Architecture

PostgreSQL Fundamentals

Pos gres

Copyright

© Postgres Professional, 2017-2025

Authors: Egor Rogov, Pavel Luzanov, llya Bashtanov, Igor Gnatyuk
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials

Non-commercial use of course materials (presentations, demonstrations) is

allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the

course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer

Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is,” and
Postgres Professional company has no obligations to provide maintenance,
support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

of] PROFESSIONAL

Topics Posggres

Client-Server Protocol

Transactionality and its Implementation
Query Processing and Execution
Processes and Memory Structures

Storing Data on Disk and Data Processing

System Extensibility

of] PROFESSIONAL

Client and Server Posigres

PostgreSQL

v
: \
Java client y iéﬁg

Law]

SQL client

Python client

psycopg2

libpg

connection authentication
query generation query execution
transaction management transactionality support

A client application, such as psql or any other program written in any
programming language, connects to the server and “communicates” with it.
In order for the client and the server to understand each other, they must
use the same communication protocol. Usually, the client uses a driver that
implements the protocol and provides a set of functions to use in the
program. Internally, the driver can use the standard protocol implementation
(the libpq library), or can implement the protocol itself.

The language the client is written in is unimportant, as the functionality
behind the syntax is defined by the protocol. As an example, we will use the
SQL language and the psql client. Of course, no one really would program a
client in SQL, but we will use it here purely for educational purposes. It
should not be that difficult to substitute any of the SQL commands provided
below with corresponding statements in your programming language of
choice.

Generally speaking, a connection protocol allows the client to connect to a
database in a cluster. The server performs authentication: decides if the
client should be allowed to connect, i.e. by demanding a password.

Then, the client sends the server queries in the SQL language, the server
executes the queries and sends back the results. A powerful and convenient
guery language is one of the fundamentals of relational databases.

Another one is the ability to maintain transaction support.
https://postgrespro.com/docs/postgresql/16/protocol

https://postgrespro.com/docs/postgresql/16/protocol

Transactions Po@EF“e%

PostgreSQL

BEGIN; @
client operations §i::}§
application :

—S . .

driver

Y V Y

ROLLBACK,;

atomicity — everything or nothing

consistency — integrity constraints and user restrictions
isolation — parallel processes impact

durability — no data loss dfter a failure

A transaction is a sequence of operations that preserves the consistency of
data, provided that the operations are performed completely and without
interference from other transactions.

Transactions must satisfy four properties collectively known as ACID:

« Atomicity. A transaction is either executed in full or not executed at all.
To that end, the beginning of a transaction is marked with the BEGIN
command, and the end with either COMMIT (commit changes) or
ROLLBACK (undo changes).

« Consistency. Transactions move the database from one consistent state
to another consistent one (consistency here means that certain
restrictions are fulfilled).

 Isolation. Transactions running simultaneously should not affect the
specific one.

* Durability. Once data is committed, it should not be lost even after a
server failure.

In PostgreSQL, the client application is the side usually responsible for
transaction management (that is, for determining what commands make up
a transaction, and for committing or canceling the transaction). Transactions
can be managed on the server side by stored procedures.

https://postgrespro.com/docs/postgresql/16/sql-beqgin
https://postgrespro.com/docs/postgresqgl/16/sql-savepoint
https://postgrespro.com/docs/postgresgl/16/transactions

https://postgrespro.com/docs/postgresql/16/sql-begin
https://postgrespro.com/docs/postgresql/16/sql-savepoint
https://postgrespro.com/docs/postgresql/16/transactions

Transaction Management

By default, psql runs in autocommit mode:
=> \echo :AUTOCOMMIT
on

This means that any single command sent without explicitly opening the transaction is committed immediately.
e Check if this mode is enabled by default in the PostgreSQL driver for your favourite programming language.

Create a table with one row:
=> CREATE TABLE t(
id integer,

s text
)i

CREATE TABLE

=> INSERT INTO t(id, s) VALUES (1, 'foo');
INSERT 0 1

Will another transaction see this table and row?

| => SELECT * FROM t;

Yes. Compare the result:

=> BEGIN; -- explicit start of transaction
BEGIN

=> INSERT INTO t(id, s) VALUES (2, 'bar');
INSERT 0 1

What will the other transaction see now?

| => SELECT * FROM t;

The changes are not yet committed so the other transaction does not see them.
=> COMMIT;

COMMIT

What about now?

| => SELECT * FROM t;

When autocommit is off, a transaction is implicitly opened upon command input. The command then must be committed manually.
=> \set AUTOCOMMIT off

=> INSERT INTO t(id, s) VALUES (3, 'baz');

INSERT 0 1

What do we see now?

| => SELECT * FROM t;

id | s

e e m - -
1 | foo
2 | bar

(2 rows)

The changes are not there, as the transaction was opened implicitly.
=> COMMIT;

COMMIT

Now, finally:

| => SELECT * FROM t;

(3 rows)

Turn the default autocommit mode back on.

