Architecture
Vacuuming

Pos gres

Copyright

© Postgres Professional, 2017-2025

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov, Alexey Beresnev
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is,” and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

Topics

Routine Tasks

Autovacuum

Vacuum and Analysis

Table and Index Bloating

Full Vacuum and Rebuilding of Indexes

of] PROFESSIONAL

Posygres

of] PROFESSIONAL

Routine Tasks Pos}gres

Cleaning pages to remove MVCC historical data

dead row versions are vacuumed out of tables
index entries referencing dead versions are vacuumed from indexes

MVCC makes it possible to effectively implement snapshot isolation, but as
a result, old versions of rows accumulate in table pages, and references to
these versions accumulate in index pages. Historical versions are needed
for some time so that transactions can work with their data snapshots. But
over time, a row version will no longer have any snapshot that needs it.
Such a version is called “dead”.

The vacuum procedure cleans out dead row versions from table pages, as
well as unnecessary index entries that reference such versions.

If historical data is not vacuumed in a timely manner, tables and indexes will
bloat uncontrollably and the search for current row versions in them will slow
down.

https://postgrespro.com/docs/postgresql/16/routine-vacuuming

https://postgrespro.com/docs/postgresql/16/routine-vacuuming

of] PROFESSIONAL

Routine Tasks Pos}gres

Updating the visibility map
tracks pages where all row versions are visible in all snapshots

used to optimize vacuuming and speed up index access
exists only for tables

In addition to this main task, vacuuming also performs other instance
maintenance tasks. Vacuuming updates the visibility map and the free space
map. This is service information that is stored alongside the main data.

The visibility map shows pages that contain only the current row versions
visible in all data snapshots. In other words, these are pages that have not
changed for long enough to be cleared out of outdated row versions.

The visibility map has several uses:
* Vacuuming optimization.

The marked pages cannot contain dead row versions, so they can be
skipped during vacuuming.

* Index-Only access speedup.

Versioning information is stored only for tables, but not for indexes (that is
why indexes do not have visibility maps). After getting a reference to a
row version from an index, you usually need to read the table page to
check its visibility. But if the index itself already has all the necessary
columns, and at the same time the page is marked in the visibility map,
then reading the table page can be skipped.

If the visibility map is not updated regularly, index access can slow down.
This is described in more detail in the Query Performance Tuning (QPT)
course.

Routine Tasks Pogga’?“éﬁ

Updating the free space map

tracks the free space in the pages after vacuuming
used when inserting new row versions
exists for both tables and indexes

The free space map tracks available free space within pages. This space is
constantly changing, decreasing when new row versions are added and
increasing when they are removed.

When inserting new row versions, the map helps to quickly find a suitable
page to record the data into. The free space map has a complex tree-like
structure designed to improve search speed.

Indexes can have free space maps as well. However, since index entries are
inserted into specific positions within an index, the map only tracks empty
pages, which form when all index entries are deleted from them. These
pages are excluded from the index and later can be included again into the
proper part of the index.

of] PROFESSIONAL

Routine Tasks Pos}gres

Updating statistics

used by the query optimizer
calculated based on a random sample

The query optimizer requires statistical information about the data it is
working with, such as the number of rows in tables and the distribution of
data in columns. The process of collecting the statistics is called analysis.

For analysis, a random sample of data of a certain size is read from the
table. This way, the system can quickly collect statistics even on very large
tables. The result is not accurate, but it is not expected to be. The data
constantly changes, so it is impossible to maintain absolutely accurate
statistics all of the time anyway. It is sufficient to keep it relatively up-to-date
and relatively accurate.

If statistics are not updated regularly, they will no longer represent the data
accurately, leading to the optimizer proposing inefficient execution plans.
Because of this, queries may start executing orders of magnitude slower
than they could.

of] PROFESSIONAL

Routine Tasks Pos}gres

Freezing

prevents the consequences of 32-bit transaction counter overflow

As already mentioned, PostgreSQL orders events by transaction ID. The
counter has 32 bits allocated for it, and sooner or later it will overflow.

This is why the transaction ID scope is looped. For each transaction, half of
the IDs are considered to be in the future, half in the past.

