Replication
Overview of Logical Replication

Pos gres

Copyright

© Postgres Professional, 2017-2025

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov, Alexey Beresnev
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is”, and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

Topics

Logical Replication

WAL Levels

Publications and Subscriptions
Conflict Detection and Resolution

Replica Usage

Posdgras

Logical Replication Pogga’iﬁ“é%

Publisher

reads its own WAL records
decodes them into table row changes
sends to subscribers

Subscriber

receives WAL records from the replication stream
applies the changes to its own tables

Features

publication-subscription: data flow is possible in both directions
requires protocol-level compatibility
can replicate individual tables

In physical replication only one server (the primary) makes changes and
generates WAL records. Other servers (standbys) only read the primary’s
WAL records and apply them.

In logical replication all servers operate normally, can modify data, and
generate their own WAL records. Any server can publish its changes, while
others can subscribe to them. A single server can act as both a publisher
and a subscriber, enabling flexible data flows between servers.

The publisher reads its own WAL records, but unlike physical replication, it
first decodes them into a logical format that is platform-independent and not
tied to specific PostgreSQL version before transmitting to subscribers.
Therefore, binary compatibility is not required — only the replication protocol
must be understood. It also supports selective replication, allowing only
specific tables to be replicated.

https://postgrespro.com/docs/postgresqgl/16/logical-replication

https://postgrespro.com/docs/postgresql/16/logical-replication

of] PROFESSIONAL

Logical Replication Pos{gres

; orits subscriber
publisher

select, insert |;i % logical replication ’:Z % select, insert
update, delete wal sender | ‘ worker update, delete

=] NI

WAL segments WAL segments

On the publisher the wal_sender process generates WAL records reflecting
changes to published data. On the subscriber the logical replication worker
receives the information from the publisher and applies it.

The subscriber can receive changes either directly from the publisher or

from the publisher’s standby. In the latter case, the standby’s wal _sender
process sends changes to the subscriber. This architecture helps reduce
load on the publisher.

https://postgrespro.com/docs/postgresaql/16/logical-replication-publication
https://postgrespro.com/docs/postgresql/16/logical-replication-subscription

https://postgrespro.com/docs/postgresql/16/logical-replication-publication
https://postgrespro.com/docs/postgresql/16/logical-replication-subscription

of] PROFESSIONAL

Publication and Subscription Posggres

Publication

includes one or more database tables

can specify columns and row filters

processes INSERT, UPDATE, DELETE, TRUNCATE commands
sends row-level changes after transaction commit

uses a logical replication slot

Subscription

receives and applies changes

can do initial synchronization

no parsing, rewriting and planning, just direct execution
possible conflicts with local data

Logical replication uses a publish and subscribe model.

A publication is created on one server and can include several tables in a
single database. Starting with version 15, PostgreSQL allows publishing
partial table data by specifying column subsets and row filter conditions.
Other servers can subscribe to this publication to receive and apply changes
to the tables.

Only table row modifications are replicated (not SQL commands). DDL
commands are not transmitted, so target tables on the subscriber must be
created manually. Initial synchronization of table contents can be performed
when a subscription is created.

After transaction commit, information about modified rows is extracted from
WAL records on the publisher through logical decoding. The resulting
messages are transmitted to subscribers via the replication protocol in a
platform- and version-independent format.

Changes are applied without executing SQL commands, avoiding parsing
and planning overhead. On the other hand, a single SQL command can
result in multiple one-row changes.

https://postgrespro.com/docs/postgresgl/16/logical-replication

https://postgrespro.com/docs/postgresql/16/logical-replication

WAL Levels Pos{gres

wal_level parameter

minimal < replica < logical

crash recovery crash recovery crash recovery
restore from backup, restore from backup,
replication replication

logical replication

To enable the publisher to generate messages about changes at the row
level, the WAL must include additional information, such as row identifiers
involved in modifications and notifications about changes to table definitions
and data types. This allows the subscriber to have up-to-date knowledge of
the structure of replicated objects in any moment.

