Access Control
Overview

Pos gres

Copyright

© Postgres Professional, 2017-2025

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov, Igor Gnatyuk
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is,” and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

Topics

Roles and Attributes

Connecting to a Server

Password Authentication

Privileges and Privilege Management
Role Categories

Group and Predefined Roles

Default Privileges

Privileges and Routines

PoSdgras

of] PROFESSIONAL

Roles and Attributes Posigres

Role can be a DBMS user

not associated with the OS user

Roles can be included into other roles

simplifies access setup

Attributes define the properties of a role

LOGIN can log in
SUPERUSER superuser privileges
CREATEDB can create databases
CREATEROLE can create roles

and others

Roles in PostgreSQL are used for two purposes. Firstly, a role can be a
DBMS user. Secondly, roles can be members of other roles — it is
convenient when setting up access.

Formally, roles are not associated with operating system users in any way,
but many programs imply it when choosing default values. For example, if
psql is started on behalf of the student OS user, the connection is
established on behalf of the database role with the same name, i.e., student
(unless another role is explicitly specified in the psql options).

At the time of cluster initialization, an initial role is defined, which has
superuser privileges (this role is usually called postgres). Later on, you can
create, modify, and delete roles.

https://postgrespro.com/docs/postgresql/16/database-roles

A role has several attributes which define its general properties and rights
(unrelated to particular objects).

Generally, attributes come in two opposite variations; for example,
CREATEDB (can create databases) and NOCREATEDB (not allowed to
create databases).

A role with the LOGIN attribute is considered a user role. A role with
NOLOGIN cannot connect to the server and is typically used for grouping
other roles.

The table lists only some of the possible attributes.
https://postgrespro.com/docs/postgresgl/16/role-attributes
https://postgrespro.com/docs/postgresql/16/sql-createrole

https://postgrespro.com/docs/postgresql/16/database-roles
https://postgrespro.com/docs/postgresql/16/role-attributes
https://postgrespro.com/docs/postgresql/16/sql-createrole

Roles and Attributes

Create a role for the user Alice. Two attributes are specified.

Note which role the commands are executed as. The name of the current role is in the prompt.
student=# CREATE ROLE alice LOGIN PASSWORD 'alice’;

CREATE ROLE

You can get the list of roles with the command:

student=# \du

List of roles
Role name | Attributes

alice |
postgres | Superuser, Create role, Create DB, Replication, Bypass RLS
student | Superuser, Create role, Create DB, Replication, Bypass RLS

Note that the student role is a superuser. This is why we did not have any access issues so far.
Create a database:

student=# CREATE DATABASE access_overview;

CREATE DATABASE

student=# \c access_overview

You are now connected to database "access overview" as user "student".

of] PROFESSIONAL

Connecting to a Server Posigres

1. The lines of pg_hba.conf are searched from top to bottom

2. The first line that corresponds to the provided connection
settings (type, database, user, address) will be used

TYPE DATABASE USER ADDRESS METHOD
local all postgres peer
local all all peer
host all all 127.0.0.1/32 scram-sha-256
host all all 1:1/128 scram-sha-256
local — socket all — any role R
host — TCP/IP role name ;
all — any DB all — any IP
database name IP/mask

domain name

For each new client, the server has to evaluate whether a database
connection should be allowed.

Connection settings are defined in the pg_hba.conf configuration file (hba
stands for host-based authentication). As with the main configuration file
(postgresgl.conf), changes come into effect only after the server reloads this
file, either via the pg_reload_conf() SQL function or the reload command of
the management utility.

When a new client appears, the server reads the configuration file from top
to bottom to find the line that matches the requested connection. The match
is defined by four fields: connection type, database name, user name, and
IP address.

Here we list only the main basic options.
Connection: local (unix sockets) or host (a TCP/IP connection).

Database: all (corresponds to any database) or the name of a particular
database.

User: all or the name of a particular role.