But when the counter wraps around to zero, the order of transactions will be
disrupted. To prevent this, sufficiently old row versions are marked as frozen.
This means that they were created so far in the past that their transaction 1D
no longer means anything and can be reused. Frozen row versions are
visible in all snapshots.

To avoid scanning extra pages, the visibility map has a bit that marks the
pages where all row versions are frozen.

Without regular freezing, the server may end up with no available
transaction IDs for new transactions. This is an emergency: the server stops,
all active transactions are aborted, and the administrator has to manually
start the server and perform the freezing.

Autovacuum Po@EF“e%

PostgreSQL
Autovacuum launcher postmaster

background process [

autovacuum

worker processes :

periodically launches backend ﬂ
backgr

ound processes

Autovacuum worker

vacuums tables of a ‘ SN e ‘
specific database that
require processing

[cache) oS

ma) C

All the maintenance tasks discussed above are taken care of by the
autovacuum process. It dynamically reacts to the frequency of table
updates, and the more active the changes, the more often the table will be
vacuumed.

The autovacuum launcher process is permanently running in the
background. It schedules the vacuuming work and launches the required
number of autovacuum workers working in parallel.

Vacuuming works page-by-page, it does not block other transactions,
though it still does require additional I/O resources.

Autovacuum will not work if either of the two parameters autovacuum or
track _counts is switched off. It may seem that disabling autovacuum can
increase system performance by eliminating “unnecessary” 1/0O operations,
but it cannot. Failure to vacuum will lead to the consequences described
above: uncontrolled bloating, slower query processing, and the risk of an
emergency server shutdown. Ultimately, this will lead to a complete system
paralysis.

Autovacuuming is absolutely necessary. There is a large number of
configuration parameters that allow tweaking the autovacuum process. They
are discussed in detail in the DBA2 Configuration and Monitoring course.

of] PROFESSIONAL

Manual Vacuuming Pos{gres

Vacuuming
VACUUM [table, ...] vacuum specific tables
VACUUM vacuum the entire database
$ vacuumdb wrapper for the OS
Analysis

ANALYZE
$ vacuumdb --analyze-only

Vacuum and analysis

VACUUM ANALYZE
$ vacuumdb --analyze

If necessary, vacuuming and analysis can be started manually using the
following commands:

VACUUM (vacuuming only), ANALYZE (analysis only), and VACUUM
ANALYZE (both vacuuming and analysis).

Autovacuum is different from running scheduled vacuuming and analysis as
it reacts to the frequency of data changes. Running vacuum on a schedule
too often will create unnecessary load on the system. On the other hand, if
you vacuum too rarely, and data is changed often, the files may have time to
bloat significantly between vacuums.

https://postgrespro.com/docs/postgresgl/16/sql-vacuum
https://postgrespro.com/docs/postgresqgl/16/sql-analyze

https://postgrespro.com/docs/postgresql/16/sql-vacuum
https://postgrespro.com/docs/postgresql/16/sql-analyze

Vacuuming

=> CREATE DATABASE arch_vacuum_overview;

CREATE DATABASE

=> \c arch_vacuum_overview

You are now connected to database "arch vacuum overview" as user "student".

Let’s create a table and turn autovacuum off so that we can control the vacuuming manually in our experiments:

=> CREATE TABLE bloat(
id integer GENERATED ALWAYS AS IDENTITY,
d timestamptz

) WITH (autovacuum_enabled = off);

CREATE TABLE
Fill the table with data and build an index:

=> INSERT INTO bloat(d)
SELECT current_timestamp FROM generate_series(1,100_000);

INSERT 0 100000

=> CREATE INDEX ON bloat(d);

CREATE INDEX

Each table row has only one version, the last one.