This extended level of logging is called logical. Since the default level is
replica, logical replication requires changing the wal_level parameter on the
publisher.

https://postgrespro.com/docs/postgresql/16/protocol-logical-replication#PRO
TOCOL-LOGICAL-MESSAGES-FLOW

https://postgrespro.com/docs/postgresql/16/protocol-logical-replication#PROTOCOL-LOGICAL-MESSAGES-FLOW
https://postgrespro.com/docs/postgresql/16/protocol-logical-replication#PROTOCOL-LOGICAL-MESSAGES-FLOW

Logical Replication

Assume the first server contains a table:

=> CREATE DATABASE replica_overview_logical_dba;

CREATE DATABASE

=> \c replica_overview_logical_dba

You are now connected to database "replica overview logical dba" as user "student".
=> CREATE TABLE test(id integer PRIMARY KEY, descr text);

CREATE TABLE

Let’s clone the cluster by creating a standalone backup (as covered in the Physical Replication Overview lesson), but omit the -R
option from pg_basebackup call since we need an independent server, not a standby.

student$ rm -rf /home/student/tmp/backup

student$ pg_basebackup --pgdata=/home/student/tmp/backup --checkpoint=fast
If the second server is running, we stop it.

student$ sudo pg_ctlcluster 16 replica stop

Cluster is not running.

Move the backup to the data directory of the second server, changing the owner of the files:
student$ sudo rm -rf /var/lib/postgresql/16/replica

student$ sudo mv /home/student/tmp/backup /var/lib/postgresql/16/replica
student$ sudo chown -R postgres: /var/lib/postgresql/16/replica

Start the second server:

student$ sudo pg ctlcluster 16 replica start

We got two independent servers, each of them has an empty test table. Let’s add a couple of lines to the table on the first server:
=> INSERT INTO test VALUES (1, 'One'), (2, 'Two');

INSERT 0 2

To establish logical replication between servers, additional information in the WAL of the publishing server is required:
=> ALTER SYSTEM SET wal_level = logical;

ALTER SYSTEM

student$ sudo pg_ctlcluster 16 main restart

Create a publication on the first server:

student$ psql -d replica_overview_logical_dba

=> CREATE PUBLICATION test_pub FOR TABLE test;

CREATE PUBLICATION

=> \dRp+

Publication test pub
Owner | All tables | Inserts | Updates | Deletes | Truncates | Via root

student | f
Tables:
"public.test"

On the second server, subscribe to the publication:
student$ psql -p 5433 -d replica_overview_logical_dba

=> CREATE SUBSCRIPTION test_sub
CONNECTION 'port=5432 user=student dbname=replica_overview_logical_dba'
PUBLICATION test_pub;

NOTICE: «created replication slot "test sub" on publisher
CREATE SUBSCRIPTION

List of subscriptions

Name | Owner | Enabled | Publication
---------- R e S e
test sub | student | t | {test pub}
(1 row)

Verify the replication:

=> INSERT INTO test VALUES (3, 'Three');
INSERT 0 1

| => SELECT * FROM test;

id | descr

The following view shows the state of the subscription:

| => SELECT * FROM pg_stat_subscription \gx

2025-09-24 17:04:37.336051+03
2025-09-24 17:04:37.337585+03
0/3004298

2025-09-24 17:04:37.336051+03

last msg send time
last msg receipt time
latest end 1lsn

latest _end_time

-[RECORD 1]--------- I T
subid | 24578
subname | test sub
pid | 26471
leader pid |
relid |
received lsn | ©6/3004298

|

I

I

I

The logical replication apply worker process has been started (you can see its ID in pg_stat_subscription.pid):
student$ ps -o pid,command --ppid 26164

PID COMMAND
26165 postgres: 16/replica: checkpointer
26166 postgres: 16/replica: background writer
26178 postgres: 16/replica: walwriter
26179 postgres: 16/replica: autovacuum launcher
26180 postgres: 16/replica: logical replication launcher
26438 postgres: 16/replica: student replica overview logical dba [local] idle
26471 postgres: 16/replica: logical replication apply worker for subscription 24578

Conflicts POQSFFS%

Identification modes for modifying and deleting rows

primary key columns (default)

columns of a specific unique index with the NOT NULL constraint
all columns

no identification (default for the system catalog)

Conflicts: violation of integrity constraints

replication is suspended until the conflict is resolved manually

Inserting new rows is straightforward. Changes and deletions are more
complicated. These operations need to somehow identify the old version of
the row. By default, primary key columns are used for this, but you can
specify other ways (replica identity) when defining a table, i.e. use a unique
index or all the table columns. Or you can disable replication for some tables
altogether (system catalog tables have it disabled by default).