Address: all, IP address range, or a domain name. The address is omitted
for the local connection type. By default, PostgreSQL listens only for
connections coming from localhost; the listen_addresses parameter is
usually set to * (listen on all interfaces), while the access is controlled using
pg_hba.conf settings.

https://postgrespro.com/docs/postgresgl/16/client-authentication

https://postgrespro.com/docs/postgresql/16/client-authentication

of] PROFESSIONAL

Connecting to a Server Posigres

3. The server performs authentication using the chosen method

4. If successful, access is allowed; otherwise, it is forbidden
(if no rows match the given parameters, access is forbidden)

TYPE DATABASE USER ADDRESS METHOD

local all postgres peer

local all all peer

host all all 127.0.0.1/32 scram-sha-256

host all all 1:1/128 scram-sha-256

trust — allow

reject — forbid

scram-sha-256 1 md5 — request a password
peer — ask OS

Once the server finds an appropriate line in the file, it performs client
authentication using the method specified in this line, and checks for the
LOGIN attribute and the CONNECT privilege. If everything is OK, the
connection is allowed; otherwise, it is forbidden (other lines won't be
considered in this case).

If no appropriate line is found, the access is also forbidden.

Thus, more specific connection lines should precede more generic ones.
There are a lot of different authentication methods:
https://postgrespro.com/docs/postgresgl/16/auth-methods

Here are some of the main ones.

The trust method allows connections unconditionally. If security is not a
concern, you can specify the trust method and use all for all the other
parameters; then all connections will be allowed.

The reject method, on the contrary, unconditionally forbids connections.

The scram-sha-256 method asks for a password and checks that the
provided password matches the one stored in the system catalog of the
database cluster. The md5 method is considered deprecated.

The peer method checks the name of the operating system user and allows
connections on behalf of the database user with the same name (you can
also define a different name mapping).

https://postgrespro.com/docs/postgresql/16/auth-methods

of] PROFESSIONAL

Password Authentication Posigres

At the server side

the password is set when the role is created and can be changed later
a user that has no password won’t be able to connect
the password is stored in the pg_authid system catalog

Entering the password on the client

manually
using the PGPASSWORD environment variable
using the ~/.pgpass file (lines format: node:port:database:role:password)

If password authentication is used, there must be a reference password
stored for the user; otherwise the connection will be rejected.

Password hashes are stored in the pg_authid table in the system catalog.

The user can either enter the password manually, or automate password
input using one of the following options.

First, the password can be set in the PGPASSWORD environment variable
(on the client). However, it is inconvenient if you have to connect to several
databases, and it is not recommended for security reasons.

The second option to store passwords on the client is to use the ~/.pgpass
file.

The access to this file must be allowed to its owner only (chmod 600),
otherwise PostgreSQL will ignore it.

Connection

In order for a role to connect to the database, it must have both the LOGIN attribute and the permission in the file pg_hba.conf. You
can usually find it right beside the main configuration file:

student=# SHOW hba_file;

hba_file

/etc/postgresql/16/main/pg hba.conf
(1 row)

And you can read it directly from SQL:

student=# SELECT type, database, user_name, address, auth_method
FROM pg_hba_file_rules();

type | database | user name | address | auth method
------- R e S S i R
local | {all} | {all} | | trust

host | {all} | {all} | 127.0.0.1 | scram-sha-256
host | {all} | {all} | ::1 | scram-sha-256
local | {replication} | {all} | | trust

host | {replication} | {all} | 127.0.0.1 | scram-sha-256
host | {replication} | {all} | ::1 | scram-sha-256
(6 rows)

(The contents may vary depending on the server build.)

We will use a TCP/IP (host) connection to localhost. Such connection corresponds to the second string in the output, expecting
password-based authentication.

The role alice was created with a password right away, but the password can be changed at any time:
student=# ALTER ROLE alice PASSWORD 'alicepass’;

ALTER ROLE

Attempt to connect using a connection string with all the info:

student$ psql 'host=localhost user=alice dbname=access_overview password=alicepass'
| alice=> \conninfo

You are connected to database "access overview" as user "alice" on host "localhost"
(address "127.0.0.1") at port "5432".
SSL connection (protocol: TLSv1.3, cipher: TLS AES 256 GCM SHA384, compression: off)

Success!

Privileges Pogga’?“ég

Privileges define access rights of roles to objects

Tables and views

SELECT read data
INSERT insert rows
can be set per column
UPDATE change rows
REFERENCES foreign key (for tables)
DELETE delete rows
TRUNCATE empty (for tables)
TRIGGER create triggers

Privileges establish a relation between subjects (roles) and objects in the
cluster. They determine the actions that roles can perform with these
objects.

There are different privileges available for different object types. This slide
and the following one list privileges for basic database objects.

