before the checkpoint get to the disk
limits the size of the WAL required for recovery

Crash recovery
starts from the last checkpoint
WAL records are replayed one-by-one to restore data

xid
checkpoint checkpoint crash

required WAL files

recovery
start

When PostgreSQL crashes, it enters the recovery mode on the next start.
The data on disk at this point is inconsistent. Changes to hot pages were in
the buffer cache, and are now lost, while some of the later changes have
been flushed to disk already.

To restore consistency, PostgreSQL sequentially reads the WAL records,
replaying the changes that did not make it to the disk. This way, the state of
all transactions at the time of the crash is restored. Then, any transactions
that have not been logged as committed are considered aborted.

However, logging all changes throughout a server’s lifetime and replaying
everything from day one after each crash is impractical, if not impossible.
Instead, PostgreSQL uses checkpoints. Every now and then, it forces all
dirty buffers to disk (including clog buffers, which store transaction statuses).

A checkpoint is the moment in time when the flushing of all data to disk is
started. However, you only have a valid checkpoint when the flushing of all
such buffers is complete. It ensures that all data changes up to this point are
safe in persistent memory.

In production environments with a large buffer cache, a checkpoint can flush
many dirty buffers, so the server spreads this flushing over time to smooth
out the I/O load.

When a crash occurs, recovery is started from the last completed
checkpoint. Consequently, it is sufficient to store WAL files only as far back
as the last completed checkpoint goes.

Crash	Recovery	Using	WAL

Modified	table	pages	exist	in	the	buffer	cache	but	haven’t	been	written	to	disk	yet.	During	normal	shutdown,	the	server	performs	a
checkpoint	to	flush	all	dirty	pages	to	disk.	However,	we’ll	simulate	a	system	crash	by	sending	a	signal	to	the	postmaster	process.

student$	sudo	kill	-QUIT	$(sudo	head	-n	1	/var/lib/postgresql/16/main/postmaster.pid)

When	the	server	comes	back	up,	it	should	begin	the	recovery.	Let’s	try:

student$	sudo	pg_ctlcluster	16	main	start

student$	psql	arch_wal_overview

=>	SELECT	min(n),	max(n)	FROM	t;

	min	|		max			
-----+--------
			2	|	100001
(1	row)

All	the	changes	have	been	recovered.

After	performing	a	checkpoint,	PostgreSQL	automatically	deletes	WAL	files	that	are	no	longer	necessary	for	recovery.

10

Performance

Synchronous mode
write on commit
backend

Asynchronous mode
background write
walwriter

PostgreSQL

backend

postmaster

checkpointerwalwriter

shared memory

buffer cacheclogWAL

OS

WAL

transaction
status

fsync

cache

The WAL approach is faster than working directly with disk without a buffer
cache. Firstly, a WAL record is smaller than an entire page of data.
Secondly, the WAL is written sequentially (and usually not read until a crash
occurs), which is better for basic hard disk drives.

Performance can also be managed via configuration settings. If the records
are stored to disk immediately (synchronous mode), this guarantees that the
commited transaction will not be lost. But recording to disk is expensive and
forces the committing backend process to wait in line. To prevent WAL
records from getting “stuck” in the OS cache, PostgreSQL relies on call of
the fsync function, which forces the data into persistent storage.

There is also asynchronous mode, which has a background process
walwriter constantly flushing WAL records to disk, with a certain delay. It is
more efficient at the cost of some reliability, but still ensures consistency
after crash recovery.

In fact, both modes work together. WAL records of a long transaction are
written asynchronously (to free up WAL buffers). And if a page is getting
flushed to disk and the corresponding WAL record is not there yet, it will
immediately be flushed in synchronous mode.

11

Main Processes

WAL writer

Checkpointer
flush all
dirty buffers

Background writer
flush some
dirty buffers

Backends

flush replaced
dirty buffer

PostgreSQL

backend

postmaster

checkpointer bgwriterwalwriter

shared memory

buffer cacheclogWAL

OS
cache

Let’s take a step back and look at the processes that maintain the buffer
cache and the WAL.

First, there is walwriter. This process writes WAL records to disk in
asynchronous mode. In synchronous mode, this job is handled by the
backend that commits the transaction.

Second, checkpointer, the checkpoint process. It periodically flushes all dirty
buffers to disk.

Third, bgwriter (or background writer). It operates similarly to checkpointer,
but it only flushes some of the dirty buffers, specifically, those that are most
likely to be replaced soon. It frees up buffer space so that when backend
selects a buffer to put a new page in, it does not have to flush the old
contents of the buffer to disk itself.

