Administrative Tasks
Monitoring

Pos gres

Copyright

© Postgres Professional, 2017-2025

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov, Alexey Beresnev
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is,” and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

Topics

OS Tools
Cumulative Statistics
Server Message Log

External Monitoring Systems

PoSdgras

OS Tools s

Processes

ps, pgrep...
update_process_title parameter for updating the status of processes

cluster_name parameter for setting the cluster name
Resource usage

iostat, vmstat, sar, top...

Disk space
df, du, quota...

PostgreSQL runs on an operating system and to a certain extent depends
on its configuration.

PostgreSQL process information is accessible via OS tools. The server
parameter update_process._title (on by default) displays the state of each
process next to its title. The cluster_name parameter specifies the instance
name used to identify it among running processes.

Various tools are available to monitor the use of system resources (CPU,
RAM, disks) in Unix: iostat, vmstat, sar, top, etc.

Disk space monitoring is also necessary. The space occupied by the
database on disk can be viewed both from the database itself (see the Data
Organization module) and from the OS (with the du command). The amount
of disk space available is also displayed with the df command in the OS. If
disk quotas are used, they must also be taken into account.

The tools and approaches to monitoring differ significantly between various
OS and file systems, so we will not discuss them in detail.

https://postgrespro.com/docs/postagresql/16/monitoring-ps
https://postgrespro.com/docs/postgresql/16/diskusage

https://postgrespro.com/docs/postgresql/16/monitoring-ps
https://postgrespro.com/docs/postgresql/16/diskusage

Cumulative Statistics Wz

Statistics Collection
Current System Activities
Command Execution Monitoring

Extensions

There are two primary sources of information about the state of the system.
The first one is statistical information collected by PostgreSQL and stored
inside the cluster.

Statistics Collection Pogga“?é%

Settings of cumulative statistics

parameter action
track_activities monitor current commands
track_counts collect table and index access statistics
track_functions monitor user function calls
off by default
track_io_timing monitor block read and write timing statistics
off by default
track_wal_io_timing monitor write timing of WAL operations
off by default

The cumulative statistics system in PostgreSQL collects and provides data
on server operations. Cumulative statistics track access to tables and
indexes at both the disk block and row levels. Additionally, they record
details such as the number of rows, vacuum and analyze operations for
each table.

It is also possible to track the number of user function calls and their
execution time.

The amount of information collected is controlled by several server
parameters, since the more information is collected, the greater the
overhead.

https://postgrespro.com/docs/postgresgl/16/monitoring-stats

https://postgrespro.com/docs/postgresql/16/monitoring-stats

Architecture Pogga’?“é“g

backend ' shared
memory

transaction between transactions
statistics

cumulative

statistics
statistics > stats_fetch_consistency
snapshot 1] none
cache

snapshot

normal
server shutdown

cumulative
statistics

PGDATA/pg_stat/

Backends collect statistics in running transactions. The process stores this
data in shared memory, updating it at most once per second (compile-time
setting).

Cumulative statistics are stored in PGDATA/pg_stat/ during a normal server
shutdown and reloaded upon startup. In case of a crash shutdown, all
counters are reset.

Backend may cache statistical data. The caching level is controlled by the
Stats_fetch_consistency parameter.

* none — no caching; statistics reside only in shared memory.
« cache — statistics for a single object are cached.
* snapshot — statistics for the entire database are cached.

Cache is the default mode, which balances consistency and performance
efficiency.

Cached statistics are not refreshed and are discarded at the end of a
transaction, or when pg_stat_clear_snapshot() is called.

Due to latency and caching, the backend will not always have the latest
statistics, but it is seldom necessary.

Cumulative Statistics

=> CREATE DATABASE admin_monitoring;

CREATE DATABASE

=> \c admin_monitoring

You are now connected to database "admin _monitoring" as user "student".
Enable collection of I/O statistics first:

=> ALTER SYSTEM SET track_io_timing=on;

ALTER SYSTEM

=> SELECT pg_reload_conf();

pg reload conf

Monitoring server activity only makes sense if there is any activity. We can imitate load with pgbench, a standard benchmarking
utility.

