

Data Organization

System Catalog

16

Copyright
© Postgres Professional, 2017–2025
Authors: Egor Rogov, Pavel Luzanov, Ilya Bashtanov, Alexey Beresnev
Translated by: Liudmila Mantrova, Alexander Meleshko, Elena Sharafutdinova
Photo: Oleg Bartunov (Phu Monastery and Bhrikuti Peak, Nepal)

Use of Course Materials
Non-commercial use of course materials (presentations, demonstrations) is
allowed without restrictions. Commercial use is possible only with the written
permission of Postgres Professional. It is prohibited to make changes to the
course materials.

Feedback
Please send your feedback, comments and suggestions to:
edu@postgrespro.ru

Disclaimer
Postgres Professional assumes no responsibility for any damages and losses,
including loss of income, caused by direct or indirect, intentional or accidental
use of course materials. Postgres Professional company specifically disclaims
any warranties on course materials. Course materials are provided “as is,”
and Postgres Professional company has no obligations to provide
maintenance, support, updates, enhancements, or modifications.

mailto:edu@postgrespro.ru

2

Topics

What Is the System Catalog and how to Access It

System Catalog Objects and their Location

Object Naming Rules

Special Data Types

3

System Catalog

A set of tables and views
describing all objects in a database cluster

Schemas
primary schema: pg_catalog
alternative representation: information_schema (SQL standard)

SQL access
view: SELECT
change: CREATE, ALTER, DROP

psql access
commands for convenient data visualization

The system catalog is a collection of tables and views that describe all
database objects. It is metadata for the contents of the cluster:
https://postgrespro.com/docs/postgresql/16/catalogs

Starting from version 14 of PostgreSQL, primary keys and unique
constraints have been added for most system catalog tables.

You can access this metadata using regular SQL queries. SELECT
commands can give you a description of an object, and DDL (Data Definition
Language) commands let you add and modify objects.

All system catalog tables and views are located in the pg_catalog schema.
There is another schema, as defined by the SQL standard:
information_schema. It is more stable and portable than pg_catalog, but
does not reflect specific features of PostgreSQL.

Client programs can read the contents of the system catalog and display it to
the user in a convenient way. For example, GUI-based development and
management environments usually come with a hierarchical object
navigation tool.

The psql client also offers a number of convenient built-in commands
specifically designed for working with the system catalog. Most of these
commands start with \d (as in “describe”). For the full list of commands and
their descriptions, see:
https://postgrespro.com/docs/postgresql/16/app-psql#APP-PSQL-META-CO
MMANDS

We will look at the most commonly used ones in the demo.
The course materials also include the catalogs.pdf file that features a
diagram of the main system catalog tables and related psql commands.

https://postgrespro.com/docs/postgresql/16/catalogs
https://postgrespro.com/docs/postgresql/16/app-psql#APP-PSQL-META-COMMANDS
https://postgrespro.com/docs/postgresql/16/app-psql#APP-PSQL-META-COMMANDS

4

Cluster-Level Objects

appdb

pg_catalog

tabletableobject

public

tabletableobject

postgres

pg_catalog public

tabletableobject

tabletableobject

tabletableobject tabletableobject

tabletableobject tabletableobject

tabletableobject

objects in
this database

shared
cluster objects

schema

tabletableobject

tabletableobject

In a database cluster, each database has its own set of system catalog
tables. However, there are several system catalog objects that are shared
between all cluster databases. The most obvious example is the list of the
databases themselves.

These tables are stored outside of any single database, but at the same time
they are accessible from any database within the cluster.

5

Naming Rules

Object (table, view) and column name prefixes

Object names are always lowercase

pg_database.datname

common prefix
for all objects

column prefix
(usually derived from

the object name)

All system catalog tables and views begin with the prefix pg_. In order to
avoid potential conflicts, it is not recommended to create your own objects
starting with pg_.

Column names have a three-letter prefix, which is usually derived from the
name of the table. There is no underscore after the prefix. There are some
exceptions to this rule, such as the oid column and others.

Object names are always stored in lowercase.

Specific	pg_catalog	Objects

Create	a	database	and	some	test	objects:

=>	CREATE	DATABASE	data_catalog;

CREATE	DATABASE

=>	\c	data_catalog

You	are	now	connected	to	database	"data_catalog"	as	user	"student".