The widest choice of privileges is available for tables and views. Some of
these privileges can be set not only at the table level, but also at the column
level.

https://postgrespro.com/docs/postgresqgl/16/ddl-priv
https://postgrespro.com/docs/postgresqgl/16/sql-grant

https://postgrespro.com/docs/postgresql/16/ddl-priv
https://postgrespro.com/docs/postgresql/16/sql-grant

of] PROFESSIONAL

Privileges Posggres

database

Tablespaces,
database, schemas

i

TEMPORARY
CREATE
USAGE

/4

‘ tablespace @ | object m | object m

schema pg_temp

Sequences
SELECT currval
UPDATE nextval setval
USAGE currval nextval

10

Sequences have a somewhat unexpected set of privileges. They serve to
allow or restrict access to the three control functions.

For tablespaces, there is a CREATE privilege that allows the creation of
objects in this tablespace.

For databases, the CREATE privilege allows you to create schemas in this
database, and for a schema, the CREATE privilege allows you to create
objects in this schema.

Since the exact name of the schema for temporary objects is unknown in
advance, the privilege to create temporary tables has been moved to the
database level (TEMPORARY).

The USAGE schema privilege allows access to objects in this schema.
The CONNECT database privilege allows connection to this database.

of] PROFESSIONAL

Role Categories Posigres

Superusers

full access to all objects, no checks performed

Owners

initially, all privileges on the object (can be revoked)

actions that are not regulated by privileges, such as deleting objects, granting
and revoking privileges, etc.

Other roles

access within the granted privileges

11

Generally speaking, a role’s ability to access an object is defined by the
role’s privileges. But it makes sense to single out three categories of roles
and discuss them separately.

1.

3.

Roles with the SUPERUSER attribute (superusers). These roles can do
anything and ignore all access control checks.

Object owner. Initially, this is the role that created the object, although it
can be changed later. It's not just the object creator role that becomes the
owner, but also any other role included in it. The object owner gets the full
range of privileges on this object.

Technically, these privileges can be revoked, but the owner always retains
inherent rights on the actions that are not regulated by any privileges. In
particular, the owner can grant and revoke privileges (including to and
from themselves), delete the object, etc.

All other roles have access to the object only as far as the privileges
granted to them allow it.

To check if a role has the necessary privilege with respect to some object,
you can use the has_* privilege functions:

https://postgrespro.com/docs/postgresgl/16/functions-info

https://postgrespro.com/docs/postgresql/16/functions-info

Privilege Management Pogga’?“éé

Granting privileges
alice: GRANT privileges ON object TO bob;

. privileges

Revoking privileges
alice: REVOKE privileges ON object FROM bob;

12

The right to grant and revoke privileges on an object belongs to the owner of
that object (and the superuser).

The syntax of the GRANT and REVOKE commands is quite complex. You
can specify both individual and all possible privileges, both individual objects
and groups of objects included in certain schemas, etc.

https://postgrespro.com/docs/postgresql/16/sql-grant
https://postgrespro.com/docs/postgresqgl/16/sql-revoke

https://postgrespro.com/docs/postgresql/16/sql-grant
https://postgrespro.com/docs/postgresql/16/sql-revoke

Privileges

Alice has connected to the database. Now she wants to create a schema and some objects.
| alice=> CREATE SCHEMA alice;
| ERROR: permission denied for database access_overview

What’s the issue?

Alice does not have the privilege to create schemas in the database. Grant it:
student=# GRANT CREATE ON DATABASE access_overview TO alice;
GRANT

Try again:

| alice=> CREATE SCHEMA alice;

| CREATE SCHEMA

Now, since Alice is the owner of the schema, she has all the privileges on it and can create any objects in it. This schema will be used
by default:

| alice=> SELECT current_schemas(false);

current_schemas

{alice,public}
(1 row)

Alice creates two tables.

| alice=> CREATE TABLE t1(n numeric);

| CREATE TABLE

| alice=> INSERT INTO t1 VALUES (1);

| INSERT 0 1

| alice=> CREATE TABLE t2(n numeric, who text DEFAULT current_user);

| CREATE TABLE

| alice=> INSERT INTO t2(n) VALUES (1);

| INSERT 0 1

The superuser creates another role for the user Bob, who will access objects belonging to Alice.
student=# CREATE ROLE bob LOGIN PASSWORD ‘'bobpass’;

CREATE ROLE

student$ psql 'host=localhost user=bob dbname=access_overview password=bobpass’
Bob attempts to access the table t1:

| bob=> SELECT * FROM alice.tl;

ERROR: permission denied for schema alice
LINE 1: SELECT * FROM alice.tl;

What happened?