First, it creates a number of tables and fills them with data.
student$ pgbench -i admin_monitoring

dropping old tables...

NOTICE: table "pgbench accounts" does not exist, skipping

NOTICE: table "pgbench branches" does not exist, skipping

NOTICE: table "pgbench history" does not exist, skipping

NOTICE: table "pgbench tellers" does not exist, skipping

creating tables...

generating data (client-side)...

100000 of 100000 tuples (100%) done (elapsed 0.25 s, remaining 0.00 s)
vacuuming. ..

creating primary keys...

done in 0.64 s (drop tables 0.00 s, create tables 0.03 s, client-side generate 0.29 s,
vacuum 0.12 s, primary keys 0.18 s).

Let’s reset the previously accumulated database statistics.
=> SELECT pg_stat_reset();

pg stat reset

Including instance I/O statistics:
=> SELECT pg_stat_reset_shared('io');

pg stat reset shared

Start the TPC-B test and let it run for a few seconds:
student$ pgbench -T 10 admin_monitoring

pgbench (16.10 (Ubuntu 16.10-1.pgdg24.04+1))
starting vacuum...end.

transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1

query mode: simple

number of clients: 1

number of threads: 1

maximum number of tries: 1

duration: 10 s

number of transactions actually processed: 1132
number of failed transactions: 0 (0.000%)

latency average = 8.830 ms
initial connection time = 9.071 ms
tps = 113.252776 (without initial connection time)

Now, let’s check the statistics on table access in terms of rows:

=> SELECT *
FROM pg_stat_all_tables
WHERE relid = 'pgbench_accounts'::regclass \gx

-[RECORD 1 J------- g
relid | 16393

schemaname | public

relname | pgbench accounts
seq_scan | 0

last seq scan |

seq_tup read | ©

idx_scan | 2264

last idx scan | 2025-09-24 17:01:10.103752+03
idx_tup fetch | 2264

n_tup_ins | ©

n_tup_upd | 1132

n_tup del | ©

n_tup hot upd | 329

n_tup newpage upd | 8063

n_live tup | 0

n_dead tup | 1065

n_mod since analyze | 1132

n_ins since vacuum | 0

last vacuum |

last_autovacuum |

last_analyze |

last_autoanalyze |

vacuum_count | ©
autovacuum_count | 0

analyze count | ©
autoanalyze_count | 0

And in terms of tables:

=> SELECT *
FROM pg_statio_all_tables
WHERE relid = 'pgbench_accounts'::regclass \gx

<[RECORD 1 J---t-vcmmmmacmaamnnn-

relid 16393

schemaname public

relname pgbench_accounts
heap blks read 0

heap blks hit 7775

|

|

|

|

|

idx blks read | 269
idx_blks hit | 5873
toast blks read |
toast blks hit |
tidx _blks read |
tidx blks hit |

There are similar views for indexes:

=> SELECT *
FROM pg_stat_all_indexes
WHERE relid = 'pgbench_accounts'::regclass \gx

<] RECORD 1 J-ebrcmmmmommmmcmcmocmcemecacaaas

relid | 16393

indexrelid | 16407

schemaname | public

relname | pgbench_accounts

indexrelname | pgbench accounts pkey
idx_scan | 2264

last_idx_scan | 2025-09-24 17:01:10.103752+03
idx_tup_read | 3074

idx_tup fetch | 2264

=> SELECT *
FROM pg_statio_all_indexes
WHERE relid = 'pgbench_accounts'::regclass \gx

<[RECORD 1 J-brcvmmrommmmomoeaeonne

relid | 16393

indexrelid | 16407

schemaname | public

relname | pgbench_accounts
indexrelname | pgbench accounts pkey
idx _blks read | 269

idx_blks_hit | 5873

These views can be used to pinpoint unused indexes. Such indexes not only occupy useful space on the disk, but also waste
resources on updates every time data in the table changes.