Now, let’s update some rows:

=> UPDATE bloat SET d = d + interval 'l day' WHERE id <= 10_000;
UPDATE 10000

Run vacuum and have it tell us what it is doing:

=> VACUUM (verbose) bloat;

INFO: vacuuming "arch vacuum overview.public.bloat"

INFO: finished vacuuming "arch vacuum overview.public.bloat": index scans: 1

pages: O removed, 595 remain, 595 scanned (100.00% of total)

tuples: 10000 removed, 100000 remain, 0 are dead but not yet removable

removable cutoff: 738, which was 0 XIDs old when operation ended

new relfrozenxid: 735, which is 1 XIDs ahead of previous value

frozen: 0 pages from table (0.00% of total) had 0 tuples frozen

index scan needed: 55 pages from table (9.24% of total) had 10000 dead item identifiers
removed

index "bloat d idx": pages: 95 in total, 8 newly deleted, 8 currently deleted, 0 reusable
avg read rate: 16.430 MB/s, avg write rate: 2.738 MB/s

buffer usage: 1307 hits, 84 misses, 14 dirtied

WAL usage: 733 records, 1 full page images, 91580 bytes

system usage: CPU: user: 0.01 s, system: 0.00 s, elapsed: 0.03 s

VACUUM

The important lines are:

e Dead versions of rows have been removed from the table (tuples: 10000 removed...).
e References to them have been removed from the index (index scan needed... 10000 dead item identifiers removed).

Bloating Pogga’i“éé

Vacuuming does not reduce the size of tables and indexes

the “holes” in the pages are used for new data,
but the space is never returned to the operating system

Causes of bloating

incorrect autovacuum configuration
massive changes of data
long-running transactions

Negative consequences

inefficient disk space use
slower sequential table scan
less efficient index access

11

Vacuuming cleans out outdated row versions from pages. This creates spots
of free space in the pages, which is then used to store new data. But the
free space is not returned to the operating system, so, from the point of view
of the OS, the size of the data files does not decrease.

In the case of indexes (B-trees), it is complicated by the fact that if there is
not enough space in the page to place an index entry, the page is split into
two. The resulting pages are never merged again, even if all index entries
are removed from them.

If autovacuuming is configured correctly, the data files grow by a certain
constant amount due to updates between vacuumings. But if a large amount
of data is being changed at the same time, or there are active long
transactions (keeping old data snapshots active and not allowing you to
vacuum out old row versions), vacuuming will not be able to free up the
space in time. As a result, the tables and indexes may continue to grow in
size.

File bloating leads not only to disk space overuse (including for backups),
but also to a decrease in performance.

https://wiki.postgresqgl.org/wiki/Show database bloat

https://postgrespro.com/docs/postgresqgl/16/pgstattuple

https://wiki.postgresql.org/wiki/Show_database_bloat
https://postgrespro.com/docs/postgresql/16/pgstattuple

Table and Index Bloating

There are several ways to assess bloating and its impact:

e (Queries to the system catalog
e Using the pgstattuple extension

=> CREATE EXTENSION pgstattuple;
CREATE EXTENSION
The extension helps monitor the state of a table:

=> SELECT * FROM pgstattuple('bloat’') \gx

-[RECORD 1]------ Fo-mmm---
table len | 4874240
tuple count | 100000
tuple len | 4000000
tuple percent | 82.06
dead tuple count | ©

dead tuple len | ©

dead tuple percent | 0

free space | 457324
free percent | 9.38

e tuple_percent is the proportion of useful information (not 100% due to overhead).

Same for an index:

=> SELECT * FROM pgstatindex('bloat_d_idx') \gx

-[RECORD 1]------ s
version | 4
tree_level | 1
index size | 778240
root block no | 3
internal pages | 1
leaf pages | 85
empty pages | ©
deleted pages | 8
avg leaf density | 89.17

leaf fragmentation | 0

e leaf pages is the number of leaf pages of the index.
e avg leaf density is storage density of leaf pages.
e leaf fragmentation is characteristic of physical order of leaf pages (0 — order, 100 — disorder).

Let’s update half the rows at once:

=> UPDATE bloat SET d = d + interval 'l day' WHERE id % 2 = 0;
UPDATE 50000

Check the table again:

=> SELECT * FROM pgstattuple('bloat') \gx

-[RECORD 1]------ ommmma
table len | 6643712
tuple count | 100000
tuple len | 4000000
tuple_percent | 60.21
dead tuple count | 50000
dead tuple len | 2000000
dead tuple percent | 30.1
free space | 21004
free percent | 0.32

The density went down.
To avoid scanning the whole table, pgstattuple can display approximate information:

=> SELECT * FROM pgstattuple_approx('bloat') \gx

6643712

-l RECORD 1]-------- +

table len |

scanned percent | 100

approx_tuple count | 100000

approx_tuple len | 4000000

approx_tuple percent | 60.207305795314426
|
I
|

dead tuple count 50000

dead tuple len 2000000

dead tuple percent 30.103652897657213
approx_free space 21004

approx_free percent | 0.31614856273119607

Check the index:

=> SELECT * FROM pgstatindex('bloat_d_idx') \gx

-[RECORD 1]------ ommmma
version | 4

tree level | 1
index_size | 1171456
root block no | 3
internal pages | 1

leaf pages | 133
empty pages | ©
deleted pages | 8
avg_leaf _density | 85.41

leaf fragmentation | 2.26

Leaf page density remained the same, but the number of pages has increased.

Rebuilding Objects Pos{gres

Full vacuum

VACUUM FULL
$ vacuumdb --full

completely rebuilds the contents of tables and indexes
locks the table completely

Rebuilding indexes
REINDEX

rebuilds indexes

locks the index completely
and locks the associated table for write operations

13

In order to reduce the physical size of bloated tables and indexes, a full
vacuum is required.

The VACUUM FULL command completely rewrites the contents of the table
and its indexes, minimizing the space occupied. However, this process
requires an exclusive table lock and therefore cannot be executed in parallel
with other transactions.

https://postgrespro.com/docs/postgresgl/16/sql-vacuum

You can rebuild an index or several indexes without touching the table. This
is done by the REINDEX command. It locks the table for writing (reading is
still available), so transactions trying to change the table or plan a query on it
will be blocked.

https://postgrespro.com/docs/postgresgl/16/sql-reindex

If prolonged exclusive locking is undesirable, you can consider pg_repack, a
third-party extension (https://github.com/reorg/pg_repack) that allows you to
rebuild tables and their indexes on the fly.

https://postgrespro.com/docs/postgresql/16/sql-vacuum
https://postgrespro.com/docs/postgresql/16/sql-reindex
https://github.com/reorg/pg_repack

Rebuilding Objects B

Non-blocking index rebuilding
REINDEX ... CONCURRENTLY
rebuilds indexes without locking tables for writing
takes longer and may fail
not transactional
does not work for system indexes
does not work for indexes associated with exclusion constraints

14

The REINDEX ... CONCURRENTLY command can work without locking the
table for writing. However, non-blocking rebuilding takes longer and may falil
(due to deadlocks). In this case, the index will need to be rebuilt again.

Non-blocking index rebuilding has some limitations: it cannot be performed
inside a transaction, and it cannot rebuild system indexes and indexes for
exclusion constraints (EXCLUDE).

Rebuilding Objects

You can rebuild an index using the REINDEX command with the CONCURRENTLY clause. It rebuilds the index without stopping the
system.

=> REINDEX TABLE CONCURRENTLY bloat;
REINDEX
Check the index again:

=> SELECT * FROM pgstatindex('bloat_d_idx') \gx

-[RECORD 1]------ tomee -
version 4
tree_level 1
index size 712704
root block no 3
internal pages 1

|
|
|
|
|
leaf pages | 85
|
|
|
|

empty pages 0
deleted pages 0
avg leaf density 89.17
leaf fragmentation | 0

The page count and density have returned to their initial values.

To rebuild a table together with its indexes, you can use VACUUM FULL. However, unlike REINDEX CONCURRENTLY, this operation
fully blocks all access to the table.

=> VACUUM FULL bloat;
VACUUM

=> SELECT * FROM pgstattuple('bloat') \gx

-[RECORD 1]------ ommmma
table len | 4431872
tuple count | 100000
tuple len | 4000000
tuple percent | 90.26
dead tuple count | ©

dead tuple len | ©

dead tuple percent | 0

free space | 16724
free percent | 0.38

The density has increased, the freed up space is returned to the operating system.

of] PROFESSIONAL

Takeaways Posigres

Row versions are accumulated, so periodic vacuuming is
necessary

Vacuuming serves multiple goals:

updating visibility maps and free space maps
collecting statistics for the optimizer
freezing old row versions

Autovacuuming is necessary, but requires configuration

Full vacuum may be necessary to combat bloating

16

of] PROFESSIONAL

Practice Posigres

1. Disable autovacuuming and make sure it does not work.

In a new database, create a table with one numeric column and
an index for this table. Insert 100,000 random numbers into the
table.