=>	CREATE	TABLE	employees(
		id	integer	GENERATED	ALWAYS	AS	IDENTITY	PRIMARY	KEY,
		name	text,
		manager	integer
);

CREATE	TABLE

=>	CREATE	VIEW	top_managers	AS
		SELECT	*	FROM	employees	WHERE	manager	IS	NULL;

CREATE	VIEW

=>	CREATE	TEMP	TABLE	emp_salaries(
		employee	integer,
		salary	numeric
);

CREATE	TABLE

We	are	familiar	with	some	of	the	system	catalog	tables	from	the	previous	lesson.	This	is	databases:

=>	SELECT	*	FROM	pg_database	WHERE	datname	=	'data_catalog'	\gx

-[RECORD	1]--+-------------
oid												|	16386
datname								|	data_catalog
datdba									|	16384
encoding							|	6
datlocprovider	|	c
datistemplate		|	f
datallowconn			|	t
datconnlimit			|	-1
datfrozenxid			|	722
datminmxid					|	1
dattablespace		|	1663
datcollate					|	en_US.UTF-8
datctype							|	en_US.UTF-8
daticulocale			|	
daticurules				|	
datcollversion	|	2.39
datacl									|	

And	schemas:

=>	SELECT	*	FROM	pg_namespace	WHERE	nspname	=	'public'	\gx

-[RECORD	1]---
oid						|	2200
nspname		|	public
nspowner	|	6171
nspacl			|	{pg_database_owner=UC/pg_database_owner,=U/pg_database_owner}

pg_class	is	an	important	table	that	stores	descriptions	for	multiple	types	of	objects:	tables,	views,	indexes,	sequences.	All	these
objects	in	PostgreSQL	are	called	relations,	thus	the	prefix	“rel”	in	the	column	names:

=>	SELECT	relname,	relkind,	relnamespace,	relfilenode,	relowner,	relpersistence	
FROM	pg_class	WHERE	relname	~	'^(emp|top)';

					relname						|	relkind	|	relnamespace	|	relfilenode	|	relowner	|	relpersistence	
------------------+---------+--------------+-------------+----------+----------------
	employees_id_seq	|	S							|									2200	|							16387	|				16384	|	p
	employees								|	r							|									2200	|							16388	|				16384	|	p
	employees_pkey			|	i							|									2200	|							16393	|				16384	|	p
	top_managers					|	v							|									2200	|											0	|				16384	|	p
	emp_salaries					|	r							|								16399	|							16401	|				16384	|	t
(5	rows)

The	object	type	is	determined	by	the	relkind	column,	while	relpersistence	distinguishes	temporary	objects	from	permanent	ones.

When	actively	using	temporary	objects,	the	system	catalog	tables	accumulate	numerous	obsolete	row	versions,	which	may	degrade
query	performance	at	all	query	processing	stages.	In	such	cases,	timely	catalog	table	vacuuming	becomes	essential.

Naturally,	only	a	subset	of	columns	in	pg_class	are	relevant	for	each	object	type.	Moreover,	examining	object	names	(rather	than
identifiers	like	relnamespace,	relowner,	etc.)	is	more	practical.	For	this	purpose,	there	are	specialized	system	views	such	as:

=>	SELECT	schemaname,	tablename,	tableowner
FROM	pg_tables	WHERE	schemaname	~	'(public|pg_temp.+)';

	schemaname	|		tablename			|	tableowner	
------------+--------------+------------
	public					|	employees				|	student
	pg_temp_4		|	emp_salaries	|	student
(2	rows)

=>	SELECT	*	
FROM	pg_views	WHERE	schemaname	=	'public';

	schemaname	|			viewname			|	viewowner	|									definition									
------------+--------------+-----------+----------------------------
	public					|	top_managers	|	student			|		SELECT	id,															+
												|														|											|					name,																	+
												|														|											|					manager															+
												|														|											|				FROM	employees									+
												|														|											|			WHERE	(manager	IS	NULL);
(1	row)

Using	psql

psql	has	a	set	of	built-in	commands	for	obtaining	information	from	the	system	catalog.	These	short	commands	are	more	convenient
than	making	direct	queries	to	system	tables	and	views.