There are also views for user-defined and system objects (all, user, sys), current transaction statistics (pg_stat_xact*), and more.

You can view global statistics across the whole database:

2025-09-24 17:00:59.741821+03

=> SELECT *
FROM pg_stat_database
WHERE datname = 'admin_monitoring' \gx
-[RECORD 1 J------------ R R e L
datid | 16386
datname | admin_monitoring
numbackends | 1
xact_commit | 1151
xact_rollback | ©
blks read | 271
blks_hit | 23586
tup returned | 18198
tup fetched | 3397
tup_inserted | 1132
tup updated | 3397
tup deleted | ©
conflicts | 0
temp_files | 0
temp bytes | ©
deadlocks | ©
checksum_failures |
checksum last failure |
blk read time | 9.558
blk write time | 1.286
session time | 22558.675
active time | 9416.434
idle in_transaction_time | 546.994
sessions | 2
sessions_abandoned | ©
sessions fatal | ©
sessions _killed | ©

I

stats reset

It provides a lot of data on the number of deadlocks occurred, committed and cancelled transactions, utilization of temporary files,
and checksum errors. It also maintains total session count and statistics on sessions terminated for various reasons.

The numbackends column specifically indicates the current number of active backend processes connected to this database.

For monitoring I/O operations at the server level, administrators can query the pg_stat_io view. Let’s first execute a checkpoint
operation, then examine the resulting page read and write counts categorized by process type:

=> CHECKPOINT;
CHECKPOINT

=> SELECT backend_type, sum(hits) hits, sum(reads) reads, sum(writes) writes
FROM pg_stat_io
GROUP BY backend_type;

background worker |
client backend |
walsender |
standalone backend |
autovacuum worker | 56
autovacuum launcher |
background writer |
startup

checkpointer |

(9 rows)

Current Activities Pogga’ﬁss%

Configuration
statistics parameter
current activities and waits track_activities
of backends on by default

and background processes

The current activities of all backends and background processes are
displayed in the pg_stat_activity view. We will focus on it more in the demo.

This view depends on the track_activities parameter (enabled by default).

Current Activities

Let’s imitate a scenario when one process blocks another, and then figure it out using system views.
Create a table with one row:

=> CREATE TABLE t(n integer);

CREATE TABLE

=> INSERT INTO t VALUES(42);

INSERT 0 1

Start two sessions, one of which changes the table and does not complete the transaction:
student$ psql -d admin_monitoring

| => BEGIN;

| BEGIN

| => UPDATE t SET n = n + 1;

| UPDATE 1

And the other tries to change the same row and gets blocked:

student$ psql -d admin_monitoring

| => UPDATE t SET n = n + 2;

View data about backend processes:

=> SELECT pid, query, state, wait_event, wait_event_type, pg_blocking pids(pid)
FROM pg_stat_activity
WHERE backend_type = 'client backend' \gx

-[RECORD 1

T e
pid | 20100

query | UPDATE t SET n =n + 1;

state | idle in transaction

wait_event | ClientRead

wait event type | Client

pg blocking pids | {}

-[RECORD 2

T S e
pid | 19121

query | SELECT pid, query, state, wait event, wait event type,

pg_blocking pids(pid)+
| FROM pg stat activity

+
| WHERE backend_type = 'client backend'

state | active

wait event |

wait event type |

pg blocking pids | {}

-[RECORD 3

T e

pid | 20188

query | UPDATE t SET n = n + 2;

state | active

wait_event | transactionid

wait_event type | Lock

pg blocking pids | {20160}

The state “idle in transaction” means that the session has started a transaction, but isn’t doing anything at the moment, and the
transaction isn’t closed. This could become a problem if the situation comes up regularly (for example, because of poor application
code or driver errors), because an open transaction holds a data snapshot and prevents vacuuming.