=> \set AUTOCOMMIT on

Individual changes can be rolled back without interrupting the entire transaction (although this is rarely used).
=> BEGIN;

BEGIN

=> SAVEPOINT sp;

SAVEPOINT

=> INSERT INTO t(id, s) VALUES (4, 'qux');

INSERT 0 1

=> SELECT * FROM t;

id | s

T
1 | foo
2 | bar
3 | baz
4 | qux

(4 rows)

Note how the transaction sees its own changes, even the uncommitted ones.
Now, roll back to the save point.

Rolling back to a save point does not imply a transfer of control (that is, it does not work as GOTO); only those changes to the
database state that were made from the moment the point was set and up to the current moment are canceled.

=> ROLLBACK TO sp;
ROLLBACK

Check the table:

=> SELECT * FROM t;

id | s

(3 rows)

The changes have been rolled back, but the transaction is still open:
=> INSERT INTO t(id, s) VALUES (4, 'xyz');

INSERT 0 1

=> COMMIT;
COMMIT

=> SELECT * FROM t;

id | s

T
1 | foo
2 | bar
3 | baz
4 | xyz

(4 rows)

of] PROFESSIONAL

Query Processing Pos{gres

PostgreSQL

query o gi:iii
. result

]

client
application

driver

parsing — system catalog
rewriting « rules
planning — statistics
execution « data

Query execution is complicated. First, a query is sent from a client to the
server as text. The server parses the text, analyzing its syntax (whether
letters are formed into words, and words into commands) and semantics
(whether there are tables and other objects in the database that the query
refers to by name). To do that, the server needs data on what is actually
stored in the database. This meta-data is called the system catalog and is
stored in special tables in the same database.

A query can be rewritten (transformed). For example, a view name can be
substituted with the query text. Users can implement their own
transformations using the rule system.

SQL is a declarative language: a query defines what data to get, but not how
to get it. It is at this point when the query (already parsed and presented in
the form of a tree) is passed on to the planner, which develops an execution
plan. For example, the planner can decide whether or not to use indexes to
find the data for the query. To plan the execution efficiently, the planner
needs certain information about the tables it is going to work with, such as
the size of the tables and the distribution of data within them. Together, this
information is called statistics.

When a plan is selected, the query is executed in accordance with it, and the
result is returned to the client in its entirety.

https://postgrespro.com/docs/postgresqgl/16/query-path

This is convenient and simple when we are talking about just a row or two,
provided by the simple mode of the protocol.

https://postgrespro.com/docs/postgresql/16/query-path

of] PROFESSIONAL

Prepared Statements Posigres

PostgreSQL

preparation o %i;}
client bonding o ié}g
application : 7

T e

driver

parsing
rewriting

binding — parameter values
planning
execution

Each query goes through the steps listed above: parsing, rewriting, planning
and execution. But if the same query (possibly with different parameters) is
executed over and over again, there is no point in parsing it anew every
time.

Therefore, in addition to the usual query execution process, the PostgreSQL
protocol provides an extended mode that can control statement execution
more precisely.

One of its features is the ability to prepare a statement. When a statement is
prepared, it is parsed and rewritten as usual and its parse tree is saved.

When the statement is executed, specific parameter values are bound to it.
If necessary, planning is redone (in some cases, PostgreSQL remembers
the query plan and does not repeat this step). Then, the statement is
executed.

Another advantage of prepared statements is that they are protected from
possible SQL injections.

https://postgrespro.com/docs/postgresqgl/16/sql-prepare
https://postgrespro.com/docs/postgresqgl/16/sql-execute

https://postgrespro.com/docs/postgresql/16/sql-prepare
https://postgrespro.com/docs/postgresql/16/sql-execute

Prepared Statements
In SQL, you can prepare a statement by using the PREPARE command (it is a PostgreSQL extension not present in the SQL
standard):

=> PREPARE q(integer) AS
SELECT * FROM t WHERE id = $1;

PREPARE

The statement is parsed and rewritten, and the parse tree is saved.

A prepared statement can be called by its name using arbitrary parameters:
=> EXECUTE q(1);

id | s

For non-parametric statements, an execution plan is saved as well. For queries with parameters, as in the example, the parameter
values are taken into account at the planning stage. The planner may decide that the plan built without considering the parameters
is good enough. In this case, it will not try to plan the query again.

e How do you prepare and execute a statement using your favourite programming language?
e (Can you execute a statement WITHOUT preparing it?