A	list	of	all	tables	is	obtained	with	the	command:

=>	\dt

													List	of	relations
		Schema			|					Name					|	Type		|		Owner		
-----------+--------------+-------+---------
	pg_temp_4	|	emp_salaries	|	table	|	student
	public				|	employees				|	table	|	student
(2	rows)

This	command	returns	a	list	of	all	views	in	the	public	schema:

=>	\dv	public.*

											List	of	relations
	Schema	|					Name					|	Type	|		Owner		
--------+--------------+------+---------
	public	|	top_managers	|	view	|	student
(1	row)

List	of	tables,	views,	indexes,	and	sequences:

=>	\dtvis

																							List	of	relations
		Schema			|							Name							|			Type			|		Owner		|			Table			
-----------+------------------+----------+---------+-----------
	pg_temp_4	|	emp_salaries					|	table				|	student	|	
	public				|	employees								|	table				|	student	|	
	public				|	employees_id_seq	|	sequence	|	student	|	
	public				|	employees_pkey			|	index				|	student	|	employees
	public				|	top_managers					|	view					|	student	|	
(5	rows)

Appended	with	the	+	modifier,	these	commands	will	return	more	detailed	data:

=>	\dt+

																																										List	of	relations
		Schema			|					Name					|	Type		|		Owner		|	Persistence	|	Access	method	|				Size				|	
Description	
-----------+--------------+-------+---------+-------------+---------------+------------+--

	pg_temp_4	|	emp_salaries	|	table	|	student	|	temporary			|	heap										|	8192	bytes	|	
	public				|	employees				|	table	|	student	|	permanent			|	heap										|	8192	bytes	|	
(2	rows)

To	get	detailed	information	about	a	specific	object,	use	the	\d	command	(without	any	additional	letters):

=>	\d	top_managers

													View	"public.top_managers"
	Column		|		Type			|	Collation	|	Nullable	|	Default	
---------+---------+-----------+----------+---------
	id						|	integer	|											|										|	
	name				|	text				|											|										|	
	manager	|	integer	|											|										|	

The	+	modifier	still	works:

=>	\d+	top_managers

																									View	"public.top_managers"
	Column		|		Type			|	Collation	|	Nullable	|	Default	|	Storage		|	Description	
---------+---------+-----------+----------+---------+----------+-------------
	id						|	integer	|											|										|									|	plain				|	
	name				|	text				|											|										|									|	extended	|	
	manager	|	integer	|											|										|									|	plain				|	
View	definition:
	SELECT	id,
				name,
				manager
			FROM	employees
		WHERE	manager	IS	NULL;

You	can	use	the	command	not	only	on	relations,	but	other	objects	as	well,	such	as	schemas	(\dn)	and	functions	(\df).

The	S	modifier	makes	the	command	display	system	objects	in	addition	to	user	ones.	You	can	use	wildcard	patterns	to	filter	the
output:

=>	\dfS	pg*size

																																		List	of	functions
			Schema			|										Name										|	Result	data	type	|	Argument	data	types	|	Type	
------------+------------------------+------------------+---------------------+------
	pg_catalog	|	pg_column_size									|	integer										|	"any"															|	func
	pg_catalog	|	pg_database_size							|	bigint											|	name																|	func
	pg_catalog	|	pg_database_size							|	bigint											|	oid																	|	func
	pg_catalog	|	pg_indexes_size								|	bigint											|	regclass												|	func
	pg_catalog	|	pg_relation_size							|	bigint											|	regclass												|	func
	pg_catalog	|	pg_relation_size							|	bigint											|	regclass,	text						|	func
	pg_catalog	|	pg_table_size										|	bigint											|	regclass												|	func
	pg_catalog	|	pg_tablespace_size					|	bigint											|	name																|	func
	pg_catalog	|	pg_tablespace_size					|	bigint											|	oid																	|	func
	pg_catalog	|	pg_total_relation_size	|	bigint											|	regclass												|	func
(10	rows)

Usually,	such	psql	commands	have	mnemonic	names.	For	example,	\df	is	describe	function,	\sf	is	show	function:

=>	\sf	pg_catalog.pg_database_size(oid)

CREATE	OR	REPLACE	FUNCTION	pg_catalog.pg_database_size(oid)
	RETURNS	bigint
	LANGUAGE	internal
	PARALLEL	SAFE	STRICT
AS	$function$pg_database_size_oid$function$

You	can	get	the	full	list	of	commands	from	the	documentation	or	with	the	psql	\?	command.