Bob is neither a superuser nor the owner of this schema, so access is denied.
This command lists current access rights (Access privileges column):

| alice=> \x \dn+ \x

Expanded display is on.
List of schemas

Access privileges | pg database owner=UC/pg database owner+
=U/pg_database owner

standard public schema

-[RECORD 1]----- e R
Name | alice
Owner | alice
Access privileges |
Description |
-[RECORD 2]----- e
Name | public
Owner | pg_database owner
|
I

Description

Expanded display is off.
Privileges are displayed in the format: role=privileges/granted_by.

Each privilege is encoded with a single character. In particular, for schemas:

e U =usage;
e (=create.

If the role name is omitted (as in the last line), the pseudorole public is implied. Note that the public pseudorole has only USAGE
privilege on the public schema. Here, pg_database_owner is the owner of the database.

If the entire field is omitted (as in the first line), then the default privileges are implied: Alice gets both available privileges on her
schema, and the other roles do not get any.

Grant Bob access to the schema. Alice can do that as the owner.

| alice=> GRANT CREATE, USAGE ON SCHEMA alice TO bob;
| GRANT

Bob attempts to access the table t1 again:

| bob=> SELECT * FROM alice.tl;

[ERROR: permission denied for table tl

Another error. What happened now?

This time, Bob has access to the schema, but not to the table itself. This command shows who has access to the table:
| alice=> \dp alice.tl

Access privileges

Schema | Name | Type | Access privileges | Column privileges | Policies
-------- T T T e T
alice | tl1 | table | | |

(1 row)

The field is empty: only the owner, Alice, has access.

Alice grants Bob read and update access:

| alice=> GRANT SELECT, UPDATE ON alice.tl TO bob;

| GRANT

And read and insert rights for one column in the second table:

| alice=> GRANT SELECT(n), INSERT ON alice.t2 TO bob;
| GRANT

The privileges have changed:

| alice=> \dp alice.*

Access privileges

Schema | Name | Type | Access privileges | Column privileges | Policies
-------- B R R T S ik R
alice | t1 | table | alice=arwdDxt/alice+|

| | | bob=rw/alice |
alice | t2 | table | alice=arwdDxt/alice+| n: +|

| | | bob=a/alice | bob=r/alice
(2 rows)

Now the empty field has "appeared" and contains a complete list of privileges. Below are the designations, not all of them are quite

obvious:

a = insert

r = select

w = update

d = delete

D = truncate
x = reference
t = trigger

Privileges for columns are displayed separately (under Column privileges).

This time Bob is successful. He adds the schema name to his search path, so that he does not have to type it in every time.
| bob=> ALTER ROLE bob SET search_path = public, alice;

| ALTER ROLE

Now, the search path will be set in each of Bob’s sessions.

| bob=> \c

| You are now connected to database "access_overview" as user "bob".

| bob=> SHOW search_path;

search path

public, alice
(1 row)

| bob=> UPDATE t1 SET n = n + 1;
| uPDATE 1

| bob=> SELECT * FROM t1;

n

2
(1 row)

However, all other operations remain restricted.

| bob=> DELETE FROM t1;

| ERROR: permission denied for table t1
And the second table:

| bob=> INSERT INTO t2(n) VALUES (100);
| INSERT @ 1

| bob=> SELECT n FROM t2;

100
(2 rows)

Reading of the other column is not permitted:
| bob=> SELECT * FROM t2;

| ERROR: permission denied for table t2

of] PROFESSIONAL

Granting Membership Pos{gres

Granting membership public
alice: GRANT dba TO bob;

alice
public pseudo-role implicitly includes 2ot

all other roles

Revoking membership
alice: REVOKE dba FROM bob;

14

Any role can include other roles as members. In this case, the role acts as a
group. PostgreSQL does not have a separate “group” entity.

A role can be a member of multiple roles; in turn, a member role may include
other roles, but circular dependencies are not permitted.