The administrator has a parameter idle_in_transaction_session_timeout at their disposal to force sessions to close after their
transaction is idle for a certain period of time. The idle_session_timeout parameter forcibly terminates sessions that remain idle
beyond the specified duration.

You can also terminate a blocking session manually. First, you need the blocked process ID. The function pg_blocking_pids can help
you with that:

=> SELECT pid AS blocked_pid

FROM pg_stat_activity

WHERE backend_type = 'client backend'

AND cardinality(pg_blocking_pids(pid)) > 0;

blocked pid

Instead, you can use a query on the locks table. It will return two rows in this case: one transaction has been granted the lock, while
the other is waiting for it.

=> SELECT locktype, transactionid, pid, mode, granted
FROM pg_locks
WHERE transactionid IN (
SELECT transactionid FROM pg_locks WHERE pid = 20188 AND NOT granted

)i

locktype | transactionid | pid | mode | granted
--------------- L i S T R
transactionid | 1884 | 20100 | Exclusivelock | t
transactionid | 1884 | 20188 | ShareLock | f
(2 rows)

Generally, you have to keep the lock type in mind.

Running query can be cancelled with the pg_cancel backend function. The transaction is idle in our case, so we use the
pg_terminate_backend to terminate the session:

=> SELECT pg_terminate_backend(b.pid)
FROM unnest(pg_blocking_pids(20188)) AS b(pid);

pg _terminate backend

The unnest function is necessary because pg_blocking pids returns an array of process IDs that block the specified process. There is
only one in our examples, but there can be multiple.

Locks are discussed in more detail in the DBA2 course.

Check the backends:

=> SELECT pid, query, state, wait_event, wait_event_type
FROM pg_stat_activity
WHERE backend_type = 'client backend' \gx

“[RECORD 1 J-dmmmmmmm oo e e e

pid | 19121

query | SELECT pid, query, state, wait event, wait event type+
| FROM pg stat activity +
| WHERE backend type = 'client backend'

state | active

wait_event |

wait_event_type |

S RECORD 2 J---dmmmmmm o s e e e e e e e e e e e

pid | 20188

query | UPDATE t SET n = n + 2;

state | idle

wait_event | ClientRead

wait_event type | Client

The pg_stat_activity view shows the information not only about backend processes, but also about the system background processes
running on the instance:

=> SELECT pid, backend_type, backend_start, state
FROM pg_stat_activity;

19025 | walwriter 2025-09-24 17:00:50.559965+03

pid | backend type | backend start | state

------- B e T e S
19026 | autovacuum launcher | 2025-09-24 17:00:50.561805+03 |
19027 | logical replication launcher | 2025-09-24 17:00:50.563514+03 |
19121 | client backend | 2025-09-24 17:00:58.475998+03 | active
20188 | client backend | 2025-09-24 17:01:17.314073+03 | idle
19023 | background writer | 2025-09-24 17:00:50.478885+03 |
19022 | checkpointer | 2025-09-24 17:00:50.477168+03 |

| I I

)

Compare that to what the OS reports:

student$ sudo head -n 1 /var/lib/postgresql/16/main/postmaster.pid
19021

student$ ps -o pid,command --ppid 19021

PID COMMAND
19022 postgres: 16/main: checkpointer
19023 postgres: 16/main: background writer
19025 postgres: 16/main: walwriter
19026 postgres: 16/main: autovacuum launcher
19027 postgres: 16/main: logical replication launcher
19121 postgres: 16/main: student admin monitoring [local] idle
20188 postgres: 16/main: student admin monitoring [local] idle

Command Execution Pogga’?ég

Views for monitoring command executions

command execution

ANALYZE pg_stat_progress_analyze
CREATE INDEX, REINDEX pg_stat_progress_create_index
VACUUM pg_stat_progress_vacuum
including autovacuuming

CLUSTER, VACUUM FULL pg_stat_progress_cluster
Create base backup pg_stat_progress_basebackup
COPY pg_stat_progress_copy

10

You can monitor the progress of some potentially long-running commands
using the corresponding views.