Exploring	the	System	Catalog	Structure

All	psql	commands	that	describe	objects	query	system	catalog	tables.	To	view	these	queries,	set	the	psql	variable	ECHO_HIDDEN.
For	example,	to	examine	the	employees	table	structure:

=>	\set	ECHO_HIDDEN	on

=>	\dt	employees

*********	QUERY	**********
SELECT	n.nspname	as	"Schema",
		c.relname	as	"Name",
		CASE	c.relkind	WHEN	'r'	THEN	'table'	WHEN	'v'	THEN	'view'	WHEN	'm'	THEN	'materialized	
view'	WHEN	'i'	THEN	'index'	WHEN	'S'	THEN	'sequence'	WHEN	't'	THEN	'TOAST	table'	WHEN	'f'	
THEN	'foreign	table'	WHEN	'p'	THEN	'partitioned	table'	WHEN	'I'	THEN	'partitioned	index'	
END	as	"Type",
		pg_catalog.pg_get_userbyid(c.relowner)	as	"Owner"
FROM	pg_catalog.pg_class	c
					LEFT	JOIN	pg_catalog.pg_namespace	n	ON	n.oid	=	c.relnamespace
					LEFT	JOIN	pg_catalog.pg_am	am	ON	am.oid	=	c.relam
WHERE	c.relkind	IN	('r','p','t','s','')
		AND	c.relname	OPERATOR(pg_catalog.~)	'^(employees)$'	COLLATE	pg_catalog.default
		AND	pg_catalog.pg_table_is_visible(c.oid)
ORDER	BY	1,2;

										List	of	relations
	Schema	|			Name				|	Type		|		Owner		
--------+-----------+-------+---------
	public	|	employees	|	table	|	student
(1	row)

=>	\unset	ECHO_HIDDEN

Most	system	catalog	tables	feature	primary	keys	(typically	the	oid	column)	and	uniqueness	constraints.	As	an	example,	the
pg_attribute	table	(containing	relation	attribute	information)	implements	these	constraints:

=>	\d	pg_attribute

															Table	"pg_catalog.pg_attribute"
					Column					|			Type				|	Collation	|	Nullable	|	Default	
----------------+-----------+-----------+----------+---------
	attrelid							|	oid							|											|	not	null	|	
	attname								|	name						|											|	not	null	|	
	atttypid							|	oid							|											|	not	null	|	
	attlen									|	smallint		|											|	not	null	|	
	attnum									|	smallint		|											|	not	null	|	
	attcacheoff				|	integer			|											|	not	null	|	
	atttypmod						|	integer			|											|	not	null	|	
	attndims							|	smallint		|											|	not	null	|	
	attbyval							|	boolean			|											|	not	null	|	
	attalign							|	"char"				|											|	not	null	|	
	attstorage					|	"char"				|											|	not	null	|	
	attcompression	|	"char"				|											|	not	null	|	
	attnotnull					|	boolean			|											|	not	null	|	
	atthasdef						|	boolean			|											|	not	null	|	
	atthasmissing		|	boolean			|											|	not	null	|	
	attidentity				|	"char"				|											|	not	null	|	
	attgenerated			|	"char"				|											|	not	null	|	
	attisdropped			|	boolean			|											|	not	null	|	
	attislocal					|	boolean			|											|	not	null	|	
	attinhcount				|	smallint		|											|	not	null	|	
	attstattarget		|	smallint		|											|	not	null	|	
	attcollation			|	oid							|											|	not	null	|	
	attacl									|	aclitem[]	|											|										|	
	attoptions					|	text[]				|	C									|										|	
	attfdwoptions		|	text[]				|	C									|										|	
	attmissingval		|	anyarray		|											|										|	
Indexes:
				"pg_attribute_relid_attnum_index"	PRIMARY	KEY,	btree	(attrelid,	attnum)
				"pg_attribute_relid_attnam_index"	UNIQUE	CONSTRAINT,	btree	(attrelid,	attname)

Referential	integrity	is	maintained	through	foreign-key-like	constraints	with	additional	complexity:	the	referencing	column	may	be
an	array	of	elements,	zero	may	represent	undefined	references.	The	pg_get_catalog_foreign_keys()	function	lists	these	pseudo-
foreign	keys.	For	instance,	pg_attribute	references:

=>	SELECT	*
FROM			pg_get_catalog_foreign_keys()
WHERE		fktable	=	'pg_attribute'::regclass;

			fktable				|					fkcols					|			pktable				|	pkcols	|	is_array	|	is_opt	
--------------+----------------+--------------+--------+----------+--------
	pg_attribute	|	{attrelid}					|	pg_class					|	{oid}		|	f								|	f
	pg_attribute	|	{atttypid}					|	pg_type						|	{oid}		|	f								|	t
	pg_attribute	|	{attcollation}	|	pg_collation	|	{oid}		|	f								|	t
(3	rows)

fktable,	fkcols	—	referencing	table	and	its	columns
pktable,	pkcols	—	key	referenced
is_array	—	whether	the	referencing	column	is	an	array
is_opt	—	whether	the	referencing	column	can	contain	0

7

Special Data Types

oid type – object identifier
oid column ensures object uniqueness in system catalog tables
integer with an auto increment

reg* types
oid aliases for some system catalog tables
(regclass for pg_class, etc.)

converting the text name of an object to the oid type and vice versa

Most system catalog tables use a column with oid name and data type of
the same name as a primary key.