Since the table on the publisher and the table on the subscriber can be
changed independently of each other, conflicts in the form of integrity
constraint violations are possible when inserting new row versions.
Whenever this happens, the process of applying records is suspended until
the conflict is resolved manually.

https://postgrespro.com/docs/postgresqgl/16/sql-altertable
https://postgrespro.com/docs/postgresgl/16/logical-replication-conflicts
https://postgrespro.com/docs/postgresql/16/sqgl-altersubscription

https://postgrespro.com/docs/postgresql/16/sql-altertable
https://postgrespro.com/docs/postgresql/16/logical-replication-conflicts
https://postgrespro.com/docs/postgresql/16/sql-altersubscription

Conflicts

Local modifications on the subscriber are not prohibited. Let’s insert a row into the table on the second server:
| => INSERT INTO test VALUES (4, 'Four (local)');

| INSERT 0 1

If we add a row with the same primary key value on the publisher, the subscription will have a conflict when trying to apply the
change.

=> INSERT INTO test VALUES (4, 'Four');

INSERT 0 1

=> INSERT INTO test VALUES (5, 'Five');

INSERT 0 1

The subscription is unable to apply the change, replication stops.
| => SELECT * FROM pg_stat_subscription \gx

-[RECORD 1]--------- +

subid

subname

pid

leader_pid |
|
I
I
I
|

24578
test sub

relid

received lsn

last msg _send time
last_msg_receipt_time
latest_end_1sn
latest _end time

| => SELECT * FROM test;

Four (local)
(4 rows)

To resolve the conflict, remove the row on the second server and wait a moment...
| => DELETE FROM test WHERE id=4;

| DELETE 1

| => SELECT * FROM test;

id | descr

2 | Two

3 | Three
4 | Four
5 | Five
(5 rows)

Replication continues.

Dropping a Subscription

If replication is no longer needed, the subscription should be deleted, otherwise the publisher will keep the open replication slot.
| => DROP SUBSCRIPTION test_sub;

NOTICE: dropped replication slot "test sub" on publisher
DROP SUBSCRIPTION

Restrictions po@arfsg

Not replicated

DDL commands

sequence values

large objects

changes to views, materialized views, and foreign tables
Not supported

automatic conflict resolution

10

Logical replication has some fundamental limitations.

DDL commands are not replicated — all schema changes must be copied
manually.

Only regular base tables and partitioned tables can be replicated. Other
relation types such as views, materialized views, and foreign tables cannot
be replicated.

Sequence values are not replicated. This means that if the subscriber inserts
rows into a replicated table with a surrogate primary key, conflicts may
occur. These conflicts can be avoided by allocating different sequence
ranges to each server or by using UUIDs instead of sequences.

There is no built-in conflict resolution mechanism.
These restrictions reduce the applicability of logical replication.
https://postgrespro.com/docs/postgresqgl/16/logical-replication-restrictions

https://postgrespro.com/docs/postgresql/16/logical-replication-restrictions

Features Poggﬁ?éﬁ

Referential integrity

for TRUNCATE operations, the publication must include all tables referenced
by foreign keys

Persistent connection is mandatory

inactive replication slots prevent WAL segment removal and hold back the
vacuum horizon

Potential issues

bulk data changes
changes made by long-running transactions

11

To properly replicate TRUNCATE commands, the publication should include
all tables that have foreign key references to the truncated table.

The connection between the publisher and the subscriber must remain
stable. If interrupted, the replication slot becomes inactive, forcing the server
to retain WAL segments until reconnection. Inactive slots also hold back the
vacuum horizon.

Changes are replicated row-by-row, so SQL commands affecting many rows
on the publisher create significant subscriber load.