The structures of the views are described in the documentation:
https://postgrespro.com/docs/postaresql/16/progress-reporting
Backup is discussed in the Backup module.

https://postgrespro.com/docs/postgresql/16/progress-reporting

Additional Statistics Posigres

Additional supplied extensions

pg_stat_statements query statistics
pgstattuple row versions statistics
pg_buffercache buffer cache status

Other extensions

pg_wait_sampling statistics for waits
pg_stat_kcache CPU and I/O statistics
pg_qualstats predicate statistics

11

There are extensions, both additional supplied and third-party, that enable
the collection of additional statistics.

For example, the pg_stat statements extension collects information about
gueries executed by the system, pg_buffercache provides tools for
monitoring the buffer cache, etc.

Many key extensions are discussed in more detail in the DBA2 and DEV2
courses.

Server Message Log

Log Record Configuration
Log File Rotation
Log Analysis

12

The other primary source of information about the state of the server is the
message log.

of] PROFESSIONAL

Server Message Log Posigres

Message receiver (log_destination = list)

stderr error stream

csvlog CSV format (if the collector is enabled)
jsonlog JSON format (if the collector is enabled)
syslog the syslog daemon

eventlog Windows event log

Message collector (logging_collector = on)

can provide additional info
never loses messages (unlike syslog)
writes stderr, csvlog and jsonlog to the log_directory/log_filename

13

The server log can be output in various formats and forwarded to various
destinations. The format and the destination are determined primarily by the
log_destination parameter (you can list multiple receivers separated by a
comma).

The stderr value (on by default) sends messages to the standard error
stream as plain text. The syslog value forwards messages to the syslog
daemon (for Unix systems), and the eventlog value does the same for the
Windows event log.

The message collector is an auxiliary process that collects additional
information from all PostgreSQL processes to supplement the basic log
messages. It is designed to keep track of every message, therefore it can
become the bottleneck in high-load environments.

The message collector is switched on and off by the logging_collector
parameter. When stderr is enabled, the messages are written into the file
defined by the log_filename parameter, which is located in the directory
defined by the log_directory parameter.

When the collector is on and csvlog is selected as a receiver, the info will
also be output into a CSV file log_filename.csv. With the jsonlog output
enabled, log files are written in JSON format and use the .json file extension.

What to Log? po%aﬁsg

Settings
information parameter
level of messages log_min_messages
long command execution time log_min_duration_statement
command execution time log_duration
application name application_name
checkpoints log_checkpoints
connections and disconnections log_(dis)connections
long lock waits log_lock_waits
command executed log_statement
temporary file usage log_temp_files

14

A lot of useful information can be output to the server message log. By
default, almost all output is disabled so as not to turn logging into the
bottleneck for the I/O subsystem. The administrator should decide what
information is important, provide the necessary disk space to store it, and
evaluate the impact of the log output on the overall system performance.

Log File Rotation Pogga’i“éﬁ

By the message collector

setting parameter

file name pattern log_filename

rotation time, minutes log_rotation_age

rotation file size, KB log_rotation_size

overwrite file log_truncate_on_rotation = on
combining file name patterns and rotation times allow for different rotation
schemes:

'postgresql-%H.log', '1h' 24 files a day

'postgresql-%a.log', '1d’ 7 files a week

External tools
® logrotate system utility

15

If all the log output goes into a single file, sooner or later the file will grow to
an unmanageable size, making administration and analysis highly
inconvenient. Therefore, a log rotation scheme is usually employed.

https://postgrespro.com/docs/postgresgl/16/logfile-maintenance

The message collector has its own rotation tools. Some of the parameters
that configure them are listed on the slide.

The log_filename parameter can specify not just a name, but a file name
pattern using designated date and time characters.

The log_rotation_age parameter determines how long a file is used before
the output switches to a new one (and log_rotation_size is the file size at
which to switch to the next one).

The log_truncate_on_rotation flag determines if PostgreSQL should
overwrite existing files or append messages to them.