The oid (Object Identifier) type is a 32 bit integer (about 4 billion possible
values) with an auto increment.

There are several special data types (in fact, oid aliases) starting with reg
that are used to convert object names to oids and back.

https://postgrespro.com/docs/postgresql/16/datatype-oid

https://postgrespro.com/docs/postgresql/16/datatype-oid

oid	and	reg*	Data	Types

As	shown	before,	table	and	view	descriptions	are	stored	in	pg_class	table,	and	column	descriptions	are	in	a	separate	pg_attribute
table.	So,	to	get	a	list	of	columns	in	a	specific	table,	you	need	to	join	pg_class	and	pg_attribute:

=>	SELECT	a.attname,	a.atttypid
FROM	pg_attribute	a
WHERE	a.attrelid	=	(
		SELECT	oid	FROM	pg_class	WHERE	relname	=	'employees'
)
AND	a.attnum	>	0;

	attname	|	atttypid	
---------+----------
	id						|							23
	name				|							25
	manager	|							23
(3	rows)

Using	reg*	types,	the	query	can	be	simplified	by	omitting	the	explicit	access	to	pg_class:

=>	SELECT	a.attname,	a.atttypid
FROM	pg_attribute	a
WHERE	a.attrelid	=	'employees'::regclass
AND	a.attnum	>	0;

	attname	|	atttypid	
---------+----------
	id						|							23
	name				|							25
	manager	|							23
(3	rows)

Here,	the	string	“employees”	was	converted	to	the	oid	type.	Similarly,	oid	can	be	displayed	as	a	text	value:

=>	SELECT	a.attname,	a.atttypid::regtype
FROM	pg_attribute	a
WHERE	a.attrelid	=	'employees'::regclass
AND	a.attnum	>	0;

	attname	|	atttypid	
---------+----------
	id						|	integer
	name				|	text
	manager	|	integer
(3	rows)

A	list	of	all	reg*	types:

=>	\dT	reg*

																								List	of	data	types
			Schema			|					Name						|													Description														
------------+---------------+--------------------------------------
	pg_catalog	|	regclass						|	registered	class
	pg_catalog	|	regcollation		|	registered	collation
	pg_catalog	|	regconfig					|	registered	text	search	configuration
	pg_catalog	|	regdictionary	|	registered	text	search	dictionary
	pg_catalog	|	regnamespace		|	registered	namespace
	pg_catalog	|	regoper							|	registered	operator
	pg_catalog	|	regoperator			|	registered	operator	(with	args)
	pg_catalog	|	regproc							|	registered	procedure
	pg_catalog	|	regprocedure		|	registered	procedure	(with	args)
	pg_catalog	|	regrole							|	registered	role
	pg_catalog	|	regtype							|	registered	type
(11	rows)

9

Takeaways

The system catalog contains cluster metadata stored within the
cluster itself

SQL access and additional psql commands

Some system catalog tables are stored in databases,
some are shared across the entire cluster

The system catalog uses special data types

10

Practice

1. Get a description of the pg_class table.

2. Get a detailed description of the pg_tables view.

3. Create a database and a temporary table in it.
Get a complete list of schemas in the database, including system
schemas.