All prepared statements in the current session can be displayed with:
=> SELECT * FROM pg_prepared_statements \gx

[RECORD 1 J---dmmmmmmmmmmm e
name | q
statement | PREPARE qg(integer) AS +
| SELECT * FROM t WHERE id = $1;
prepare_time | 2025-09-24 16:57:13.399066+03
parameter_types | {integer}
result types | {integer, text}
:
I

from sql t
generic_plans 0
custom plans 1

of] PROFESSIONAL

Cursors Posigres

PostgreSQL

bonding ié?
result

result

‘]

preparation

Yyyv

client
application

driver

A

parsing
rewriting

binding — parameter values
planning
execution

The client may not want to get all the output at once. There can be too much
data, and not all of it may be needed.

This issue is solved by cursors, another feature of the extended mode. The
protocol can open a cursor for any operator, and then receive the output row
by row.

A cursor can be imagined as a sliding window that shows only a part of the
output at a time. When an output row is received, the window shifts down. In
other words, cursors allow you to work with relational data (that comes in
sets) iteratively, row by row.

An open cursor is represented on the server by a so-called portal. This term
iIs mentioned in the documentation, but in general, the words “cursor” and
“portal” can be considered synonyms.

A statement used within a cursor is implicitly prepared (that is, its parsing
tree and possibly execution plan are saved).

https://postgrespro.com/docs/postgresqgl/16/sql-declare

https://postgrespro.com/docs/postgresql/16/sql-fetch

https://postgrespro.com/docs/postgresql/16/sql-declare
https://postgrespro.com/docs/postgresql/16/sql-fetch

Cursors

When the SELECT command is executed, the server sends and the client receives all the rows at once:

=> SELECT * FROM t ORDER BY id;

id | s

e
1 | foo
2 | bar
3 | baz
4 | xyz

(4 rows)

Cursors let the client to retrieve data in batches of rows.
=> BEGIN;
BEGIN

=> DECLARE c¢ CURSOR FOR
SELECT * FROM t ORDER BY id;

DECLARE CURSOR
=> FETCH c;

id | s

You can set the size of the batch:
=> FETCH 2 c;
id | s

2 | bar
3 | baz
(2 rows)

The batch size is paramount for huge outputs, when processing them one row at a time is inefficient.
What if we reach the end of the table?
=> FETCH 2 c;

id | s

4 | xyz

(1 row)
=> FETCH 2 c;

id | s

R
(0 rows)

FETCH will just stop returning rows. All regular programming languages have a way to check for this condition.

e How do you get data row by row using the cursor in your favorite programming language?
e Is it possible NOT to use the cursor and get all the rows at once?
e How is the cursor batch size set?

You can close your cursor when done, freeing up some resources:

=> CLOSE c;

CLOSE CURSOR

However, cursors are automatically closed when the transaction ends, so explicit closing is optional (except WITH HOLD cursors.)

=> COMMIT;

COMMIT

Processes and Memory Pogga’?“e"%

PostgreSQL

/V postmaster

. / e “‘
client backend

application s
, background processes

{ shared memory }

- -

parsed queries,
cursor states,
system catalog cache,
space for sorting,
joining etc.

11

Between processing queries from clients, the server must store technical
information, such as parsed queries and their plans and the status of open
cursors (portals). Where is it stored and how?

Under the hood, a PostgreSQL server consists of several interacting
processes. First of all, when the server starts, a process traditionally called
postmaster is started. It starts all other processes (using the fork system call
in Unix). It also “babysits” them: if any of the processes crashes, postmaster
will restart it (or restart the entire server if it considers that the failed process
could have damaged any of the shared data).

Operations of the server are maintained by a number of background
processes. The main ones will be discussed in the following lessons.

In order for the processes to exchange information between them,
postmaster allocates shared memory that all the processes can access. In
addition to shared memory, each process has its own local memory,
accessible only to itself.

Postmaster also listens for incoming connections. For each connecting
client, postmaster generates a designated backend process for the client to
communicate with on the server side, and each client gets its own process.
The backend process performs authentication, among other things.

The space required to execute a client’s query (parsed queries and their
plans, cursor states, system catalog cache, a place to sort data, etc.) is
allocated in the local memory of the backend process of this client.

of] PROFESSIONAL

Multiple Clients Posigres

PostgreSQL
postmaster
I 11 e “‘
ap[glilsgttion H backend
= : background processes

shared memory

S

(z)

MVCC

12

When multiple clients connect to a server, each one gets a backend process
created for it. As long as there are not too many clients, RAM is sufficient,
and connections do not occur too often, sustaining many connections at
once is not a problem in itself.

However, when multiple processes try to access the same database object,
things must be done to ensure that one process will not change the data
while another is in the process of reading it.

For objects in shared memory, this is ensured by short-term locks.
PostgreSQL does this carefully enough so that the system scales well with
an increase in the number of processors (cores).