By default, a role inherits the privileges of any group roles it is a member of.
This behavior can be changed by using the NOINHERIT attribute for the
role. This makes the user have to explicitly switch to the group role using
SET ROLE in order to use its privileges. Role attributes are not inherited, but
it is possible to switch to a parent role to use its attributes.

Roles that include other roles typically have the NOLOGIN attribute and are

referred to as “group roles”. We can think of a group role as a predefined set
of privileges that can be granted to a role just like any regular privilege. This

simplifies access control and administration.

There is also a pseudorole called public, which implicitly includes all the
other roles. Any privilege granted to the public role is automatically granted
to all the other roles as well.

https://postgrespro.com/docs/postgresql/16/role-membership

https://postgrespro.com/docs/postgresql/16/role-membership

Predefined Roles

pg_read_all_settings

pg_read_all_stats
pg_stat_scan_tables

pg_read_all_data
pg_write_all_data

pg_read_server_files
pg_write_server_files

pg_execute_server_programs

PoSdgras

read all server parameters

access statistics

monitoring and locking tables

pg_monitor

read data in all tables
change data in all tables

read files on the server
write to files on the server

run programs on the server

15

PostgreSQL provides a number of predefined roles that have access to
some frequently used, but privileged capabilities and data. Membership in
these roles may be granted to users in order to facilitate administrative and
maintenance tasks without providing them superuser capabilities.

The list of predefined roles increases with each PostgreSQL version. The full
list of all the roles, including predefined ones, cat be seen by \dusS

command in psql.

https://postgrespro.com/docs/postgresqgl/16/predefined-roles

You can create your own administrative group roles, e.g. for managing

backups.

https://postgrespro.com/docs/postgresql/16/predefined-roles

Group Roles

Bob could not read the second column:

| bob=> SELECT * FROM t2;

| ERROR: permission denied for table t2

The superuser includes Bob into the predefined group role pg_read_all_data:

student=# GRANT pg_read_all_data TO bob;

GRANT ROLE

Now Bob can read all tables as if he had been granted SELECT privileges for all tables and USAGE privileges for all schemas:

| bob=> SELECT * FROM t2;

1 | alice
100 | bob
(2 rows)

You can use the command \drg in psql to get role membership information:
student=# \drg

List of role grants

Role name | Member of | Options | Grantor

----------- B S i i
bob | pg _read all data | INHERIT, SET | postgres
(1 row)

The Options column shows attributes for the membership. For Bob as a member of pg_read_all_data, SET means the right to switch
to the group role, and INHERIT means that Bob can use the group privileges without explicitly switching to the group.

Exclude Bob from the group:
student=# REVOKE pg_read_all_data FROM bob;

REVOKE ROLE

of] PROFESSIONAL

Routines Pos}gres

The only privilege for functions and procedures

EXECUTE execution

Security modes

SECURITY INVOKER executed with the privileges of the caller
(by default)
SECURITY DEFINER executed with the privileges of the owner

17

The privilege EXECUTE, the only privilege for functions and procedures,
allows them to execute.

The user on behalf of which the routine is executed is important. If a routine
is declared as a SECURITY INVOKER (by default), it is executed with the
rights of the user that runs it. In this case, the operators inside the routine
can access only those objects that are accessible to the calling user.

On the other hand, if declared with the SECURITY DEFINER, the routine will
use the rights of its owner. This is a way to allow certain users perform
certain actions on objects they personally have no access to.

https://postgrespro.com/docs/postgresal/16/sql-createfunction
https://postgrespro.com/docs/postgresqgl/16/sql-createprocedure

https://postgrespro.com/docs/postgresql/16/sql-createfunction
https://postgrespro.com/docs/postgresql/16/sql-createprocedure

of] PROFESSIONAL

Default Privileges Pos{gres

Privileges of the public pseudo-role

connect to any database
access to the system catalog
execution of any routines

privileges are granted automatically on each new object

Configurable default privileges

the possibility to additionally grant or revoke privileges on a newly created
object

18

As we have already said, the public pseudo-role includes all other roles, so
they inherit all the privileges granted to public.

And public has quite an extensive list of privileges by default. In particular:

* the right to connect to any database (that's why the role alice could
connect to the database although the CONNECT privilege had not been
explicitly granted to this role).

e access to the system catalog;
e execution of any routines.

On the one hand, it enables seamless operation without having to deal with
privileges; but on the other hand, it brings extra complications if access
control is really required.