4. Get a list of views in the information_schema.

5. What queries does the following psql command perform?
\d+ pg_views

1.	Description	of	pg_class

=>	\d	pg_class

																					Table	"pg_catalog.pg_class"
							Column								|					Type					|	Collation	|	Nullable	|	Default	
---------------------+--------------+-----------+----------+---------
	oid																	|	oid										|											|	not	null	|	
	relname													|	name									|											|	not	null	|	
	relnamespace								|	oid										|											|	not	null	|	
	reltype													|	oid										|											|	not	null	|	
	reloftype											|	oid										|											|	not	null	|	
	relowner												|	oid										|											|	not	null	|	
	relam															|	oid										|											|	not	null	|	
	relfilenode									|	oid										|											|	not	null	|	
	reltablespace							|	oid										|											|	not	null	|	
	relpages												|	integer						|											|	not	null	|	
	reltuples											|	real									|											|	not	null	|	
	relallvisible							|	integer						|											|	not	null	|	
	reltoastrelid							|	oid										|											|	not	null	|	
	relhasindex									|	boolean						|											|	not	null	|	
	relisshared									|	boolean						|											|	not	null	|	
	relpersistence						|	"char"							|											|	not	null	|	
	relkind													|	"char"							|											|	not	null	|	
	relnatts												|	smallint					|											|	not	null	|	
	relchecks											|	smallint					|											|	not	null	|	
	relhasrules									|	boolean						|											|	not	null	|	
	relhastriggers						|	boolean						|											|	not	null	|	
	relhassubclass						|	boolean						|											|	not	null	|	
	relrowsecurity						|	boolean						|											|	not	null	|	
	relforcerowsecurity	|	boolean						|											|	not	null	|	
	relispopulated						|	boolean						|											|	not	null	|	
	relreplident								|	"char"							|											|	not	null	|	
	relispartition						|	boolean						|											|	not	null	|	
	relrewrite										|	oid										|											|	not	null	|	
	relfrozenxid								|	xid										|											|	not	null	|	
	relminmxid										|	xid										|											|	not	null	|	
	relacl														|	aclitem[]				|											|										|	
	reloptions										|	text[]							|	C									|										|	
	relpartbound								|	pg_node_tree	|	C									|										|	
Indexes:
				"pg_class_oid_index"	PRIMARY	KEY,	btree	(oid)
				"pg_class_relname_nsp_index"	UNIQUE	CONSTRAINT,	btree	(relname,	relnamespace)
				"pg_class_tblspc_relfilenode_index"	btree	(reltablespace,	relfilenode)

2.	Detailed	Description	of	pg_tables

=>	\d+	pg_tables

																										View	"pg_catalog.pg_tables"
			Column				|		Type			|	Collation	|	Nullable	|	Default	|	Storage	|	Description	
-------------+---------+-----------+----------+---------+---------+-------------
	schemaname		|	name				|											|										|									|	plain			|	
	tablename			|	name				|											|										|									|	plain			|	
	tableowner		|	name				|											|										|									|	plain			|	
	tablespace		|	name				|											|										|									|	plain			|	
	hasindexes		|	boolean	|											|										|									|	plain			|	
	hasrules				|	boolean	|											|										|									|	plain			|	
	hastriggers	|	boolean	|											|										|									|	plain			|	
	rowsecurity	|	boolean	|											|										|									|	plain			|	
View	definition:
	SELECT	n.nspname	AS	schemaname,
				c.relname	AS	tablename,
				pg_get_userbyid(c.relowner)	AS	tableowner,
				t.spcname	AS	tablespace,
				c.relhasindex	AS	hasindexes,
				c.relhasrules	AS	hasrules,
				c.relhastriggers	AS	hastriggers,
				c.relrowsecurity	AS	rowsecurity
			FROM	pg_class	c
					LEFT	JOIN	pg_namespace	n	ON	n.oid	=	c.relnamespace
					LEFT	JOIN	pg_tablespace	t	ON	t.oid	=	c.reltablespace
		WHERE	c.relkind	=	ANY	(ARRAY['r'::"char",	'p'::"char"]);

3.	List	of	All	Schemas

=>	CREATE	DATABASE	data_catalog;

CREATE	DATABASE

=>	\c	data_catalog

You	are	now	connected	to	database	"data_catalog"	as	user	"student".

=>	CREATE	TEMP	TABLE	t(n	integer);

CREATE	TABLE

=>	\dnS

												List	of	schemas
								Name								|							Owner							
--------------------+-------------------
	information_schema	|	postgres
	pg_catalog									|	postgres
	pg_temp_4										|	postgres
	pg_toast											|	postgres
	pg_toast_temp_4				|	postgres
	public													|	pg_database_owner
(6	rows)

Temporary	tables	are	stored	in	schemas	named	pg_temp_N,	where	N	is	a	number.	Such	schemas	are	created	for	each	session	where
temporary	objects	appear,	so	there	can	be	multiple	schemas.	To	get	the	name	of	the	schema	for	the	current	session,	use	the
following	system	function:

=>	SELECT	pg_my_temp_schema()::regnamespace;

	pg_my_temp_schema	

	pg_temp_4
(1	row)

In	general,	the	exact	name	of	the	schema	is	not	required:	you	can	access	temporary	objects	in	your	session	by	using	just	pg_temp:

=>	SELECT	*	FROM	pg_temp.t;

	n	

(0	rows)

We	already	know	what	some	of	the	schemas	are	there	for,	and	we	will	learn	more	about	the	rest	(pg_toast*)	in	a	later	lesson.