Different rotation schemes can be defined by using various file name
patterns and switch time combinations.

https://postgrespro.com/docs/postgresql/16/runtime-config-logging#RUNTIM
E-CONFIG-LOGGING-WHERE

Alternatively, rotation can be managed by external tools. For example,
Ubuntu package uses logrotate system utility (it is configured through the
/etc/logrotate.d/postgresgl-common file).

https://postgrespro.com/docs/postgresql/16/logfile-maintenance
https://postgrespro.com/docs/postgresql/16/runtime-config-logging#RUNTIME-CONFIG-LOGGING-WHERE
https://postgrespro.com/docs/postgresql/16/runtime-config-logging#RUNTIME-CONFIG-LOGGING-WHERE

of] PROFESSIONAL

Log Analysis Posigres

OS tools
grep, awk...

Special analysis tools

pgBadger — requires a certain log configuration

16

There are different ways to analyze logs.

You can search for certain information using OS tools or specially designed
scripts.

The de facto standard for log analysis is the PgBadger application
https://github.com/darold/pgbadger, but it imposes certain restrictions on the
contents of the log. In particular, only messages in English are allowed.

https://github.com/darold/pgbadger

Log Analysis

Let’s consider a simple case. For example, display all messages of the FATAL level:
student$ sudo grep FATAL /var/log/postgresql/postgresql-16-main.log | tail -n 10

2025-09-24 16:56:05.228 MSK [2750] student@student FATAL: terminating connection due to
administrator command

2025-09-24 17:01:19.114 MSK [20100] student@admin monitoring FATAL: terminating
connection due to administrator command

The “terminating connection” message is caused by us terminating the blocking process.

Logs are usually used to analyse the queries that execute the longest. We can make the log display all executed commands and their
execution times:

=> ALTER SYSTEM SET log_min_duration_statement=0;
ALTER SYSTEM
=> SELECT pg_reload_conf();

pg_reload conf

Now, run a command:

=> SELECT sum(random()) FROM generate_series(1l,1_000_000);

500636.5818178172
(1 row)

Check the log:

student$ sudo tail -n 1 /var/log/postgresql/postgresql-16-main.log

2025-09-24 17:01:20.752 MSK [19121] student@admin_monitoring LOG: duration: 371.316 ms
statement: SELECT sum(random()) FROM generate series(1l,1 000 000);

External Monitoring Wz

Universal monitoring systems

Zabbix, Munin, Cacti...
cloud-based: Okmeter, NewRelic, Datadog...

PostgreSQL monitoring systems

pg_profile, pgpro_pwr
PGObserver

PostgreSQL Workload Analyzer (PoWA)
Open PostgreSQL Monitoring (OPM)

18

In practice, you need a full-fledged monitoring system that collects various
metrics from both PostgreSQL and the operating system, stores the history
of these metrics, displays them as readable graphs, notifies when certain
metrics exceed certain limits, etc.

PostgreSQL does not come with such a system by itself, it only provides the
means by which such information can be acquired. We have gone over them
already. Therefore, for full-scale monitoring, an external system is required.
There are quite a few such systems on the market. Some are universal and
come with PostgreSQL plugins or agents. These include Zabbix, Munin,
Cacti, cloud services such as Okmeter, NewRelic, Datadog, and others.

There are also systems specifically designed for PostgreSQL: PGObserver,
PoWA, OPM, etc. The pg_profile extension allows you to build snapshots of
static data and compare them, identifying resource-intensive operations and
their dynamics. pgpro_pwr is its extended, commercially available version.

https://postgrespro.com/docs/enterprise/16/pgpro-pwr

An incomplete but representative list of monitoring systems can be viewed
here: https://wiki.postgresqgl.org/wiki/Monitoring

https://postgrespro.com/docs/enterprise/16/pgpro-pwr
https://wiki.postgresql.org/wiki/Monitoring#Generic_monitoring_solutions_with_plugins

Takeaways Pogga’?fs&

Monitoring collects data on server operations
both from the operating system and from the database points
of view

PostgreSQL provides cumulative statistics
and the server message log

Full-scale monitoring requires an external system

19

of] PROFESSIONAL

Practice Posigres

1. In a new database, create a table, insert several rows, and then
delete all rows.

Look at the table access statistics and reference the values
(n_tup_ins, n_tup_del, n_live_tup, n_dead_tup) against your
activity.