The public role automatically receives all the privileges listed above for all
newly created objects. So it is not enough to simply revoke the EXECUTE
privilege from public: once a new routine appears, public immediately gets
the right to execute it.

There is a special mechanism of default privileges that enables you to
automatically grant and revoke the required privileges on newly created
objects. It can be also used to revoke the EXECUTE privilege from the
public pseudo-role.

https://postgrespro.com/docs/postgresqgl/16/sql-alterdefaultprivileges

https://postgrespro.com/docs/postgresql/16/sql-alterdefaultprivileges

Configurable Default Privileges

Alice creates a function:

alice=> CREATE FUNCTION foo() RETURNS SETOF t2
AS $$

SELECT * FROM t2;

$$ LANGUAGE sql STABLE;
| CREATE FUNCTION
Can Bob execute the function without Alice granting him the EXECUTE privilege?
| bob=> SELECT foo();

ERROR: permission denied for table t2
CONTEXT: SQL function "foo" statement 1

Bob can call the function, but still cannot access any objects for which he does not have the appropriate privileges.

If Bob creates a table t2 in the schema public, the function will work for both users but will actually access different tables, since
Alice and Bob have different search paths.

In order for Bob to create a table in the schema public, he must have the CREATE privilege for the schema (in PostgreSQL 15+):
student=# GRANT CREATE ON SCHEMA public TO bob;

GRANT

|| bob=> CREATE TABLE t2(n numeric, who text DEFAULT current_user);

| CREATE TABLE

| bob=> INSERT INTO t2(n) VALUES (42);

| INSERT 0 1

| bob=> SELECT foo();

(42,bob)
(1 row)

| alice=> SELECT foo();

(1,alice)
(100, bob)
(2 rows)

Alternatively, the function can be declared as using the privileges of its owner:

| alice=> ALTER FUNCTION foo() SECURITY DEFINER;

| ALTER FUNCTION

In this case, the function will always be executed with the privileges Alice has, regardless of who actually calls it.
Bob deletes his table...

| bob=> DROP TABLE t2;

| DROP TABLE

...and gets access to the Alice’s table:

| bob=> SELECT foo();

(1,alice)
(100, bob)
(2 rows)

In this situation, Alice needs to keep an eye on the granted privileges. For one, she should revoke the EXECUTE privilege from the
role public and explicitly grant it only to the roles that should have it.

| alice=> REVOKE EXECUTE ON ALL ROUTINES IN SCHEMA alice FROM public;
| REVOKE

| bob=> SELECT foo();

| ERROR: permission denied for function foo

To make matters worse, for each new function, the EXECUTE privilege is always granted to public by default.

You can configure default privileges so that specific users would get (or lose) specific privileges on newly created objects:

alice=> ALTER DEFAULT PRIVILEGES
FOR ROLE alice
REVOKE EXECUTE ON ROUTINES FROM public;

| ALTER DEFAULT PRIVILEGES

alice=> ALTER DEFAULT PRIVILEGES
FOR ROLE alice
GRANT EXECUTE ON ROUTINES TO bob;

| ALTER DEFAULT PRIVILEGES
| alice=> \ddp

Default access privileges
Owner | Schema | Type | Access privileges
------- L T L L L T T ey
alice | | function | alice=X/alice +
| | | bob=X/alice
(1 row)

Now, Bob is immediately granted execute privileges on subroutines created by Alice, while other users will not have permission to
run them.

alice=> CREATE FUNCTION bar() RETURNS integer
LANGUAGE sql IMMUTABLE SECURITY DEFINER
RETURN 1;

| CREATE FUNCTION

| bob=> SELECT bar();

of] PROFESSIONAL

Takeaways Posigres

Roles, attributes and privileges together form a flexible
mechanism that allows you to set up access control in different
ways

can grant all access widely
can restrict access heavily if necessary

When creating a new role, you need to ensure that it can connect
to the server

20

of] PROFESSIONAL

Practice Posigres

Set up privileges so that some users have full access to the tables,
while others can only query, but not modify the data.

1. Create a new database and two roles: writer and reader.

2. Revoke all privileges for the public schema from the public role, grant
both privileges to the writer role, and only the usage privilege to the
reader role.

3. Set up the default privileges so that the reader role gets read access to
the tables owned by writer in the public schema.