3. Change half of the table rows several times. Write down the size
of the table and the index each time.

4. Run a full vacuum.

5. Repeat step 3, running a regular vacuum each time you change
the values. Compare the results.

6. Turn autovacuuming back on.

17

1. Set the autovacuum parameter to off and reload the configuration files.

3. Use pg_table_size(table-name) and pg_indexes_size(table-
name) functions. For more information about calculating the sizes of various
objects, see the Data organization module.

6. Set the autovacuum parameter back to on (or reset its value with the
RESET command), then reload the configuration files.

1. Switching Autovacuum Off

Autovacuum is running for now:

=> SELECT pid, backend_start, backend_type
FROM pg_stat_activity

WHERE backend_type = 'autovacuum launcher’;

pid | backend_start | backend_type
....... R
31555 | 2025-09-24 17:06:52.245698+03 | autovacuum launcher
(1 row)

We disable autovacuum and reload the configuration settings.
=> ALTER SYSTEM SET autovacuum = off;

ALTER SYSTEM

=> SELECT pg_reload_conf();

pg_reload_conf

The autovacuum launcher process is no longer present.

=> SELECT pid, backend_start, backend_type
FROM pg_stat_activity
WHERE backend_type = 'autovacuum launcher’;

pid | backend_start | backend_type
..... e e e

(0 rows)

2. Database, Table and Index

Create a database, a table and an index:

=> CREATE DATABASE arch_vacuum_overview;

CREATE DATABASE

=> \c arch_vacuum_overview

You are now connected to database "arch_vacuum_overview" as user "student".
=> CREATE TABLE t(n numeric);

CREATE TABLE

=> CREATE INDEX t_n on t(n);

CREATE INDEX

Insert rows:

=> INSERT INTO t SELECT random() FROM generate_series(1,100_000);

INSERT 0 100000

3. Changing Rows without Vacuuming

Store a query to calculate the size of the table and the index as a psql variable so that we can use it later:

=> \set SIZE 'SELECT pg_size_pretty(pg_table_size(''t'')) table_size, pg_size_pretty(pg_indexes_size(''t'')) index_size\\g (footer=off)'

=> :SIZE
table _size | index_size
............ e
4360 kB | 4312 kB

=> UPDATE t SET n=n WHERE n < 0.5;

UPDATE 49990

=> :SIZE
table _size | index_size
............ e
6520 kB | 6448 kB

=> UPDATE t SET n=n WHERE n < 0.5;
UPDATE 49990

=> :SIZE

table _size | index_size
............ e
8680 kB | 7616 kB

=> UPDATE t SET n=n WHERE n < 0.5;
UPDATE 49990
=> :SIZE

table _size | index_size

The table and index sizes keep growing.

4. Full Vacuum

=> VACUUM FULL t;
VACUUM
=> :SIZE
table _size | index_size

............ e
4336 kB | 3104 kB

The table size is almost back to where it was initially, and the index size decreased (building an index for a large data set is more efficient than adding data to the
index row by row).

5. Changing Rows with Vacuuming

=> UPDATE t SET n=n WHERE n < 0.5;
UPDATE 49990
=> VACUUM t;
VACUUM
=> :SIZE
table _size | index_size

............ e
6528 kB | 4648 kB

=> UPDATE t SET n=n WHERE n < 0.5;
UPDATE 49990
=> VACUUM t;
VACUUM
=> :SIZE
table _size | index_size

............ e
6528 kB | 4648 kB

=> UPDATE t SET n=n WHERE n < 0.5;
UPDATE 49990
=> VACUUM t;
VACUUM
=> :SIZE
table _size | index_size

............ e
6528 kB | 4648 kB

The size increased once and then stabilized.
The example demonstrates that removing (or changing) large amount of data should be done in multiple transactions, if possible. This will allow autovacuum to

clean up unneeded row versions in time, avoiding table bloating.

6. Turn Autovacuum Back On

=> ALTER SYSTEM RESET autovacuum;
ALTER SYSTEM
=> SELECT pg_reload_conf();

pg_reload_conf