Tables are more complicated. Locks will have to be held until the end of
transactions (that is, potentially for a long time), so scalability may suffer. To
avoid that, PostgreSQL uses a multiversion concurrency control mechanism
(MVCC) and snapshot isolation: multiple versions of the same data can exist
simultaneously, and each process sees only its own (but always consistent)
data snapshot. Now, only those processes that are trying to change data
that has already been changed, but not yet committed by other processes,
will be locked.

MVCC is the main mechanism that enables the first three properties of
transactions (atomicity, consistency, and isolation). We will talk about it more
in its dedicated lesson.

of] PROFESSIONAL

Connection Pool Posigres

PostgreSQL

postmaster

dlient " “‘
application pool backend ﬂ
bac

s

kground processes

{ shared memory }

-

13

If there are too many clients, or connections are established and broken too
often, using a connection pool may help. This functionality is usually
provided by the application server or third-party pool managers (the most
popular of which is pgBouncer).

With a connection pool in place, clients connect not to the PostgreSQL
server directly, but to the pool manager. The manager keeps several
connections to the database server open and uses free ones to fulfill client
gueries. From the server’s point of view, the number of clients remains
constant regardless of how many clients access the pool manager.

The drawback is that multiple clients end up sharing the same backend
process, which, as we remember, stores client-specific state in its local
memory (such as parsed queries for prepared statements). Therefore, care
should be taken when developing applications for such deployments.

One of pgBouncer’s features is the ability to temporarily pause client
connections without disconnecting them. This pause can be used for server
software updates or other operations that require a server restart.

The use of connection pools is discussed in greater detail in the DEV2
course.

Data Storage Pog%EF“éﬁ

buffer cache
[) j
page
(usually 8KB)

header

data

s

14

Data is stored as regular OS files on disks. How exactly the data is
distributed among the files is discussed in one of following lessons.

Logically, the files are divided into pages (sometimes the term block is
used). A page is usually 8KB in size. It can be changed within some limits
(16 KB or 32 KB), but only during server compilation. A cluster that has been
compiled and started up this way can work with pages of only one size.

Each page has a certain internal structure. It contains a header and actual
data. There may be free space between them if the page is not fully
occupied.

Since disks work much slower than RAM (especially HDD, but SSD too),
data heading to disk is cached first. A buffer cache, a certain amount of
space in RAM, is allocated for recently read pages. The idea is that the
system may want to read the same pages multiple times, and keeping them
on hand may save time compared to repeated disk scans. Any recently
changed data is also cached for some time before being written on disk.

of] PROFESSIONAL

Data Storage Posigres

PostgreSQL

postmaster

apgllilggttion backend
== backgrouvrd processes
L|:

shared memory

buffer cache [DDDDDDDD]

cache] oS

(
=~0mal 0T

15

The PostgreSQL buffer cache is located in shared memory so that all
processes have access to it.

PostgreSQL does not directly access disks storing its data. Instead, it relies
on the operating system. The operating system also has its own data cache.
Therefore, if a page is not found in the buffer cache, there is a chance that it
is in the OS cache and access to the disk will be avoided.

In case of a failure (for example, power supply dies), the contents of the
RAM are lost, and the data changed but not yet written to disk will be lost.
This is unacceptable and breaks the durability property of transactions. To
avoid that, PostgreSQL keeps a log that allows it to redo lost operations and
restore data to a consistent state. We will talk about the buffer cache and the
write-ahead log in the dedicated lesson later on.

of] PROFESSIONAL

Extensibility Posigres

PostgreSQL

postmaster

5 % (" background
I o v workers
client
application backenc@\
bal

!
‘ ckground processes

LI:

programming

I
[Wmemory]

cache

data types

Y “
functions, ‘

operators,

triggers

j oS
index types @

16

PostgreSQL is designed with extensibility in mind. It allows to create new
data types based on existing ones, write stored procedures for data
processing, and offers a convenient toolkit for administration, monitoring,
and performance tuning.

You can always write an extension that adds the necessary functionality that
you need. Most extensions can be installed “hot”, without stopping the
server. Thanks to this architecture, there are plenty of existing extensions
doing things such as:

adding support for programming languages (in addition to standard SQL,
PL/pgSQL, PL/Perl, PL/Python and PL/Tcl);

introducing new data types and operators to work with them;

creating new index types that work more efficiently with specific data
types (in addition to standard B-trees, hash indexes, GiST, SP-GIiST, GIN,
BRIN);

starting background workers to perform additional tasks;
connecting to external data sources;

collecting system load information, performing monitoring, and generating
reports;

exploring system data structures.

Extensibility is discussed in more detail in the DBA2 and DEV2 courses.

Takeaways Pogga’?fs&

A server manages a database cluster

The protocol allows clients to connect to the server,
transmit queries and manage transactions

Each client is served by a dedicated backend process
Data is stored in files and accessed via the operating system

Data is cached both in local memory (system catalog, parsed
queries) and in shared memory (buffer cache)

17