The default configuration handles long-running transactions poorly — they
increase publisher load since changes are only sent after transaction
commit. The subscription’s streaming parameter mitigates this by getting row
change without delay, either buffering changes in temporary files or applying
changes immediately when background process is available.

of] PROFESSIONAL

1. Consolidation Posigres

regional
server

receipt and consolidation > A
of data from regional servers . '
}}I select, insert
update, delete
central
server =]
- WAL segments
—
. worker
select, insert
update, delete % 3}' [%} rigir(\)lgzrﬂl
—
WAL segments "
select, insert
?;L—I update, delete
[]
WAL segments 12

Let’s discuss some logical replication use cases.

Suppose there are several regional branches, each of which runs on its own
PostgreSQL server. The goal is to consolidate some data on a central
server.

First, publications of the necessary data are created on regional servers.
The central server subscribes to these publications. The received data can
be processed using triggers on the central server (for example, unifying the
data format).

Inverted, the setup allows, for example, to transfer reference information
from the central server to regional ones.

The business logic may apply additional constraints on the system. In some
use cases, scheduled batch data transfers may be preferable.

The image shows two WAL receiving processes running on the central
server, one for each subscription.

2. Server Update Pogga’ﬁss%

updating the major version
without interruption of service

old server new server

select, insert
update, delete

[(T=~]

WAL segments

el

13

Case: update the major version on the server without interrupting the
service.

Two major versions are not binary compatible, so physical replication will not
work. However, logical replication can solve the problem.

As usual, external tools are required to switch users between servers.
First, a new server is created with the desired PostgreSQL version.

of] PROFESSIONAL

2. Server Update Pos{gres

updating the major version
without interruption of service

old server new server

initial
synchronization

a"
A

\ [logical repl. J
14 worker

select, insert |;i %
update, delete wal sender |

WAL segments

14

Then, logical replication of all required databases is set up between the
servers, and the data is synchronized. This is possible because logical
replication does not require binary compatibility between servers.

2. Server Update Posigres

updating the major version
without interruption of service

new server

select, insert
update, delete

I

WAL segments

e

15

Clients are then switched to the new server while the old one is terminated.

In practice, the process of updating major server version using logical
replication is much more complicated and difficult. It is discussed in more
detail in the Server Update lesson of the DBA2 course.

3. Primary-Primary

a cluster where
multiple servers can modify data

main server

("
JAN

of] PROFESSIONAL

Posygres

main server

A’

[~

\ | logical repl.

_ wal sender |) _
select, insert select, insert
update, delete logical repl. I [wal sender update, delete

worker ¥
[[

WAL segments

WAL segments

16

Case: provide reliable data storage on multiple servers with the ability to
write the data on any server (particularly useful for geo-distributed systems).

This can be achieved through bidirectional logical replication, synchronizing
changes for the same tables between servers in both directions.

PostgreSQL 16 introduced bidirectional replication, where tables can be
both published and subscribed to on different servers simultaneously.

This requires that the applications working with the cluster are built with
certain considerations in mind in order to avoid conflicts when modifying
data in the same table. For example, to use globally unique identifiers or to
ensure that different servers work with different ranges of keys.

Keep in mind that the primary-primary setup with logical replication will not
support global distributed transactions and thus cannot guarantee full data
consistency between servers. In addition, PostgreSQL does not offer any
tools for automatic failure processing, adding nodes to the cluster or
removing nodes from it, etc. These tasks must be solved by external means.

of] PROFESSIONAL

Takeaways Posigres

Logical replication streams individual row changes

multidirectional
requires protocol-level compatibility

Publish and subscribe model

All current restrictions must be considered

17

Practice Pogga’?éﬁ

1. Setup logical replication of an arbitrary table to another table on
the same server.

2. Set up bidirectional logical replication of the same table between
two different servers.

18

1. If you try to perform standard operations, the CREATE SUBSCRIPTION
command will hang. Read carefully the documentation:

https://postgrespro.com/docs/postgresqgl/16/sql-createsubscription

2. Clone the second server from a backup, as shown in demonstration
earlier.

When creating subscriptions on both servers, specify the following
parameters: copy_data = false, origin = none.