4. Create user wl as a member of the writer role, and user r1 as a member
of the reader role.

5. As writer, create a table.

6. Verify that r1 has read-only access to the table, and w1 has full access
to it, including the ability to remove it.

22

1. Databases and Roles

=> CREATE DATABASE access_overview;
CREATE DATABASE

=> CREATE USER writer;

CREATE ROLE

=> CREATE USER reader;

CREATE ROLE

2. Privileges

=> \c access_overview

You are now connected to database "access overview" as user "student".
=> REVOKE ALL ON SCHEMA public FROM public;

REVOKE

=> GRANT ALL ON SCHEMA public TO writer;

GRANT

=> GRANT USAGE ON SCHEMA public TO reader;

GRANT

3. Default Privileges

=> ALTER DEFAULT PRIVILEGES

FOR ROLE writer

IN SCHEMA public

GRANT SELECT ON TABLES TO reader;

ALTER DEFAULT PRIVILEGES

4. Users

Writing role:

=> CREATE ROLE wl LOGIN IN ROLE writer;

CREATE ROLE

The IN ROLE construct immediately includes the new role into the specified one. That is, this command is equivalent to these two:
CREATE ROLE wl LOGIN;

GRANT writer TO wl;

Reading role:

=> CREATE ROLE rl1 LOGIN IN ROLE reader;

CREATE ROLE

5. Table

=> \c - writer
You are now connected to database "access overview" as user "writer".
=> CREATE TABLE t(n integer);

CREATE TABLE

6. Verification

w1 can insert rows:

=> \c - wl

You are now connected to database "access overview" as user "wl".
=> INSERT INTO t VALUES (42);

INSERT 0 1

rl can read the table:

= \c - rl

You are now connected to database "access overview" as user "rl".
=> SELECT * FROM t;

n

42
(1 row)

But cannot modify it:

=> UPDATE t SET n = n + 1;

ERROR: permission denied for table t

w1 can delete the table:

= \c - wl

You are now connected to database "access overview" as user "wl".
=> DROP TABLE t;

DROP TABLE

In PostgreSQL 14+, the predefined role pg_read_all_data was added, which automatically provides read access to all data.
Only the database owner or a superuser can drop the database:

=> \c postgres postgres

You are now connected to database "postgres" as user "postgres".
=> DROP DATABASE access_overview;

DROP DATABASE

Practice+ pogéa?sg

1. Register the user roles alice and bob.

Modify the pg_hba.conf file to allow access without password
only for the postgres and student users, ensuring that access for
alice and bob remains restricted.

3. Enable peer authentication method for alice and bob. Check that
connection attempts fail without OS user mapping. Create such
mapping for alice.

4. Check the capability to use the same OS user mapping for
different database roles.

23

2. Using a text editor, insert the new entry before the first uncommented
directive in pg_hba.conf.

local all postgres,student trust
Reload configuration.

3. Modify the inserted directive in pg_hba.conf by replacing it with the
following:

local all postgres, student trust
local all alice,bob peer

Append the following to the end of the pg_ident.conf file:
stmap student alice

4. For alice and bob roles to share a single mapping, the pg_ident.conf file
shall be as follows:

stmap student alice
stmap student bob

1. Add Roles

Register roles with the permission to log in.
=> CREATE ROLE alice LOGIN;

CREATE ROLE

=> CREATE ROLE bob LOGIN;

CREATE ROLE

2. Limit the use of trust

Edit the contents of pg_hba.conf, allowing the trust method only for postgres and student.

student$ sudo sed -i 's/~local.*all.*all.*trust.*$/local all postgres,student trust\n/'
/etc/postgresql/16/main/pg_hba.conf

This is what we get:

=> SELECT type,database,user_name,address,auth_method,error
FROM pg_hba_file_rules
ORDER BY rule_number;

type | database | user_name | address | auth method | error
------- R T et e ST
local | {all} | {postgres,student} | | trust |

host | {all} | {all} | 127.0.0.1 | scram-sha-256 |

host | {all} | {all} | ::1 | scram-sha-256 |

local | {replication} | {all} | | trust |

host | {replication} | {all} | 127.0.0.1 | scram-sha-256 |

host | {replication} | {all} | ::l | scram-sha-256 |

(6 rows)