Fourth, there are backends that put data into the buffer cache. Whenever a
buffer being replaced is still dirty (despite the efforts of checkpointer and
bgwriter), the backend will flush it to disk.

12

WAL Levels

Minimal
guarantees crash recovery

Replica (default)
backup
replication: transmit the WAL on another server and replay it there

Logical
logical replication: information about adding, changing,
and deleting table rows

WAL was developed as a data protection tool to mitigate the risk of data loss
due to crashes.

However, the WAL mechanism turned out to have other applications, if it is
supplemented with additional information.

The data stored in the WAL is controlled by the wal_level parameter.
● The minimal level is sufficient to recover after a crash, and nothing else.
● The replica level stores additional information that allows WAL to be used

for backup and replication. During replication, WAL records are
transmitted to another server and applied there, creating an exact copy
(replica) of the original server.

● At the logical level, information is added to the WAL that allows decoding
“physical” WAL records and forming “logical” records of adding, changing
and deleting table rows. This enables logical replication (see
corresponding lessons of DEV2 and DBA3 courses for details).

13

Takeaways

Buffer cache increases performance by reducing the number of
disk operations

WAL ensures reliability

WAL size is kept in check by checkpoints

WAL has multiple uses:
crash recovery
backup
replication

14

Practice

1. Using the OS tools, find the processes responsible for the buffer
cache and the WAL.

2. Stop PostgreSQL in fast mode; start it again. Check the server
message log.

3. Now stop PostgreSQL in immediate mode; start it again.
Check the server message log and compare with the previous
one.

2. To stop in fast mode, use the command
pg_ctlcluster 16 main stop

This makes the server abort all open connections and perform a checkpoint
before shutting down, so that all data is flushed to disk and consistent. In
this mode, the shutdown may take some time, but on startup the server will
be good to go right away.

3. To stop in immediate mode, use the command
pg_ctlcluster 16 main stop -m immediate --skip-systemctl-redirect

The server will also abort open connections, but will not perform a
checkpoint. Data on disk will be inconsistent, like after a crash. In this mode,
the server shuts down quickly, but will have to restore data consistency
using WAL on startup.

If your PostgreSQL is compiled from source code, the fast stop command
will be
pg_ctl stop

and the immediate stop command will be
pg_ctl stop -m immediate

1.	Operating	System	Processes

First,	get	the	postmaster	process	ID.	It	is	stored	in	the	first	line	of	postmaster.pid.	This	file	is	located	in	the	data	directory	and	is
created	every	time	the	server	starts.

student$	sudo	cat	/var/lib/postgresql/16/main/postmaster.pid

32548
/var/lib/postgresql/16/main
1758722835
5432
/var/run/postgresql
localhost
		1342266					32770
ready			

Now,	find	all	the	processes	spawned	by	postmaster:

student$	sudo	ps	-o	pid,command	--ppid	32548

				PID	COMMAND
		32549	postgres:	16/main:	checkpointer	
		32550	postgres:	16/main:	background	writer	
		32552	postgres:	16/main:	walwriter	
		32553	postgres:	16/main:	autovacuum	launcher	
		32554	postgres:	16/main:	logical	replication	launcher	
		32597	postgres:	16/main:	student	student	[local]	idle

The	processes	that	serve	the	buffer	cache	and	the	WAL	include:

checkpointer
background	writer
walwriter

2.	Stop	in	Fast	Mode

To	easily	separate	old	messages	from	new	ones,	clear	the	message	log	before	restarting	the	server.	Do	not	do	this	on	a	real
production	server.

student$	sudo	-u	postgres	truncate	-cs0	/var/log/postgresql/postgresql-16-main.log

student$	sudo	pg_ctlcluster	16	main	stop

student$	sudo	pg_ctlcluster	16	main	start

Server	message	log:

student$	cat	/var/log/postgresql/postgresql-16-main.log

2025-09-24	17:07:19.702	MSK	[32548]	LOG:		received	fast	shutdown	request
2025-09-24	17:07:19.718	MSK	[32548]	LOG:		aborting	any	active	transactions
2025-09-24	17:07:19.719	MSK	[32597]	student@student	FATAL:		terminating	connection	due	to	
administrator	command
2025-09-24	17:07:19.733	MSK	[32548]	LOG:		background	worker	"logical	replication	
launcher"	(PID	32554)	exited	with	exit	code	1
2025-09-24	17:07:19.735	MSK	[32549]	LOG:		shutting	down
2025-09-24	17:07:19.751	MSK	[32549]	LOG:		checkpoint	starting:	shutdown	immediate
2025-09-24	17:07:20.141	MSK	[32549]	LOG:		checkpoint	complete:	wrote	5	buffers	(0.0%);	0	
WAL	file(s)	added,	0	removed,	0	recycled;	write=0.141	s,	sync=0.043	s,	total=0.406	s;	
sync	files=4,	longest=0.015	s,	average=0.011	s;	distance=0	kB,	estimate=0	kB;	
lsn=0/1921710,	redo	lsn=0/1921710
2025-09-24	17:07:20.149	MSK	[32548]	LOG:		database	system	is	shut	down
2025-09-24	17:07:20.631	MSK	[32826]	LOG:		starting	PostgreSQL	16.10	(Ubuntu	
16.10-1.pgdg24.04+1)	on	x86_64-pc-linux-gnu,	compiled	by	gcc	(Ubuntu	
13.3.0-6ubuntu2~24.04)	13.3.0,	64-bit
2025-09-24	17:07:20.632	MSK	[32826]	LOG:		listening	on	IPv4	address	"127.0.0.1",	port	5432
2025-09-24	17:07:20.646	MSK	[32826]	LOG:		listening	on	Unix	socket	
"/var/run/postgresql/.s.PGSQL.5432"
2025-09-24	17:07:20.681	MSK	[32829]	LOG:		database	system	was	shut	down	at	2025-09-24	
17:07:20	MSK
2025-09-24	17:07:20.706	MSK	[32826]	LOG:		database	system	is	ready	to	accept	connections

3.	Stop	in	Immediate	Mode

student$	sudo	-u	postgres	truncate	-cs0	/var/log/postgresql/postgresql-16-main.log

student$	sudo	pg_ctlcluster	16	main	stop	-m	immediate	--skip-systemctl-redirect

student$	sudo	pg_ctlcluster	16	main	start

Server	message	log:

student$	cat	/var/log/postgresql/postgresql-16-main.log

2025-09-24	17:07:23.372	MSK	[32826]	LOG:		received	immediate	shutdown	request
2025-09-24	17:07:23.394	MSK	[32826]	LOG:		database	system	is	shut	down
2025-09-24	17:07:23.898	MSK	[32999]	LOG:		starting	PostgreSQL	16.10	(Ubuntu	
16.10-1.pgdg24.04+1)	on	x86_64-pc-linux-gnu,	compiled	by	gcc	(Ubuntu	
13.3.0-6ubuntu2~24.04)	13.3.0,	64-bit
2025-09-24	17:07:23.899	MSK	[32999]	LOG:		listening	on	IPv4	address	"127.0.0.1",	port	5432
2025-09-24	17:07:23.919	MSK	[32999]	LOG:		listening	on	Unix	socket	
"/var/run/postgresql/.s.PGSQL.5432"
2025-09-24	17:07:23.953	MSK	[33002]	LOG:		database	system	was	interrupted;	last	known	up	
at	2025-09-24	17:07:20	MSK
2025-09-24	17:07:34.001	MSK	[33002]	LOG:		syncing	data	directory	(fsync),	elapsed	time:	
10.02	s,	current	path:	./base/1/1249_vm
2025-09-24	17:07:44.007	MSK	[33002]	LOG:		syncing	data	directory	(fsync),	elapsed	time:	
20.02	s,	current	path:	./base/16385/1247_fsm
2025-09-24	17:07:53.989	MSK	[33002]	LOG:		syncing	data	directory	(fsync),	elapsed	time:	
30.00	s,	current	path:	./base/5/2667
2025-09-24	17:08:01.219	MSK	[33002]	LOG:		database	system	was	not	properly	shut	down;	
automatic	recovery	in	progress
2025-09-24	17:08:01.239	MSK	[33002]	LOG:		invalid	record	length	at	0/1921788:	expected	at	
least	24,	got	0
2025-09-24	17:08:01.239	MSK	[33002]	LOG:		redo	is	not	required
2025-09-24	17:08:01.285	MSK	[33000]	LOG:		checkpoint	starting:	end-of-recovery	immediate	
wait
2025-09-24	17:08:01.388	MSK	[33000]	LOG:		checkpoint	complete:	wrote	3	buffers	(0.0%);	0	
WAL	file(s)	added,	0	removed,	0	recycled;	write=0.029	s,	sync=0.015	s,	total=0.122	s;	
sync	files=2,	longest=0.008	s,	average=0.008	s;	distance=0	kB,	estimate=0	kB;	
lsn=0/1921788,	redo	lsn=0/1921788
2025-09-24	17:08:01.410	MSK	[32999]	LOG:		database	system	is	ready	to	accept	connections

Before	starting	to	accept	connections,	the	DBMS	performed	an	automatic	recovery.