Perform a vacuum, check the statistics again and compare with
the previous figures.

2. Create a deadlock with two transactions.
See what information is recorded in the server message log.

20

2. Deadlock is a situation when two (or more) transactions are waiting for
each other to complete first. Unlike a normal lock, transactions have no way
to get out of deadlock, and the DBMS has to resolve it by forcibly
interrupting one of the transactions.

The easiest way to reproduce a deadlock is on a table with two rows. The
first transaction changes (and locks) the first row, and the second one locks
the second row. Then the first transaction tries to change the second row,
discovers that it is locked, and starts waiting. And then the second
transaction tries to change the first row, and also waits for the lock to be
released.

Table Access Statistics

Create a database and a table:

=> CREATE DATABASE admin_monitoring;

CREATE DATABASE

=> \c admin_monitoring

You are now connected to database "admin _monitoring" as user "student".
=> CREATE TABLE t(n numeric);

CREATE TABLE

=> INSERT INTO t SELECT 1 FROM generate_series(1,1000);
INSERT 0 1000

=> DELETE FROM t;

DELETE 1000

Check access statistics.

=> SELECT * FROM pg_stat_all_tables WHERE relid = 't'::regclass \gx

-[RECORD 1 J------- e
relid | 16387
schemaname | public
relname | t
seq_scan | 1
last_seq_scan | 2025-09-24 17:10:17.420811+03
seq_tup read | 1000
idx_scan |

last idx scan |
idx_tup_ fetch |
n_tup_ins | 1000
n_tup_upd | 0
n_tup del | 1000
n_tup hot upd | 0
n_tup newpage upd | 0
n_live tup | 0
n_dead tup | 1000
n_mod since analyze | 2000
n_ins since vacuum | 1000
last vacuum |
last_autovacuum |
last_analyze |
last_autoanalyze |
vacuum_count | 0
autovacuum_count | 0
analyze count | ©
autoanalyze_count | 0

We inserted 1000 rows (n_tup_ins = 1000), then removed 1000 rows (n_tup_del = 1000).
No live row versions remain (n_live_tup = 0), all 1000 rows are dead (n_dead_tup = 1000).
Run vacuuming.

=> VACUUM;

VACUUM

=> SELECT * FROM pg_stat_all_tables WHERE relid = 't'::regclass \gx

<[RECORD 1]------- oo

last_vacuum 2025-09-24 17:10:18.878693+03
last autovacuum
last _analyze
last_autoanalyze
vacuum_count
autovacuum_count
analyze count

autoanalyze count

relid | 16387
schemaname | public
relname | t
seq_scan | 1
last seq scan | 2025-09-24 17:10:17.420811+03
seq_tup read | 1000
idx_scan |
last_idx_scan |
idx_tup fetch |
n_tup ins | 1000
n_tup upd | 0
n_tup_del | 1000
n_tup_hot_upd | 0
n_tup newpage upd | ©
n_live tup | 0
n_dead tup | 0
n_mod_since analyze | 2000
n_ins_since_vacuum | O

|

I

I

I

|

|

I

I

[cN ool

Dead row versions vacuumed (n_dead_tup = 0), vacuuming performed one time (vacuum_count = 1).