https://postgrespro.com/docs/postgresql/16/sql-createsubscription

1. Replication on a Single Server

Test table:
=> CREATE DATABASE replica_overview_logical_dba;
CREATE DATABASE
=> \c replica_overview_logical_dba
You are now connected to database "replica overview logical dba" as user "student".
=> CREATE TABLE test (
id int
)i
CREATE TABLE
A copy of the database with the table:
=> \c student
You are now connected to database "student" as user "student".
=> CREATE DATABASE replica_overview_logical_dba2 TEMPLATE replica_overview_logical_dba;
CREATE DATABASE
Set the required WAL level:
=> ALTER SYSTEM SET wal_level = logical;
ALTER SYSTEM
= \q
student$ sudo pg_ctlcluster 16 main restart
Connect to the databases:
student$ psql replica_overview_logical_dba
student$ psql replica_overview_logical_dba2
Create a publication in the first database:
=> CREATE PUBLICATION test FOR TABLE test;
CREATE PUBLICATION

By default, the CREATE SUBSCRIPTION command creates a replication slot, which waits for all active transactions (at the time of
slot creation) to complete before proceeding. One such transaction is the CREATE SUBSCRIPTION command itself, causing it to block
indefinitely.

This issue can be resolved by manually creating a replication slot and specifying its name when creating the subscription:
=> SELECT pg_create_logical_replication_slot('test_slot', 'pgoutput');

pg create logical replication slot

(test slot,0/21810F8)
(1 row)

=> CREATE SUBSCRIPTION test
CONNECTION 'user=student dbname=replica_overview_logical_dba'
PUBLICATION test WITH (slot_name = test_slot, create_slot = false);

| CREATE SUBSCRIPTION

Verification:
=> INSERT INTO test SELECT * FROM generate_series(1,100);
INSERT 0 100

| => SELECT count(*) FROM test;

Delete the publication, subscription, and the second database.
=> DROP PUBLICATION test;

DROP PUBLICATION

| => DROP SUBSCRIPTION test;

NOTICE: dropped replication slot "test slot" on publisher
DROP SUBSCRIPTION

=> DROP DATABASE replica_overview_logical_dba2 (FORCE);

DROP DATABASE

2. Bidirectional Replication

We clone the server using a backup:

student$ pg_basebackup --pgdata=/home/student/tmp/backup --checkpoint=fast
Make sure the second server is stopped and push the backup:

student$ sudo pg_ctlcluster 16 replica stop

Cluster is not running.

student$ sudo rm -rf /var/lib/postgresql/16/replica

student$ sudo mv /home/student/tmp/backup /var/lib/postgresql/16/replica
student$ sudo chown -R postgres: /var/lib/postgresql/16/replica

Start the second server:

student$ sudo pg ctlcluster 16 replica start

The database with the table and the log level setting were also cloned:

student$ psql -p 5433 replica_overview_logical_dba

| => SHOW wal_level;

wal_level
logical
(1 row)

| => SELECT count(*) FROM test;

We publish the table on both servers:

=> CREATE PUBLICATION test FOR TABLE test;
CREATE PUBLICATION

| => CREATE PUBLICATION test FOR TABLE test;
| CREATE PUBLICATION

Subscribe:

=> CREATE SUBSCRIPTION test
CONNECTION 'port=5433 user=student dbname=replica_overview_logical_dba'
PUBLICATION test WITH (copy_data = false, origin = none);

NOTICE: «created replication slot "test" on publisher
CREATE SUBSCRIPTION

=> CREATE SUBSCRIPTION test
CONNECTION 'port=5432 user=student dbname=replica_overview_logical_dba'
PUBLICATION test WITH (copy_data = false, origin = none);

NOTICE: <created replication slot "test" on publisher
CREATE SUBSCRIPTION

Modify table rows:
=> UPDATE test SET id = id + 100;

ERROR: cannot update table "test" because it does not have a replica identity and
publishes updates
HINT: To enable updating the table, set REPLICA IDENTITY using ALTER TABLE.

For changes and deletions to be replicated properly, row identification must be configured. By default, rows are identified by their
primary key.

=> ALTER TABLE test ADD PRIMARY KEY (id);
ALTER TABLE

| => ALTER TABLE test ADD PRIMARY KEY (id);
| ALTER TABLE

Retry the operation:

=> UPDATE test SET id = id + 100;

UPDATE 100

| => UPDATE test SET id = id + 100;

| UPDATE 100

Check the Result:

=> SELECT min(id), max(id) FROM test;

201 | 300
(1 row)

| => SELECT min(id), max(id) FROM test;

201 | 300
(1 row)