4.	Get	a	List	of	Views	in	the	information_schema

Use	the	template:

=>	\dv	information_schema.*

																														List	of	relations
							Schema							|																	Name																		|	Type	|		Owner			
--------------------+---------------------------------------+------+----------
	information_schema	|	_pg_foreign_data_wrappers													|	view	|	postgres
	information_schema	|	_pg_foreign_servers																			|	view	|	postgres
	information_schema	|	_pg_foreign_table_columns													|	view	|	postgres
	information_schema	|	_pg_foreign_tables																				|	view	|	postgres
	information_schema	|	_pg_user_mappings																					|	view	|	postgres
	information_schema	|	administrable_role_authorizations					|	view	|	postgres
	information_schema	|	applicable_roles																						|	view	|	postgres
	information_schema	|	attributes																												|	view	|	postgres
	information_schema	|	character_sets																								|	view	|	postgres
	information_schema	|	check_constraint_routine_usage								|	view	|	postgres
	information_schema	|	check_constraints																					|	view	|	postgres
	information_schema	|	collation_character_set_applicability	|	view	|	postgres
	information_schema	|	collations																												|	view	|	postgres
	information_schema	|	column_column_usage																			|	view	|	postgres
	information_schema	|	column_domain_usage																			|	view	|	postgres
	information_schema	|	column_options																								|	view	|	postgres
	information_schema	|	column_privileges																					|	view	|	postgres
	information_schema	|	column_udt_usage																						|	view	|	postgres
	information_schema	|	columns																															|	view	|	postgres
	information_schema	|	constraint_column_usage															|	view	|	postgres
	information_schema	|	constraint_table_usage																|	view	|	postgres
	information_schema	|	data_type_privileges																		|	view	|	postgres
	information_schema	|	domain_constraints																				|	view	|	postgres
	information_schema	|	domain_udt_usage																						|	view	|	postgres
	information_schema	|	domains																															|	view	|	postgres
	information_schema	|	element_types																									|	view	|	postgres
	information_schema	|	enabled_roles																									|	view	|	postgres
	information_schema	|	foreign_data_wrapper_options										|	view	|	postgres
	information_schema	|	foreign_data_wrappers																	|	view	|	postgres
	information_schema	|	foreign_server_options																|	view	|	postgres
	information_schema	|	foreign_servers																							|	view	|	postgres
	information_schema	|	foreign_table_options																	|	view	|	postgres
	information_schema	|	foreign_tables																								|	view	|	postgres
	information_schema	|	information_schema_catalog_name							|	view	|	postgres
	information_schema	|	key_column_usage																						|	view	|	postgres
	information_schema	|	parameters																												|	view	|	postgres
	information_schema	|	referential_constraints															|	view	|	postgres
	information_schema	|	role_column_grants																				|	view	|	postgres
	information_schema	|	role_routine_grants																			|	view	|	postgres
	information_schema	|	role_table_grants																					|	view	|	postgres
	information_schema	|	role_udt_grants																							|	view	|	postgres
	information_schema	|	role_usage_grants																					|	view	|	postgres
	information_schema	|	routine_column_usage																		|	view	|	postgres
	information_schema	|	routine_privileges																				|	view	|	postgres
	information_schema	|	routine_routine_usage																	|	view	|	postgres
	information_schema	|	routine_sequence_usage																|	view	|	postgres
	information_schema	|	routine_table_usage																			|	view	|	postgres
	information_schema	|	routines																														|	view	|	postgres
	information_schema	|	schemata																														|	view	|	postgres
	information_schema	|	sequences																													|	view	|	postgres
	information_schema	|	table_constraints																					|	view	|	postgres
	information_schema	|	table_privileges																						|	view	|	postgres
	information_schema	|	tables																																|	view	|	postgres
	information_schema	|	transforms																												|	view	|	postgres
	information_schema	|	triggered_update_columns														|	view	|	postgres
	information_schema	|	triggers																														|	view	|	postgres
	information_schema	|	udt_privileges																								|	view	|	postgres
	information_schema	|	usage_privileges																						|	view	|	postgres
	information_schema	|	user_defined_types																				|	view	|	postgres
	information_schema	|	user_mapping_options																		|	view	|	postgres
	information_schema	|	user_mappings																									|	view	|	postgres
	information_schema	|	view_column_usage																					|	view	|	postgres
	information_schema	|	view_routine_usage																				|	view	|	postgres
	information_schema	|	view_table_usage																						|	view	|	postgres
	information_schema	|	views																																	|	view	|	postgres
(65	rows)