Reload the configuration.
=> SELECT pg_reload_conf();

pg_reload conf

Now, neither alice nor bob can connect.
student$ psql -1 -U alice

psql: error: connection to server on socket "/var/run/postgresql/.s.PGSQL.5432" failed:
FATAL: no pg hba.conf entry for host "[local]", user "alice", database "postgres", no
encryption

student$ psql -1 -U bob

psql: error: connection to server on socket "/var/run/postgresql/.s.PGSQL.5432" failed:
FATAL: no pg_hba.conf entry for host "[locall", user "bob", database "postgres", no
encryption

3. Peer Authentication Method

Using a text editor, add another line with the peer authentication method to allow alice and bob to connect.

student$ sudo sed -i '/“local.*all.*postgres,student.*$/alocal all alice,bob peer’
/etc/postgresql/16/main/pg_hba.conf

Contents of pg_hba.conf:

=> SELECT type,database,user_name,address,auth_method,error
FROM pg_hba_file_rules
ORDER BY rule_number;

type | database | user _name | address | auth method | error
------- R S e S T I TR
local | {all} | {postgres,student} | | trust |

local | {all} | {alice,bob} | | peer |

host | {all} | {all} | 127.0.0.1 | scram-sha-256 |

host | {all} | {all} | ::1 | scram-sha-256 |

local | {replication} | {all} | | trust |

host | {replication} | {all} | 127.0.0.1 | scram-sha-256 |

host | {replication} | {all} | ::l | scram-sha-256 |

(7 rows)

Reload the configuration.
=> SELECT pg_reload_conf();

pg_reload conf

The users still cannot log in, but the error message is now different.
student$ psql -1 -U alice

psql: error: connection to server on socket "/var/run/postgresql/.s.PGSQL.5432" failed:
FATAL: Peer authentication failed for user "alice"

student$ psql -1 -U bob

psql: error: connection to server on socket "/var/run/postgresql/.s.PGSQL.5432" failed:
FATAL: Peer authentication failed for user "bob"

The peer authentication method requires the user names in the OS and roles in PostgreSQL to match. Map the role alice to the OS
user student by adding a line to pg_ident.conf. Do not set up the mapping for bob, though.

student$ echo 'stmap student alice' | sudo tee -a /etc/postgresql/16/main/pg_ident.conf
stmap student alice

Add the parameter map to the line to set the mapping.

student$ sudo sed -i 's/peer.*$/peer map=stmap/' /etc/postgresql/16/main/pg_hba.conf
Contents of pg_hba.conf:

=> SELECT type,database,user_name,address,auth_method, options,error
FROM pg_hba_file_rules
ORDER BY rule_number;

type | database | user_name | address | auth method | options
error

- R T B I Fomm o Fom e o Fomm e +---
local | {all} | {postgres,student} | | trust |

local | {all} | {alice,bob} | | peer | {map=stmap} |
host | {all} | {all} | 127.0.0.1 | scram-sha-256 | |
host | {all} | {all} | ::1 | scram-sha-256 | |
local | {replication} | {all} | | trust |

host | {replication} | {all} | 127.0.0.1 | scram-sha-256 | |
host | {replication} | {all} | ::1 | scram-sha-256 | |
(7 rows)

Reload the configuration.
=> SELECT pg_reload_conf();

pg reload conf

Now alice can connect to the database and execute commands.
student$ psql -c '\conninfo' -U alice -d student

You are connected to database "student" as user "alice" via socket in
"/var/run/postgresql" at port "5432".

And bob cannot.

student$ psql -c '\conninfo' -U bob -d student

psql: error: connection to server on socket "/var/run/postgresql/.s.PGSQL.5432" failed:
FATAL: Peer authentication failed for user "bob"

4. One Mapping for Multiple Roles

Allow bob to connect under the same conditions as alice.

student$ echo 'stmap student bob' | sudo tee -a /etc/postgresql/16/main/pg_ident.conf
stmap student bob

Lines added to pg_ident.conf:

student$ sudo tail -n2 /etc/postgresql/16/main/pg_ident.conf

stmap student alice
stmap student bob

Reload the configuration
=> SELECT pg_reload_conf();

pg reload conf

Now both alice and bob can connect.
student$ psql -c '\conninfo' -U alice -d student

You are connected to database "student" as user "alice" via socket in
"/var/run/postgresql" at port "5432".

student$ psql -c '\conninfo' -U bob -d student

You are connected to database "student" as user "bob" via socket in "/var/run/postgresql"
at port "5432".