2. Deadlocks

=> INSERT INTO t VALUES (1),(2);

INSERT 0 2

One transaction locks the first row of the table...

student$ psql

| => \c admin_monitoring

| You are now connected to database "admin monitoring" as user "student".
| => BEGIN;

| BEGIN

| => UPDATE t SET n = 10 WHERE n = 1;

| UPDATE 1

The other locks the second row...

student$ psql

| => \c admin_monitoring

[You are now connected to database "admin_monitoring" as user "student".
| => BEGIN;

| BEGIN

| => UPDATE t SET n = 200 WHERE n = 2;

| uPDATE 1

Now, the first transaction tries to change the second row and waits for it to release...
| => UPDATE t SET n = 20 WHERE n = 2;

While the second transaction waits for the first row to release...

| => UPDATE t SET n = 100 WHERE n = 1;

..and so a deadlock occurs. The server terminates one of the transactions:

ERROR: deadlock detected

DETAIL: Process 39229 waits for ShareLock on transaction 739; blocked by process 39101.
Process 39101 waits for ShareLock on transaction 740; blocked by process 39229.

HINT: See server log for query details.

CONTEXT: while updating tuple (0,1) in relation "t"

The other transaction gets unblocked:

| UPDATE 1

Check the message log:

student$ sudo tail -n 8 /var/log/postgresql/postgresql-16-main.log

2025-09-24 17:10:23.149 MSK [39229] student@admin monitoring ERROR: deadlock detected
2025-09-24 17:10:23.149 MSK [39229] student@admin monitoring DETAIL: Process 39229 waits
for ShareLock on transaction 739; blocked by process 39101.
Process 39101 waits for ShareLock on transaction 740; blocked by process 39229.
Process 39229: UPDATE t SET n = 100 WHERE n = 1;
Process 39101: UPDATE t SET n = 20 WHERE n = 2;
2025-09-24 17:10:23.149 MSK [39229] student@admin monitoring HINT: See server log for
query details.
2025-09-24 17:10:23.149 MSK [39229] student@admin_monitoring CONTEXT: while updating
tuple (0,1) in relation "t"
2025-09-24 17:10:23.149 MSK [39229] student@admin monitoring STATEMENT: UPDATE t SET n =
100 WHERE n = 1;

of] PROFESSIONAL

Practice+ Posigres

1. Install the pg_stat_statements extension.
Execute several queries.
See what information gets into the pg_stat_statements view.

21

1. To install the extension, before executing the CREATE EXTENSION
command, change the value of the shared_preload._libraries parameter, and
restart the server.

https://postgrespro.com/docs/postgresqgl/16/pgstatstatements

https://postgrespro.com/docs/postgresql/16/pgstatstatements

1. The pg_stat_statements Extension

The extension collects planning and execution statistics for all queries.

For the extension to work, a module with the same name has to be loaded. To do that, add the module name to
shared_preload_libraries and restart the server. This is usually done through postgresql.conf, but for the purpose of the demo we
will set it using the ALTER SYSTEM command.

=> ALTER SYSTEM SET shared_preload_libraries = 'pg_stat_statements’;
ALTER SYSTEM

= \q

student$ sudo pg_ctlcluster 16 main restart

student$ psql

=> CREATE DATABASE admin_monitoring;

CREATE DATABASE

=> \c admin_monitoring

You are now connected to database "admin monitoring" as user "student".
=> CREATE EXTENSION pg_stat_statements;

CREATE EXTENSION

Now, run some queries:

=> CREATE TABLE t(n numeric);

CREATE TABLE

=> SELECT format('INSERT INTO t VALUES (%L)', x)
FROM generate_series(1,5) AS x \gexec

INSERT 0
INSERT 0
INSERT 0
INSERT 0
INSERT 0

e el

=> DELETE FROM t;

DELETE 5

=> DROP TABLE t;

DROP TABLE

Check the statistics for the most frequently executed query.

=> SELECT query, calls, total_exec_time
FROM pg_stat_statements
ORDER BY calls DESC LIMIT 1;

query | calls | total exec time

INSERT INTO t VALUES ($1) | 5 | 0.14766400000000002
(1 row)

The shared library is no longer required — restoring the original parameter value:
=> ALTER SYSTEM RESET shared_preload_libraries;

ALTER SYSTEM

= \q

student$ sudo pg_ctlcluster 16 main restart