5.	Queries	to	the	System	Catalog

To	see	the	queries	psql	runs,	use	the	ECHO_HIDDEN	variable:

=>	\set	ECHO_HIDDEN	on

=>	\d+	pg_views

*********	QUERY	**********
SELECT	c.oid,
		n.nspname,
		c.relname
FROM	pg_catalog.pg_class	c
					LEFT	JOIN	pg_catalog.pg_namespace	n	ON	n.oid	=	c.relnamespace
WHERE	c.relname	OPERATOR(pg_catalog.~)	'^(pg_views)$'	COLLATE	pg_catalog.default
		AND	pg_catalog.pg_table_is_visible(c.oid)
ORDER	BY	2,	3;

*********	QUERY	**********
SELECT	c.relchecks,	c.relkind,	c.relhasindex,	c.relhasrules,	c.relhastriggers,	
c.relrowsecurity,	c.relforcerowsecurity,	false	AS	relhasoids,	c.relispartition,	
pg_catalog.array_to_string(c.reloptions	||	array(select	'toast.'	||	x	from	
pg_catalog.unnest(tc.reloptions)	x),	',	')
,	c.reltablespace,	CASE	WHEN	c.reloftype	=	0	THEN	''	ELSE	
c.reloftype::pg_catalog.regtype::pg_catalog.text	END,	c.relpersistence,	c.relreplident,	
am.amname
FROM	pg_catalog.pg_class	c
	LEFT	JOIN	pg_catalog.pg_class	tc	ON	(c.reltoastrelid	=	tc.oid)
LEFT	JOIN	pg_catalog.pg_am	am	ON	(c.relam	=	am.oid)
WHERE	c.oid	=	'12028';

*********	QUERY	**********
SELECT	a.attname,
		pg_catalog.format_type(a.atttypid,	a.atttypmod),
		(SELECT	pg_catalog.pg_get_expr(d.adbin,	d.adrelid,	true)
			FROM	pg_catalog.pg_attrdef	d
			WHERE	d.adrelid	=	a.attrelid	AND	d.adnum	=	a.attnum	AND	a.atthasdef),
		a.attnotnull,
		(SELECT	c.collname	FROM	pg_catalog.pg_collation	c,	pg_catalog.pg_type	t
			WHERE	c.oid	=	a.attcollation	AND	t.oid	=	a.atttypid	AND	a.attcollation	<>	
t.typcollation)	AS	attcollation,
		a.attidentity,
		a.attgenerated,
		a.attstorage,
		pg_catalog.col_description(a.attrelid,	a.attnum)
FROM	pg_catalog.pg_attribute	a
WHERE	a.attrelid	=	'12028'	AND	a.attnum	>	0	AND	NOT	a.attisdropped
ORDER	BY	a.attnum;

*********	QUERY	**********
SELECT	pg_catalog.pg_get_viewdef('12028'::pg_catalog.oid,	true);

*********	QUERY	**********
SELECT	r.rulename,	trim(trailing	';'	from	pg_catalog.pg_get_ruledef(r.oid,	true))
FROM	pg_catalog.pg_rewrite	r
WHERE	r.ev_class	=	'12028'	AND	r.rulename	!=	'_RETURN'	ORDER	BY	1;

																									View	"pg_catalog.pg_views"
			Column			|	Type	|	Collation	|	Nullable	|	Default	|	Storage		|	Description	
------------+------+-----------+----------+---------+----------+-------------
	schemaname	|	name	|											|										|									|	plain				|	
	viewname			|	name	|											|										|									|	plain				|	
	viewowner		|	name	|											|										|									|	plain				|	
	definition	|	text	|											|										|									|	extended	|	
View	definition:
	SELECT	n.nspname	AS	schemaname,
				c.relname	AS	viewname,
				pg_get_userbyid(c.relowner)	AS	viewowner,
				pg_get_viewdef(c.oid)	AS	definition
			FROM	pg_class	c
					LEFT	JOIN	pg_namespace	n	ON	n.oid	=	c.relnamespace
		WHERE	c.relkind	=	'v'::"char";

psql	ran	five	queries	to	display	this	result.

=>	\set	ECHO_HIDDEN	off

